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FROM MESOSCALE BACK TO MICROSCALE: RECONSTRUCTION
SCHEMES FOR COARSE-GRAINED STOCHASTIC LATTICE
SYSTEMS*

JOSE TRASHORRAST AND DIMITRIOS K. TSAGKAROGIANNIS!

Abstract. Starting from a microscopic stochastic lattice spin system and the corresponding
coarse-grained model we introduce a mathematical strategy to recover microscopic information given
the coarse-grained data. We define “reconstructed” microscopic measures satisfying two conditions:
(i) they are close in specific relative entropy to the initial microscopic equilibrium measure condi-
tioned on the coarse-grained, data, and (ii) their sampling is computationally advantageous when
compared to sampling directly from the conditioned microscopic equilibrium measure. By using dif-
ferent techniques we consider the cases of both short and long range microscopic models.
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1. Introduction. Problems in scientific disciplines ranging from materials sci-
ence to the dynamics of macromolecules to the spread of epidemics and climate mod-
eling involve nonlinear interactions within a vast disparity of scales ranging from the
microscopic to the macroscopic. While microscopic simulation methods such as molec-
ular dynamics and Monte Carlo (MC) algorithms can describe aspects of such complex
systems, they are limited to short scales when compared to morphological features
such as vortices, traveling waves, or domain walls that typically involve much larger
mesoscopic scales. In recent years there has been a growing interest in developing hi-
erarchical coarse-graining methods to address this problem. The idea is to reduce the
complexity of the microscopic system by lumping together degrees of freedom into
appropriately chosen coarse-grained variables defining in this way a coarse-grained
model. By focusing on the relevant order parameter (coarse-graining observable, de-
pending on the particular problem), one designs numerical methods of significantly
reduced computational cost. Such coarse-grained models have been developed for the
study and simulation of a number of applications such as crystal growth, surface
processes, polymers, proteins, and complex fluids, among others (see [1], [17], [21]).
In particular, coarse-graining of polymeric chains and other macromolecular systems
has attracted considerable attention. In this context the coarse-graining method con-
sists of grouping together in a systematic manner several atoms on a macromolecule
creating an effective new chain (see, e.g., [7], [22], [2]).

In the present paper we are interested in the reconstruction of microscopic mod-
els given the coarse-grained data. The motivation for this is twofold. First, the
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coarse-grained model being computationally advantageous, it is natural to approx-
imate the microscopic model via the following multiscale procedure:

1. Coarse-graining: Derivation of a coarse-grained model from the original mi-

croscopic model.
2. coarse-grained simulation.
3. Microscopic reconstruction: Being given a coarse-grained configuration 7, de-
fine a reconstructed microscopic model on the ground of 7.

4. Simulation of the reconstructed microscopic model.
In short, the idea in this method is to reproduce the large scale structure by the
coarse-grained model and then to obtain microscopic information by appropriate mi-
croscopic reconstruction. It has been successfully followed in the multiscale treatment
of various polycarbonates, as well as for a hierarchical approach to polystyrene allow-
ing for important technological properties of the polymers to be calculated (see [24],
[25], [18], [8], [9]). This approach opens new perspectives for a mathematical investi-
gation since the aforementioned applications were based on ad hoc postulations for
the definition of both the coarse-grained and reconstructed models. While the rigor-
ous derivation of coarse-grained models in different contexts is addressed in, e.g., [13],
[10], and [11] (see [12] for an up-to-date review), the present work constitutes the first
systematical approach to the reconstruction problem. It is clear that reconstructed
models should be such that, on the one hand, the four-step method described above
is computationally advantageous when compared to running directly microscopic MC
algorithms and, on the other hand, the information loss in the transition from the
exact microscopic model to the overall reconstructed one is controlled. (In order to
avoid confusion, we shall call reconstructed model the microscopic model depending
on the coarse-grained data n defined at the third stage of the procedure and owverall
reconstructed model the microscopic model resulting from all four steps of the pro-
cedure.) The second reason to investigate microscopic reconstruction lies on the fact
that it often happens that only coarse-grained data are available to the experimenter:
microscopic details are beyond the reach of observation means (see, e.g., [23]). In this
case microscopic information should be derived from reconstructed models.

Here we investigate the reconstruction of microscopic models (steps 3 and 4 above)
in the context of equilibrium stochastic lattice systems of Ising type spins. Lattice
systems for N particles are defined in terms of a microscopic lattice Hamiltonian
Hy (o) with o being the microscopic configuration. At inverse temperature S > 0, the
system is in the configuration o with probability

pn,p(o) = e PN (@) Py (o),

ZN/ﬂ
where Py stands for a prior distribution. In [13] a systematic approach for steps 1
and 2 above was proposed. There the coarse-graining is performed by subdividing the
lattice into coarse cells and defining variables 77 on each coarse cell to be the total
magnetization in the cell. The exact coarse-grained Hamiltonian Hj; is obtained by
means of the Kadanoff transform

e—,BHM(ﬁ) = /efﬂHN(U)PN(UM)'

In [13] the authors found sufficient conditions under which Hjys can be expanded in a
series

Hy(n)=HY )+ HP () + B () + -+ HE (n) + 0",
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where ¢ is a small parameter depending on the characteristics of the model and the
level of coarse-graining. The coarse-grained models defined by truncated versions of
this series expansions lead to numerical simulations that are of improving accuracy
and less demanding than any direct microscopic simulation.

Regardless of computational constraints, being given a coarse-grained configura-
tion 7, a perfect reconstructed model is given by the conditioned microscopic equi-
librium measure py g(:|n). Our purpose in the present paper is to show how one
can define a reconstructed microscopic model taking into account the following two
conditions:

1. The reconstructed equilibrium measure lies within a controlled distance from
un,g(+|n) uniformly in 7.

2. Simulation of the reconstructed model is computationally advantageous when
compared to running directly MC algorithms on the perfect reconstructed
microscopic model.

The main feature of our reconstructed models is that they allow parallel computations.
In this way, instead of running a single multiconstrained MC dynamic on a huge state
space, we are led to run in parallel several multiconstrained MC dynamics on small
state spaces. This leads to a considerable speedup of the simulations. As a result
we can combine our methods with those proposed in [13] to define efficient overall
reconstructed models.

The issue of microscopic reconstruction arose also in the mathematical analysis of
the error resulting from the coarse-graining of stochastic particle dynamics (see [15],
[14]). The difficulty in carrying out the error estimates rests on the fact that the ex-
act coarse-grained dynamic is not Markovian. To circumvent this obstacle in [15] it
was suggested to define a reconstructed microscopic Markov process which is an ap-
proximation of the exact microscopic dynamic. The reconstructed dynamic was also
used for the computation of weak errors in [14]. Notice, however, that the reconstruc-
tion methods presented here are much more involved and efficient than the uniform
sampling employed there.

Let us mention that the problem of moving from a mesoscopic to a microscopic
description is at the core of many other computational multiscale methods (e.g., [16],
[6]), and it is usually referred to as reconstruction, reverse mapping, or “lifting” oper-
ator. One of the common features in these approaches is the attempt to capture the
macroscale behavior of a system using microscale models, without first deriving or ob-
taining the mesoscale (or macroscale) models. An important step in this process is to
specify the appropriate conditional (to the meso variables) distribution with respect
to which one samples the microscopic configuration in the mesoscale-to-microscale
mapping.

The paper is structured as follows: in section 2.1 we present the model and fix
the notation. Then in section 2.2 we present the results together with the subsequent
numerical schemes distinguishing the cases of the coarse-grained boxes being smaller
(section 2.2.1) or larger (section 2.2.2) than the interaction length. We also discuss the
problem of overall reconstruction in section 2.2.3. The proofs of the theorems are pre-
sented in section 3. Finally, in section 4 we give some numerical tests for our methods.

2. Main results and outline of the method.

2.1. The model.

The model at the microscopic scale. We consider as the physical domain for the
system the d-dimensional torus T4 = [0, 1)? with periodic boundary conditions. There
is no additional difficulty for the problem addressed here in considering other boundary
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conditions. The microscopic system is settled on the uniform lattice Ay = (£Z)9NTy.
The number of lattice sites N = n? is fixed but is arbitrary and finite. A microscopic
configuration o = (0(z))zeay is an element of Sy = {—1,1}*¥  and its energy is
given by the Hamiltonian

(21) Hy(o)=—3 3 3 T~ yoo)

rEAN YEAN
y#T

The potential J describes the interaction between individual spins, and we will focus
on the case of finite range interactions, i.e., a spin at site  interacts with its neighbors
which are at most L lattice points away from x. It will be useful to consider the range
of the interaction L as a parameter of the model. To this end we introduce a C! map

(2.2) V:R—=R such that V(r)=0 if|r|>1,
and we assume that the potential J(x — y) has the form

1 n A
(2.3) J(l’—y)zﬁv L——|—1|x_y| z,y € AN.

The factor 1/L% in (2.3) is a normalization which ensures that the strength of the
potential J is essentially independent of L, and we have [|J|| = > _,|J(z)] =~
J |V (r)|dr. The finite volume equilibrium states of the system are weighted by the
canonical Gibbs measure

1
(2.4) pin,g(0) = ——e PN Py (o),
’ ZN.p
where 3 is the inverse temperature, Zy s is the normalizing partition function, and
Py (o) is a product measure

rEAN

In order to simplify the notations, we shall take without loss of generality p(+1) = 1/2
and write uy and Zp, dropping the dependence on . We shall denote by Eyn the
expectation with respect to Py, and for every A C Sy we shall denote by En|[ - |A]
the expectation with respect to Py conditioned on the event A.

The coarse-graining map and the coarse-grained model. Next we consider two

integers m and ¢ such that n = mq. We partition the torus Ty into M = m? coarse
cells: For k = (ky, ..., kq) € (ZN[0,m—1])?, we define Cy, = [22 Etlys. . [ha katl)

so Ty = UrCy. We identify each cell (% with a lattice point of the coarse lattice
Ay = (%Z)d NTy. Each coarse cell contains @ = ¢ points of the microscopic lattice,
and we will refer to @ as the level of coarse-graining. The coarse-grained model is the
image of the microscopic model through the following coarse-graining map:

F:U»—H]:( Z U((E)) .
xeCLNAN keAA[

The coarse-grained configurations space is thus Sy = {—Q, —Q + 2,...,Q—2, Q}]\M.
The prior distribution Py on Sy induces a new prior distribution Py on Sy given by

Pr(n) = Py(o: F(o) =n)

which is a product measure
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with

plr(K)) = (@) (%)Q

The distribution py induces a new equilibrium distribution fip; on Sys given by

fini(n) = pn (o : F(o) = n).
Actually
(25) fiaa (1) = 57—~ P40) Py (),
where H); is defined via the Kadanoff transformation
(2.6) e P = By [e PN F(g) = ).

It easily follows from the definition of H); that Zy = Zy;. It is clear that the family
of conditional probabilities Py (:|F(c) = n) defined on Sy and indexed by the n € Sy
will play a crucial role in the sequel. With a slight abuse of notation, we shall write
Py (|n), Ex[-|n], un (:|n), etc. For every k € Ay, every o € Sy, and ) € Sy such that
n = F(0), the average n(k) depends only on the o(z)’s with x € Cy, N Ay. Hence the
probability Py (-|n) factorizes over the coarse cells

PN =nh) o
(2.7) Py (oln) = Pt (1) = kgj Pk (0),

where py, ) (o) stands for Py ((0(z))zec,nay [F'(0) = n). To simplify the notations
and because for every k € A our estimates are uniform in 7(k), we denote this
measure simply by pg. Finally let us introduce some more notations and definitions:

e Being given o € Sy (resp., n € Sy), for any D C T, we shall write
oP = (0(2))eennay (resp., n” = ((k))repni,, ). More generally, for ev-
ety Bi C By C Ty, being given of? ¢ {—1,1}A%"52 we shall write
aPt = (0482 (x))ﬂceBﬂ']/\N € {_17 1}ANOB1'

e For any integer r, any partition Dy,..., D, of T4 into not necessarily con-
nected parts, and any oy € {—1,1}P174 5 € {~1,1}P"AN (resp.,
m e {—Q,..., Q¥ M n e {-Q,...,Q} ") we shall denote by
[o1,...,0:] (vesp., [m,...,nr]) the microscopic (resp., coarse-grained) con-
figuration obtained by merging the partial configurations oy,...,0, (resp.,
Myeees M)

e Let I be a subset of (ZN[0,m—1])¢ and Z = U;c;C;. Let n be a coarse-grained
configuration and a be an element of {—1, 1}27~ . We shall say that o and 7
are compatible if and only if for every i € I, we have 1(i) = > .11, ¥(T).

e For any two probability measures P, on a finite set X, the relative entropy
of P with respect to @ is defined by

P(z)
H(PIQ) = { Soen Pl@)los 5 it P<Q

00 otherwise.

We will use this notation for both cases of ¥ being Sy or Sy;. For a nice
account on relative entropy, see [5].
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2.2. Reconstruction schemes. Our purpose in the present section is to de-
scribe numerical schemes for the sampling from probability measures defined on Sy
and indexed by the n € Sy that are approximations of the conditional probability
measures uy(+|n7). More precisely we shall introduce probability kernels vy () (i.e.,
maps defined on Sy x Sy such that for every n € Sy, the partial map v (+;7n) is a
probability measure defined on Sy) satisfying two conditions:

1. For every n € Sy, the probability measure vy (-;1) lies within a controlled
distance from gy (+|n). The distance is measured in specific relative entropy.

2. We can design numerical schemes such that for every n € Sys, sampling from
vy (+;m) is computationally less demanding than any “direct” sampling from
i (+[n)-

In the sequel we will treat two cases:

1. If ¢ < L, then a mean-field type approximation of the interaction potential
(2.3) is justified since averaging the value of the spins over coarse cells of
volume @ gives an error of the order ¢/L < 1. This is the situation considered
in section 2.2.1.

2. If ¢ > L, a mean-field approach is not a good approximation anymore. We
shall assume that py satisfies a strong mixing condition and exploit this fact
together with the conditioning in py(+|n7). This is the situation considered in
section 2.2.2.

In the present paper we describe schemes designed for the reconstruction over the
entire domain T4. However, in most applications (see, e.g., [18]), the reconstruction is
performed over mesoscopic domains, i.e., not the whole T4 but parts of T4 containing
a number of microscopic sites that is a large multiple of L?. It should be clear to the
reader how to adapt the analysis carried out here to these situations.

Finally, in section 2.2.3, we introduce in the ¢ < L case computationally advanta-
geous numerical schemes for the sampling from arbitrarily good approximations of the
unconditioned measure pupy. They rely on the following “separation of scales” prop-
erty: A sample o from py is obtained by first getting a sample n from jip; and then
a sample o from uy(-|n). Hence samples from approximations of ux are obtained by
combining the schemes presented in section 2.2.1 with the coarse-grained MC algo-
rithm proposed in [13] which is tailored for the numerically efficient sampling from
arbitrarily good approximations of fip; in the ¢ < L regime. In this way we propose,
in the context of equilibrium stochastic lattice systems of Ising type spins, a complete
derivation of the multiscale approach presented in section 1. We shall give rigorous
estimates on the information loss in the transition from the exact microscopic model
to the overall reconstructed one and illustrate the accuracy of the approximation by
numerical experiments detailed in section 4.

2.2.1. Reconstruction schemes in the ¢ < L case. To simplify notations
and without loss of generality, we assume that there exist even numbers r and u such
that n = 2uL and L = rq. A crucial quantity for the reconstruction schemes presented
in this section is the so-called small parameter

q
(2.8) e=p7IIVVlle
which measures how close to the high temperature and/or mean-field regime we are
and how rough the coarsening of the microscopic model is. We shall also use § = Qe

which represents the error per coarse cell in the mean-field approximation, while
€ represents the error per microscopic lattice site. First we show that due to the
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Fia. 2.1. The vectors ea, ..., connecting the cells in the sublattices L;, 1 =8,...,1, for d = 3.

particular form of the Gibbs measure (2.4), the problem at hand reduces, from the
computational point of view, to define a sequence of 2¢ samplings. Then we propose
several schemes designed to deal with this problem and give the corresponding rigorous
error estimates.

We partition T, into 29U (U = u?) cells: For I = (I1,...,l4) € (ZN]0,2u — 1])¢,
we define D; = [é—lu, ll;{f) X o0 X [é_fw 1%1) so Ty = U;D; and every D; contains L%
points of the microscopic lattice Ay. We call the D; reconstruction domains. Next
we partition (Z N [0,2u — 1])¢ into 2¢ subsets L1, ..., Ls¢ in base of the parity of its
elements. We get

£1 :{l:(ll,lg,...,ld), Ogll,lg,...,ldSQ’u—l, ll,lg,...,ld even}

and Lo = L1 + €2, L3 = Lo + e3, etc., where (e, ..., ea) is a family of unit vectors
parallel to the axis of Z¢ as described in Figure 2.1. Proceeding this way we get an
induced ordering of the sublattices £1 < Lo < L3 < -++ < Loa. For every integer @
such that 1 < i < 24, we further define

gi = U Dl and S]\Qgi = {—1, 1}£mAN.
leL;

For every integer i such that 1 <14 < 2% every n € Sy, and every ot € Syg,, ...,
afi-1 € Sy, , compatible with 7, we shall denote by uy.g,(-|aft, ..., afi-1 n) the

&; N Sy marginal of
in(laft, .. aft ) = un (o = aft, ..., 05t = afit, F(o) = ).

Let n be a fixed coarse-grained configuration and « be a microscopic configuration
compatible with 7. We have

od
(29) MN(O[|77) = H KUN,E; (aé‘i |O[€1, ey 01&71 N 77),
i=1

while naturally ux(a|n) = 0 if 7 and « are not compatible. In view of (2.9) we look
for an approximation of uy(a|n) expressed as

2(l
(2.10) vn(a;n) = HVN_,gi(ozgi;agl,...,ozgi‘l,r]),
i=1
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where vy g, (a1, ..., n) is a probability measure defined on Sy ¢,. In words

we shall successively sample the microscopic configuration on the different &;’s as 4
grows from 1 to 2¢. The main step is the definition of an approximation vy g, (-;7)
of pn.g (:|n). Indeed, for every integer i such that 1 < i < 2% the definition of the

VN g,’s relies on the same ideas as for the definition of v ¢, with the difference that the

coarse-grained data nt, ..., n%-1 are replaced by the microscopic data o', ..., a%-1.

Finally, assume for awhile that we are given o' € Syg,,...,a%2-1 € SN.£,4_,

compatible with 7. Since L is the range of interaction of py, the probability measure

HNE,q ('|04€1, ... ,a52d71 ,n) defined on Sszd factorizes: for every o € Sy ¢

Ei—1
)

2d

(2'11) HKN,Eyq (Q|O‘517 ) a2t ) 77) = ® KN,D; (QDZ |O‘517 ) 0452(1*1777)’
leLya

where pn p,(-]aft, ..., af?-1 p) stands for the D; N Ay marginal of uy(-|af,...,
afzd-1, 7). Each of the factors in the right-hand side of the last display is a probability
measure defined on {—1,1}A¥"2: which is a set of cardinal 2°, ie., a small set
when compared to Sy. Furthermore, while sampling from iy g, ( Jafr, ... a2, n),
the product structure in (2.11) allows us to run parallel simulations resulting in a
global speedup of the computations, and these simulations are perfect in the sense

that we obtain samples from the ezact /J,N)g2d(-|0451, ...,a%2?-1 1) and not from an
approximation of it. Hence sampling with respect to uny ¢, (-lafr, ..., afed-1, 7n) does
not represent a computational difficulty once we are given a?,... ,a24-1 and we

shall take vy g, (a5, ., afi-1 n) = BNe,, (s ,af2d-1 p),

Now we focus on the definition of efficient numerical schemes in order to get
samples from approximations of the conditional probability measures py ¢, defined
on Sy ¢,. Let  be a coarse-grained configuration, and fix o € Sy ¢, compatible with

7. We introduce Wi ¢, (a; n) by
(2.12) e PWn & () _ EN[G*BHI\J(U)|0[777]7

the right-hand side of the previous equality being a shortcut for Ey[e~#H~()|gf1 =
a, F(o) = n]. Tt is easy to show that

e—ﬁwN,sl (a;m) c
— A k
e (aln) = ——grs X o).

ke&ﬂf\M
Notice that whenever a and 7 are not compatible, we get ung, (aln) = 0. Ac-
cordingly for every integer i such that 1 < i < 2¢ being given n € S); and
a®t € SNy - L afi e Sn,e,_, compatible with 7, for every a € Sy ¢, compati-

ble with 7, we have

e*,@WN,gi(Ol;Olgl e )

(213) :U*Nfi(a|aglv"-vagi_lan) = £ ® [)k(OéCk)v

e_BWN’gi—l (afi—1 af1,..,afi-2 )

ke&ﬂf\M
where Wy g, (o; a1, ... a1 n) is defined by
e*BWN,si(a;agl,~~~7a£i‘1;77) — EN[e*,@HN(U)|051
(2.14) =af,..., 0% =% % =, F(o) = 7).
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First approzimation. A direct computation of Wy ¢, is actually impractical, so
we proceed by introducing a first approximation

(2.15) Wk, () = Ex[Hn(0)]a, 7).

We define a probability kernel VJ(\?’)& on Sy.¢g X S by

e—ﬂwl(vo,)gl (evsm)
Ck)

(2.16) Ve, (05) = el

(0)
ZN,51 (n) keE1NAn

with

Z](\?)g (77) :/ e—ﬁWj(\R)gl(a;n) ® ﬁk(aCk).
. SN’El k€51ﬁ]\]\4

By elementary computations we get

V=35> Y Y Je-ya@a)

lely xeDNAy vEDNAN,
yF#T

> Yoo > IR mk)nK)

LU€laU--Ulya \ k€DiNAp K E€DyNRyy,
K £k

+ > JO) k) - Q)

kEDlﬁ[\Nj

(2.17) -5 ¥ > > T k)a@)n(k),

L€l l/€l2U~~~Ul2d keDl,m[\M zeD;NAN

where for every k, k' € Ay, k # K, and x € Ay ~ (Cx N Ay), we have

o ; 1
J(k,k):@ Z Z J(z—y), J(O):m > Z J(z—y),

zECENAN yeck/ﬂAN zECLNAN yGC;;mANY
y#z
and

j(k,a:):% S Iy

yeCLNAN

With a slight abuse of notation we shall write J(k,z) = J(z,k) since J is even.
Following the same idea for every integer i such that 1 < i < 2%, being given 7 €
Sy and ot € SN751,...,a5i—1 € Sn,¢e,_, compatible with n, for every a € Syeg,
compatible with 7, one can build a first approximation of uy g, (ala®, ... afi-1 n)

given at (2.13) of the form

(2.18) V](\g)g_ (;af1, ... af1 ) = ® pr(aCr)

1Ci
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with

(2.19) W](\?)& (;a,..., % 1n) = Ex[Hn(0)|c" = a®,... 0%
=afi-1,0% =a,F(0) = 1]

D D S M R e

LU'elhu---Ul; zeDNAN vED)NAN
yF#z

> Yoo > TR mk)nK)

l’llelH—lU“'Ule keD;NAy K €Dy nAyy,
K/ £k

+ Y JO)PR) - Q)

kGDlﬁAJu

- > >, 3 S T kal@)nk)

le(l1U---Ul;) VeElip1U---Ulya keDypyNAy 2EDINAN

and

0) (& Eio —BW e (:0°1,..,afi-1p ~ O
Zye (™t amt ) = e e R ).
SN‘S’L ke&m[&M

Our first result is the following theorem.

THEOREM 2.1. There exists a constant dy such that if § = Qe < &g, then for every
integer i such that 1 < i < 29, every n € Sy, and every aft € Sye,,...,afi-1 €
Sn.gi_ 1, € Sn.g, compatible with 1, the following estimate holds:

sCd

(2.20) % (VfVN_,gi (o ot e n) — W](\?)g (o bt b 77)) = 0(e?),

where the O is uniform in 1 and o,...,a%1, «.

For every 1 € Sy, we define a probability measure VJ(\?)(-; n) on Sy by

(2.21)

241
0 0 g )
V](V)(U;ﬁ) _ H V](m)gi(aa;aslj o ’U&flm) MN’€2d(U£2d|051’ o ’052(1,1’77)
i=1

if o and 7 are compatible and 1/](\(,)) (o;m) = 0 otherwise. We prove in section 3.1.2 the

following consequence of Theorem 2.1 which states that the first approximation is
actually a second order approximation in €. B

COROLLARY 2.2. If § = Qe < &, then for every n € Sy, the following estimate
holds:

1 0
(2.22) SH (W Gmlun () = 02),
where the O is uniform in n € Sy.

The particular form of each of the W(O,)gi’s makes for every n € Sy every 1/](\(,)_’)& a
product measure. This leads to the following scheme.
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Scheme A
1. We run in parallel U constrained simulations with coarse-grained boundary
conditions given by 1 to get ot sampled from 1/](\?’)51(-; ).
2. For every integer i starting from 2 and up to 2¢ — 1, we run in parallel

U constrained simulations with mixed coarse-grained/microscopic bound-

ary conditions given by n,a%t,... afi-t to get afi € Sn,e, sampled from
0 .
1/](\,7)&(-; aft o afie ).
3. We run in parallel U constrained simulations with microscopic boundary
conditions given by af', ..., a%?-1 to obtain a2 € Sn.e,, sampled from
£
Bne,, (laf, L afd-1 ),

4. We obtain a sample of 1/](\(,))(-; n) by taking [af1, ... af].
Numerical experiments following this scheme are presented in section 4.

Higher order corrections. A natural question is to ask for schemes with higher
order error estimates. Following [13] we notice that for every integer i such that
1 <i < 2% being given any n € Sy and aft € Sy g,,...,a%1 € Syg, , compatible
with 7, for every o € Sy ¢, compatible with 7, we have

WN’gi(a;agla"'aagi_lan)_W](\fo,)gi(a;agl,-.-,agi_l,n)
1 _ WO (q:af ofie »
229 N _EIOgEN[e AHN(0) =Wy g, (a50"...o 1777))|0451,...,a&,a777].

A high-temperature cluster expansion performed on the right-hand side of the last
display leads to the following theorem.

THEOREM 2.3. If § = Qe < §p with dg as in Theorem 2.1, then for every integer
i such that 1 <i < 2%, being given any n € Suyoand o € SN,y - Lafi1 e SN.e_1
compatible with 1, the function Wy g,(-;af, ... a%-1.n) defined on the elements of
Sn.e,; that are compatible with 1) can be expanded into a convergent series

+oo
(2.24) Wi (a0, ... afi-1 ) = Z Wj(f)g (%1, ... afi1 ),
p=0

where the p = 1,2 terms are given in section 3.1.1. Furthermore, for every integer
i such that 1 < i < 2% and every integer p > 1, the following error bound holds

uniformly in o« and n, o, ... afi-1:
(2.25)

B ([ )

N WN7&(04§04£17---704&_1777) _Z N,ng(a;aglv"'vagi_lvn) = O(Ep-‘rl)'

1=0
For every integer p > 1 and every integer ¢ such that 1 < ¢ < 2¢, being
given any n € Sy and oft € SN751,...,a€7‘*1 € Sn,e,_, compatible with 7, we
define on the elements of Sy ¢, that are compatible with 1 a probability measure
1/](\’;))&(-; afi ... afi-1 n) on Sy.g, by
—B(ZY_ Wi e, (a1 ,..a%i=1 )
. e Ei ~
VJ(\ZT)?& (;af1, ... afi1 n) = 0 2 - ® pr(ar).
ZN,&(Q Lo 1_1777) ke&iNAn
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The corresponding kernel defined on Sy x Sy is
(2.26)
241

(P)(O, 77) H ](\;?)g (Ugi;O'gl,...,U&’1777) NN,€2d(U€2d|051,...,0’52d71,77)
i=1

if o and 7 are compatible and 1/(0)( n) = 0 otherwise.
COROLLARY 2.4. If § = Qe < 50, then for every n € Sy; and every integer p > 1,
the following estimate holds:

(v Clan () = 0@,

where the O is uniform in n € Sy;.
From the preceding result, we derive the following scheme.
Scheme B
1. We run a multiconstrained simulation with coarse-grained boundary condi-

(2.27)

tions given by 1 to get ot sampled from 1/](\’;’)51 (sm).

2. For every integer i starting from 2 and up to 2¢ — 1, we run a mul-
ticonstrained simulation with mixed coarse-grained/microscopic boundary
conditions given by n,afl,... a%-1 to get o € Syg, sampled from

1/](\’;)5 (- s ,ag'ifl,n).

3. We run in parallel U constrained simulations with microscopic boundary
conditions given by o', ..., a1 to obtain af € Sn.e,, sampled from
MN752d(-|a51, .. ,a52d71,77).

4. We obtain a sample of 1/](5)(-; n) by taking [a®1, ..., af].

Unfortunately steps 1 and 2 in this scheme are restrictive when compared to those
in Scheme A. Indeed, for every integer i such that 1 < i < 2¢, the second order
corrections W(l) W(z) already contain interactions across reconstruction domains
D; and Dy Wlth l l'e E and [ # I’ which make the sampling measures in steps 1 and
2 not product measures. As a consequence, these samplings are not reducible to sets
of parallel computations. However, note that they correspond to sampling the values
of the spins on lattices of N/2% points and thus remain advantageous when compared
to a direct simulation over the entire domain. Numerical experiments following this
scheme are presented in section 4.

Higher order methods leading to pamllel computations. A close look at the deriva-
tion of the corrections W](\,1 )5 and W (2) ~ from the cluster expansion performed in
section 3.1.1 shows how to partlally overcorne the difficulty in Scheme B pointed out
above. Loosely speaking, the idea is that by increasing the size of the reconstruction
domains, the two bodies’ interactions that appear in V](\i)&i and couple different recon-
struction domains D; C &; and Dy C &; necessarily vanish. Indeed, such two bodies’
interactions are the result of integrating over the values of three bodies’ interacting
spins as found in the cluster expansion. Two of these spins are located in D; C &; and
Dy C &;, while the third one is located in & with ¢ < j < 2¢. These three bodies’
interactions necessarily vanish as soon as one of the spins in &; is located at more than
L microscopic points away from the spin in &;. By taking reconstruction domains of
(2L)? microscopic points, we make sure that this cancellation condition is satisfied.
More details are given in section 3.1.1.

Now let us describe more precisely our setting. We partition Ty into U =
cells: For | = (I1,...,la) € (ZN[0,u — 1])¢, we define new reconstruction domains

u?
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Dy =[b, bty oo (b by 50 T = | J, D, and every D, contains (2L)? points of

u’ u uw’

the microscopic lattice. The £;’s, £;’s, and Sy ¢'’s are defined on the ground of these

D; s as in section 2.2.1. For every n € Sy and o € Sy compatible with 1, we have
that

v(aln) = HuNg )

with

/ ’ , ’
&
e (el .00 = @) tay (@0, %1,

leL,

The definition of the different probability measures involved here is clear by analogy
with those employed so far. Again, our aim is to define efficient schemes for the
sampling from probability measures that approximate the yuy /’s. For every integer

i such that 1 <i < 2% — 1, every n € Sy, and every o1 € Sms{v" afi-1 e SNSI )
compatible with 7, we define VN o (a; afi, ... afi-1 ) by
BV, /(a;a‘si,uwa‘g;‘lﬂ]) —BHx(0)| & &l
(2.28) NoEi = Enle PN DNat, o atim )
and observe that
50y
& e, € e
(2.29) fiy el (alatr, ... ,a%i-1n) = - E ® pr(a™F).
e_ﬁVN,Eq/vil(a e, « ) kedﬁ]\M

A first approximation of VN ¢ is obtained by

’

(230) V]E[O’i/ (Oé; Oéglv SRR Oégi_l ) 7]) =En [HN(U”aglv SR O[gi_l ) 77]

as we did for the first approximation of Wy g, .
THEOREM 2.5. If § = Qe < 6p with &y as in Theorem 2.1, then for every integer i

such that 1 < i < 2%, every n € Sy, anda 1 e SNs . 0451 NS SNg B compatible

with n, the function VNS (o ozgl ,afi-1.n) defined on the elements of SN g that
are compatible with n can be expanded into a convergent series

’

(2.31) VNJ{ (;af1,... afi-1,n) Z e )]

Furthermore, for every integer i such that 1 < i < 2% and every integer p > 1, the

following error bound holds uniformly in o and n,afr, ... afi-1:

’ p _ ’ ’
(2.32) %(me(a;ofl safion, Z z(v @ 51,---,a5“,n)> =0(e"t),
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We shall see in section 3.1.1 that due to the definition of the D, for every 1 <i < 29,
g £ £;_ , : :
every 1 € Sy, and every a‘t € SN,S{? ottt € SN’SF1 compatible with 7, the

probability measure defined on the elements of Sy, o compatible with 7 by

/

!
_ !
~B(Sh—0 VI (e:a®1, 0= 1n))
’ ! e S

(2) LA E Eil _ = (2 Chk
(233) ’YN,S,Z (O[,O[ 17 sy @ 137]) - Z(Q) (agi ag;—l ) ® Pk(a )
N,&! L 1 k€& NAn

i

is a product measure. Finally, for every n € Sy, we define a probability measure on
Sy by
(2.34)

291 ,
(2) £l £

2 / ’ ’ ’ /
IN (O’;’r]) = H ry](v.)g{(o'gz;g’&’...,a ,n) uN,g;d(U£2d|0517"'7a 2d_1777)
i=1 o

if ¢ and 7 are compatible and *y](\?) (o5m) = 0 otherwise. We get the following corollary.
COROLLARY 2.6. If § = Qe < &, then for every n € Sy, the following estimate
holds:

1

~HES Cin)lan () = 0(5),

(2.35) ¥

where the O is uniform in 1 € Syy.

From the preceding result and the fact that for every n € Sy the probability
”y](\?)(-; 1) is a product, we derive the following scheme.
Scheme C

1. We run in parallel U/2? constrained simulations with coarse-grained bound-

ary conditions given by 7 to get a1 sampled from 'y](\f)g, (sm).
sC1

2. For every integer i starting from 2 and up to 2¢ — 1, we run in parallel
U/2¢ constrained simulations with mixed coarse-grained /microscopic bound-
& &

ary conditions given by 7,a1,...,a%-1 to get o € Sy ¢ sampled from

(2) el e,
F)/N_g{ 17"'70[1_1777)'

3. We run in parallel U/2? constrained simulations with microscopic boundary

’ / ’
& .
£i,...,a"2%1 to obtain a®»¢ € Sy . sampled from
Cod

(5a

conditions given by «

, ’
&
/LN,S;d('|agla e, 2d_1777)'

4. We obtain a sample of v (-;1) by taking [ag;’ .., af],

Numerical experiments following Scheme C are presented in section 4. Actually, as it
is explained in section 3.1.1, for every integer p up to n/(L2(d+1/d))7 one can define
reconstruction schemes similar to Schemes A and C (i.e., consisting of 2¢ steps of par-
allel computations) with global error O(67*!) in approximating px (-|n). For example,
by taking reconstruction cells D;I with (3L)% microscopic lattice points, one can de-
fine a scheme with 2¢ steps of parallel computations and error O(6*) in approximating
pn (<)

2.2.2. Reconstruction schemes in the ¢ > L case. As in section 2.2.1, in
order to simplify notations and without loss of generality, we assume that there exist
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two integers u and r such that n = 2urq. In the ¢ > L case, the role of the small
parameter is played by

L

rq

Our result holds true as soon as the microscopic model satisfies a uniform strong
mixing condition for multigrand-canonical states (condition MUSM given in section
2.7 in [3]). By using Dobrushin’s single site condition, one can prove that there exists
a constant e such that if 5||J|| < eg, this strong mixing condition is satisfied.

We partition Ty into 29U (U = u?) cells as in section 2.2.1 and accordingly
define reconstruction domains D; that contain R = r? coarse cells each. The £;’s,
&’s, and S ¢,’s are defined on the ground of these D;’s as in section 2.2.1. Again our
starting point is the decomposition (2.9) and the corresponding “exact” reconstruction

Hamiltonians (2.13). For every integer i such that 1 < i < 2%, we need to define a

first approximation W](VO’ )5 which is not the one given by (2.15). Indeed, such an

approximation would lead to an error of order O(¢/L) which is O(1) since ¢ > L.
Before we give our result, let us introduce one more notation. For every [,1’ € (Z N
[0,2u — 1])¢ and every o € Sy, we write

Hl v (O_Dl O_DL/) — _% EwEDlﬂAN Zyel:;l;fN' J(I’ - y)UDl (x)UDl (y) lf l - l/a
' ’ - erDmAN,yeDl,mAN J(x — y)oDl (x)oDl, (v) it 1#0,

and we shall use the shortcut H;;(oPt) = Hy (aPt, o). )
THEOREM 2.7. For every integer i such that 1 < i < 2%, every n € Sy and

5:

aft € Sngy,...,afi=t € Syg, | compatible with 1, and every | € (Z N [0,2u — 1])¢
such that Dy C &;, there exists a function )7(](\%( <5081, afi=1 n) defined on Sy p,
such that
(2.36)
W](\,O’)gi(oc; aft, b ) = Z (Hl,l(aDl) + X](\?)l(ole;agl, ce ozg'“l,r]))
1:D,CE&;
satisfies

(2.37) % (WN@(Q; afr, ot ) — W](\??Sq (;af1, ..., agi—l,r])) =0 (%)

uniformly in o € Sy g, and n,a%1, ... a1,

The computation of the XJ(\?)Z’S is described in section 3.2. We propose as an

approximation of the exact reconstruction measure on &; the following

o ¢ BWRE, (501, afimt )

(2.38) N (;0®, a8 ) = ©) (£ €, & a(a)
ZN,&;(O‘ L, afit) keEiNAns

and define a reconstruction measure 1/](\(,))(-;77) as in (2.21). We get the following
corollary. -

COROLLARY 2.8. If B||J|| < eo, then for every n € Sy, the following estimate
holds:

(2.39) 1 (WGl ) =0 ().

where the O is uniform in n € Sy;.
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Due to the particular form of the X © ,’s, this first approximation factorizes over
the reconstruction domains D belonglng to &. As a consequence we propose the
following scheme.

Scheme D
1. We run in parallel U constrained simulations with coarse-grained boundary
conditions given by 1 to get ot sampled from 1/](\(,)_)51(-; ).
2. For every integer i starting from 2 and up to 2¢ — 1, we run in parallel
U constrained simulations with mixed coarse-grained/microscopic bound-

ary conditions given by n,a%1,... afi-1 to get af € Sn,e, sampled from
0 .
l/](v)g (;afr, ... a1 ).
3. We run in parallel U constrained simulations with microscopic boundary
conditions given by af', ..., a%%-1 to obtain af2 € Sn.e,, sampled from
£
HN,Eyq ('|OZ€1, e 241 ) 77)

4. We obtain a sample of 1/](\(,))(-; n) by taking [af1, ..., af].
Numerical experiments following this scheme are presented in section 4. Unlike the
q < L case, we are not able here to propose parallel computation schemes with higher
order error estimates.

2.2.3. Overall reconstruction schemes. Combining the methods presented
in section (2.2.1) in the ¢ < L case with the coarse-grained Monte Carlo (CGMCQC)
algorithm described in [13] gives a numerically advantageous method to get samples
from a measure Gy defined on Sy that approximates py arbitrarily well. Indeed, for
every integer p > 0, the CGMC method consists of a direct Monte Carlo Markov
chain (MCMC) sampling from a Gibbs measure fi *(p ) defined on Sy, such that

1 0
S H (N 1) = OE),
and for every p > 1,
—H(u fiag) = O(e" ™)

with ¢ defined in (2.8). Notice that for every n € Sy and every o € Sy such that
F(o) =mn, we have

(2.40) (o) = pn(oln)ia(n).

By defining, e.g., Q](\?) on Sy by

(2.41) G (0) =73 (a: )y (n)

with *yj(\?)(a; n) as defined in (2.34), the separation of scales in both (2.40) and (2.41)
leads to

HGY un) = —H(aS) ) +— LY Gl (n)

77€SM

= 0(e%).

In view of the latter result, we propose the following algorithm.
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Scheme E -
1. We run a CGMC simulation and obtain n € Sj; sampled from ﬂg\?.
2. We run in parallel N/(4L)? constrained simulations with coarse-grained

boundary conditions given by 7 to get a1 sampled from 7](3)5, (sm).
€1

3. For every integer i starting from 2 and up to 2¢ — 1, we run in paral-
lel N/(4L)¢ constrained simulations with mixed coarse-grained/microscopic
g; ’ g/

boundary conditions given by 7,a%1,...,a%-1 to get «

2 (.. & e,
N}gf(-,a L., atien ).

4. We run in parallel N/(4L)? constrained simulations with microscopic bound-

i € SN’&( sampled

from

ary conditions given by af1, ... ,a52d—1 to obtain a2 € § NE sampled from
2
’ g’
/LN,S;d ('|O[€1, BpNe 241 ) 77)
5. We obtain a sample of g](?) by taking [a®1, ..., af2].

Numerical experiments following this scheme are presented in section 4.
3. Proofs.

3.1. The q < L case. The main content of this section is the identification of
the higher order corrections to the first approximation Scheme A. This is achieved
in section 3.1.1. There we further show that the error estimates (see (2.20), (2.25),
and (2.32) are simple consequences of this higher order computation. The estimation
of the errors measured in specific relative entropy (see (2.22), (2.27), and (2.35) is
carried out in section 3.1.2.

3.1.1. The series expansion. We want to construct corrections for the initial
choices (2.15) and (2.19). For this, one would like to expand the exponential in (2.23),
but the exponent is not small: It is of the order of the volume times some small
parameter. Cluster expansions are tools which allow to expand such quantities in
convergent power series using the independence properties of product measures. Let

i be an integer such that 1 <i < 24, n € Sy, and af' € Sy g,,...,a%1 € Sye, ,
compatible with 7. For every o € Sy ¢, compatible with 1 and every o € Sy such
that 0%t = a1, ..., 0% 1 = afi-1 ¢% = o, we have
Hy(o) — WJ(\,(T)&(a; o afi ) = Z ApwJ(o;af,... a1 a),
(k,k")eAps,
<k’
where 7 <7 stands for the lexicographical order on 7% and

AgpJ(o) if thereis 1€ Liy1 U+ U Ly such that k, k' € Dy,
Akyk/J(O') if there is € Li41 U -+ U Lya and "€ L; such that ke Dy, klEl)l/7

Apprd(0)=1 % . . , ,
AgpJ(o) if thereis i€ L; and '€ Li11 U -+ U Lya such that ke Dy, k'€ Dy,
0 otherwise
with
1 -
A d(iaf, . afha) = =5 3 (e —y) = Tk Ko@) (w)(2 = s
yeéilcﬁ#n

Ak,k/J(U;Oz&,. ..,ozgi—l,a) = _ Z (J(xz—y) —
zeCy
yECk/

v

(k,y))o(x)a (y),
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and
Apw (o0, o o)== > (J@—y) = J(K,y)a" (2)o(y).
zeCy
yeCy,
In order to shorten the notations and since n, o', ... afi-1 are given, we shall simply

write Ay, 1 J(0). These terms are connected to the small parameter § since it follows
from a simple Taylor expansion that for every k, k' € Ay,

2d+1
A q
sup  sup sup sup  sup |AgpJ(0)] < 2WHVVHOO'
nESu F1SISi-1 o8 Sy ¢, AESN.¢; TESN

By letting
(3.1) Frw (o) = e PBrar (@) _ 1,
we get

—B(Hn () =W (a30°1,...afi=1m) g
EN[e (Hn(o)=Wy'e, ( 77))|a v

i—1
[ T 050 (It tatn |l otims @ lo),
j=1

Ic,LkeSf\lM kGAMﬁgi+1U---U52d
The polymer model is as in [13] with the only difference that we are integrating over
the domain £, 1 U --- U Eya keeping fixed the variables o€ for 1 < j < i. In order to
benefit from the analysis carried out in [13], we introduce the following notation:

A B pr(o) ikaE/:\Mm(gi+1U"'U52d)v
pe(o) = Lok —aCiy ifke Ayn(&U---UE&),

SO

- o)—W ) u;ugl ..... agi_lﬂ . r ~
Exle” M0 ved D, 0% an) = / [T +fi) @ prlo).

SN k€A < ke
We shall simply write [ for fSN when no confusion can occur. By expanding and

arranging the terms in the sum into a cluster representation, we obtain
(3.2)

— 077(0) a‘ae ug'i* 7 i 1 "
En[e PHN(@=WrlglaiaTl ot 81 gfim1 o ) :Z Z HC(Ri)7

n!
n>0 (Ry,...,Rp)ER™ i=1
i#j=R;NR;=0

where R is the set of nonempty subsets of Ays. For every R € R, the activity ((R) of
the cluster R is

(3.3) cr)= [ X ] dule) @ mnlo).

g€GR {k|l}eg {k}eR

where G stands for the set of generalized connected graphs on the set R. The ac-
tivities of the polymers are functions of 7 and a. By a straightforward adaptation of
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the proof of Lemma 2.3 in [13] (see also Theorem 2 in [4]), one can prove that there
exists a &g > 0 such that if § = Qe < g, then we have

sup sup sup sup sup E [C(R)| <6,
Ji1<j<i—1 agj GSN,F,'j aeSN,Si nEgz\{ kef\M RER,RO{k}
|R|=1

and for every r > 2,

sup sup Sup  sup sup E IC(R)| < o671
J<i<i=1 g% €Sn.g; a€SN.g; N€ESM KEAM Rer Ro (k)
|R|=r

Then, according to Theorem 2 in [4], if 6 = Qe < do, we get

(3.4)
_ _ . 1 1 n
W e(a,n)= ](\;{)gi(a;agl,...,ag“l,n)—gZ—' Z ¢(R1,...,Rn)HC(Ri)
n>1 n' ®R1,..,Rp)ER™ i=1
R;CApy
with
1 ifn =1
Ry,...,R,) = . ’
¢(Ry ) { deGn H{i7j}eg(1(Ri’Rj) —1) ifn>1,
where G, is the set of the generalized connected graphs on {1,...,n} and

0 if{R;,NR, ,
1 if {R;NR; = 0}.
Again a straightforward adaptation of the proof of Lemma 2.1 in [13] shows that
(35) Y. K®I<ME+Y 6
RGR,RC]\]\{ r>2

and that for every n > 2,

1
= > 6B Ry [T @)
T (R, Rp)ER" i=1
R;CApf
M 5 6 \"' _
(3.6) < 20— 1) <2611_5> 56+Zr(5e)r 1

r>2

The inequalities (3.5) and (3.6) allow us to identify in (3.4) the terms of the series
expansion of Theorem 2.3. Now notice that all the controls depend on §, M, @, and
L but not on the size of the reconstruction domains: The same computations give
formally the same corrections to the V]EZO?‘:’ under the same condition on 4. Hence
the series expansion of Theorem 2.5 is also shown to hold. Now we are left to prove
that Theorem 2.1 holds and that the sampling measures in Scheme C are product
measures. First we observe that

_ ) 1
W]i/l,)f,‘i(a;agla"'va&ilvn) = _E Z C(R)
R:|R|=1,2

= O(MY)
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and

W, (@afh,... a8 ) = - w 3" $(Ri, Ra)((R1)((Ra) — XIC

‘11?31‘ 13122 R |R|=3

= O(M&?).

Actually, in the sums defining WJ(\,U& and W](VQ )&,, some terms are already of order 4 or
higher. Indeed,

Ve (e, a8 =3 Z /fkkpk

kEAM
(3.7) _1 Z /(sz + Frer S+ fur fuu + i frr f12) pr (o) pr (o)
B
(kD) €A <
and

+ % > Ferpr(o)

(k,D)eAnr, <

X /(sz + fri frr + Frafu + fr i fu) pr (o) pr(o)

D > >

ke{0,....M—=1} 1y:(k,l1)€Ans < l2:(kila)€Aps <
(3.8) X /(ﬁz1 + frrfrrs + e frin + frwfer fri)pe(o) iy (o)
X /(szg + frrSrty + friy frata + Frrfriy frars) pr(o) pry (o)

Ly 0y )3

ke{0,....M—=1} 1y:(kl1)EApN < l2:(ly,l2)EAp < or (Kil2)EAN <

X /(szllelg + friy Friy + Frin fiin + [ D) pw(0) oy (0) iy (0),

where [...] means the previous three terms with all possible combinations of loops.

Combining (3.7) and (3.8) with the facts that

(3.9)

_ B8R T(o < 1 _ A

Fuale) = PR 1= 37 (BRI (@) with Ay (o) ~ O (P g IV )
p=1

uniformly in o € Sy, € Sy ¢, and n € Sy and that for every k,1 € Ay,

/AmﬂdmwMMﬂ=Q
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we get an improved estimate on Wy

_ , 1 )
_WJ(V{)& (o 0451, R afi-1 ) =p Z / §(AkkJ(U))2pk(U)
k

48 [ 5But(0)Ppnlo)in(o)

k<l

(3.10) +8Y [ Bud@BuI@)pn(0)in(o)

k<l

483 [ But(0) B0t @)n(0)in(o)

k<l
= O(Mé&?)

and

—W](\,%)&i(oz;ozgl,...,ozgi‘l,n) = BZ Z Z

k1 ko>ki k3>ko

x / Ataks 7(0) B J(0) P (0)ks (00 (0)
(3.11) " / Rty 7(0) B 1T (0) P (0)ky (00 (0)

+ / Atrky J(0) Bt s (0)ks (0)ks (d0) Py (0)
= O(Mé&?),

the other terms from (3.7) and (3.8) being higher order. In particular this proves that
as soon as § < dp, we have

% (WN@ (a1, ... a1 ) — WJ(\?,ZQ(O‘; ofr, o 77)) = 0(£?)
uniformly in 7, a, and o, and Theorem 2.1 is thus established.

In the p = 2 case, the obtained reconstruction kernel is not a product measure only
because of the presence of terms like, e.g., Ay, k,J(0) A, ks J(0) With ki € Dy C &,
ks € Dy C &,1# ', and ko € E N Ajy; for some integer j such that i < j < 24
Should we have reconstructed over domains with (2L)% microscopic points, we would
get formally the same expression with the difference that if, say, Ag, x,.JJ(0) # 0, then
necessarily Ci, and C, are less than L microscopic points away which implies that Cy,
and Cy, are at least L microscopic points away, and hence Ay, x,J(c) = 0. (Remember
that due to the definition of the reconstruction domains D;, the coarse cells C, and
C, are at least 2L microscopic points away.) It follows from this observation that for

2
we

Finally, it is clear from (3.6) that in the definition of a reconstruction scheme
with O(§%) error, one has to consider terms like Ak, x,J(0) Ak, ks (0)Agy k,J (o). The
previous observation applies once again, and we see that by choosing reconstruction
domains D;l including (3L)? microscopic points, for every o € Sy, at least one of the
three factors in the previous expression cancels, making the kernel in the first step of
the reconstruction algorithm a product measure.

every € Sy, the measure 7", (+;1) is product.
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3.1.2. Specific relative entropy estimate. In this section we prove (2.27).
The proof of all specific relative entropy estimates given in this paper, including those
of sections 2.2.2 and 2.2.3, work the same way. For every integer p > 1 and every
n € Sy, we have

(3.12)

SHEL Cm)lux (1)

®) (.
:% > v (o5 log AL (:m)

2 G
1 291
&, & &l £ £ £
=N Z H 1/1(\1,”)&(0 Lot 0T n) uN,gzd(a 20 |gt L o201 )
ceSN i=1
a_ , . £
% log (l_[?:1 ! 1/1(\1,”)& (0‘51;0'51, .. .,051—1,77))/1N,52d (a£2d|a£1,...7a 24-1 )
d
T2 inves (050, . o)
d_
1 T (p) . & i1 Eal &1 Eod
=5 HVM&(U ot o M) ,U,N’de(a'2|g N )

~ E
Zne, (0t ..o

—Wne, (6565, ..., 051, m)) + 1o i ,
N,fl( 77)) g Z(p)g_(g'gl7 70.81',17,’7)

and for every integer i such that 1 <i < 2¢ — 1, we have

(p) (€ Eio
Zye (0™ 0% y)
_Bgw® gigf1 . o%i-1, ~ )
_ / e BW e, (%o o 1) ® pk(ozc")
Sn,e;

ke&; ﬂj\]\{
i

x Q) k()

ke&ENA

NO(ePTh) > £ Ei
= NO(e )ZN,gq,(crl,...,U tn)

:/ efﬂ(vap,)g (a%;0%1 . o%i=1 ) =W ¢, (aTi;051 ... ,0%i=1 )= BWi g, (01 ..,0%1—1 )
Sn.e;

which combined with (2.25) and (3.12) proves the announced result.

3.2. The g > L case. The main content of this section is the computation of the
X ](\?’)l’s in Theorem 2.7. In order to simplify notations and without loss of generality, we

shall take r = 1. The X ](\?’)l’s are obtained through a “backward” induction procedure,
from indices [ such that D; C Lqa to indices [ such that D; C £,. We shall detail one
step of this induction. Unlike the ¢ < L case, here we work out a rewriting of un(-|n)
based on a backward procedure aimed at taking profit of the strong mixing condition
satisfied by the microscopic model. Once this is done we easily obtain approximations
as in (2.10), the “O-th order” of which are the ones that appear in (2.38). The difficulty
in order to determine the terms that correspond to the reconstruction measure over
&; is to control how the extra terms which appear in each integration in the previous

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/13 to 139.184.30.136. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

RECONSTRUCTION SCHEMES 1669

sublattices indexed by 29, ..., i + 1 get accommodated into the current sublattice of
integration. To this end we follow the strategy presented in [20] for the factorization
of finite-volume Gibbs measures.

Let us introduce some more notations. For every [ € (Z N [0,2u — 1])¢, we shall
denote by p(l) the unique i € {1,...,2%} such that D; C &;. For every integer i €

{1,...,2} and every o € Sy, we shall write 0<% = g“i<:€, We split the Hamiltonian
as follows:

2¢ 2¢
(3.13) Hy(o) =Y Y Hule")+Y Y Wyl(e", 0%,

i=1l:p(l)=i i=1Lp(l)=i
where

Wii(o?, 0<7) = > Hyp (P, o)
(U [V =1]|=1, p()<i}

is the energy due to the interaction of D; with the neighboring reconstruction domains
(I = U] := max;=1,._q|l; — l;|). Given a reconstruction domain D;, we define the

set of neighboring reconstruction domains by 0Dy := Uy, | —=1; Dr, and oD =
U{l’:||l’—lH:1,p(l’)<p(l)}Dl’- Finally, for every k e 52(1, we write A2d(k) = Dk, and
for every integer i such that 1 < i < 2% — 1 and every k € L;, we take A;(k) =
DkfeHl U Dy U Dk+eqz+1 .

Reconstruction measure on Eya. We first define the reconstruction measure on all
D; C &ya. As noticed in (2.11) we naturally have

Xh@Ps a2 n) = Wy pa(@P; a="),

and no error results from reconstructing over €54 once o<’ is given. However, we
shall detail how this can be obtained as the initial step of our backward induction
scheme in order to show how extra couplings on the o<2* appear. We rewrite 1 ~(o|n)

. d s
as a measure over Sy ¢ , with 0<% as a fixed boundary condition

291
e T o) = [T T (et e et o™, (o P1)
kGZ\M i=1 ke&ﬂ]\M
d d
(3.14) < [l 2(A(k); o= sn(k)) pn.p, (<> n),
k€52dﬂAA[

where we obtain the following reconstruction measure over Ega:

d 1
(3.15) e, (05|02 ) = [
* keggAM Z(Aga(k); 0<2";m(k))
2
d
(3.16) e*ﬁwk,zd(UDk;Ua )e—ﬁHk,k(UDk)ﬁk(o-Dk)

Note that un.e,, (0521 | o<’ 7) is normalized for all fixed boundary conditions o<’

and canonical constraints 7(k), k € €y N Ap. The point is that in order to write
a product measure over k € Eya N Ay, we introduced through Z(Aga(k); o<2";n(k))
extra couplings between (among others) the variables 02¢-1 € § N,&,q_, that we want
to accommodate into a new “product” structure as we proceed with the definition of

the reconstruction measure on Eya_;. This is the context of the next paragraph.
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Reconstruction measure on Eya_1. As mentioned before, for every k € Lya, the
partition function

d
Z(Aga(k); =" n(h)) = /S e PWi a0 o) B (PR 5 (D).
N, Ay q (k)

depending on the boundary conditions o<2" on the set 0Dy, couples the configurations

in dD; . In particular, it couples the configurations o%2¢-1 and gives rise to an effective
interaction between them. To define the measure on Ey4_;, we move along the vector
es4, and we denote by S;f%dZ the partition function on Dy with the same boundary

conditions as Z(Aqa(k); o<’ 7) in the +eya direction of Dy, free boundary conditions
in the —eqa direction, and unchanged in the other directions. Similarly, we denote by
Ske,q 4 the partition function with free boundary conditions in the direction +esa
and by S,‘iezd Z with free boundary conditions in both £esa directions. Doing this we

split the induced interaction between Dk,% , and Dk+e2 , into a factorized part and
an error part:

(3.17) Z(Aga(k);0<%" (k) = G DS ?) (1+ @),
(S8, 7)
where
ol Z(Aga (k): =" s (k) (S}, Z)
512250 2)

To follow the terminology in [20], this action is called unfolding in the direction ega.
According to Proposition 5.1 in [3], the assumptions on Theorem 2.7 imply that <I>,1C
is uniformly small: sup, sup, |®}] < 6.

The new partition functions (S;"

_ . Eoa 1t
ke Z) and (Sk7e2d Z) are functions of o“2?-1 in-

dexed by k € L4, and we want to index them with respect to k € Lya_;. Following
[20] we call this action splitting in the direction e,a. We have

(3.18) T 86, 280, = 11 e e D) (Skierenn?):

kG[,Qd k6£2471

Then, if we neglect for the moment the error term (1 + ®}) in (3.17), we see (by
plugging (3.17) into (3.14)) that in order to define puy ¢ we have to deal with the
following:

2d_1’

D d_
(SO Z)—l e—ﬁHk(UDk)e—ﬁwk,gd,l(U kio<20—h)
kl7€2d
ke/:zd k€£2d71

+ - ~ D
X (Sk7€2d;€2d Z)(Sk+e2d,e2d Z)pk(a' k):| .
We obtain a quantity viewed as a partition function on Age_4(k), k € Loa_; by

Z(Aga_y (k); 0<* " Yin(k)) =

—BHy, (aPk) —BW, P o<2" 1) o - o (oP"
:/S e’ k(e )6’ BWy pa_y (07K 0 )(Sk762d7e2dZ)(SkJr%d,ede)pk(a k)
N,Dy,
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<24

that depends on o 2. By normalizing with this function, we have

e HN (o) Hﬁk(a): H H (676111@,1@(013’“)676Wk,¢(UDk;a<i)ﬁk(aDk)) H (52,52d2)71

kel i<2d 2k€EL; kELyq
d
X H Z(Aga_y(k); 0= "Him(k)) H (1+®) x
k€Lyq 4 keL,q
d d
(3.19) xvie, (@201 ) e, (0520 [0 ),

where pn g, | is given by

@ Eaa <2i-1 L B Hy k(0Pk) ~BW, ya_, (ePkio <20
VN.€,4 (U 2-1o n)= { = € ' e " k2%-1
keg(L1 Zp, (U<2d Lin(k))
Sy Z)(Sk. Z)pr(o "
(320) ><( k—e2d,62d )( k+62d,e2d )pk(U ) .

From (3.14), (3.17), and (3.18), we have:

T 1
WN752d71(OZ; af L. af2io1 ,1) Z log (S ](COG) d — ﬁ log H (1+ (I)llc)
ke£2d kEL,q
Z (_ﬁH’“k ax, alv) _ﬂWk,zd—l(aDkaanA)
k€£2d 1

108 [(SF 0100 2 Siveren )] ) -

Neglecting the terms that depend on 7 alone, this leads us to propose

leded

=(0 d__ d__ ]_ —

X @l a1 ) = Wypa_y (aP o< 71) — 708 [(S+ Z)(Siie .00 Z)}
with error

B W . A& Eqd_y W(O) . Egd_o -0 o

N N_’deil(Oé,Oé yeee, & 37]) N£2d 1(0[,0[ IR e 777) - N .

For higher dimensions we proceed by repeating the above steps (unfolding and split-
ting). By introducing the notation

Z(Ai(k)/Dr; o< 5m(k)) = (S7e, 1 erin ) (Siiersren 2)s

we get a general expression for VJ(\%)& given by

0 N i 0 7
(3.21) v\ (0P o< ) = T] vivp, (@ 0<%, ),
keLl;
where
(3.22)

(0) Dy -<i e PHn(074) = Wil P o) <i -~ D
Vn.p (07 0=t ) = AR ) Z(Ai(k)/Dy; o="m(k)) pr(o™");

hence

X](\?,)l(aDl; <t n) =Wy i(aP; a<t) — ElogZ( i(k)/ Dy; 0<% (k).
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4. Numerical experiments. In this section we illustrate the accuracy and ef-
ficiency of the schemes we introduced by giving the results of some numerical exper-
iments in the d = 1 case. We consider a microscopic lattice of size N = 512 and a
microscopic coupling defined by V(z) = 1 when |z| < L/L+ 1 and V(x) = 0 when
|z| > 1. The definition of V on (L/L 4+ 1,1) does not play any role in the numerical
simulation of our finite size model. The mean-field approximation for this model un-
dergoes a phase transition at temperature 5. = 1. In our numerical experiments we
consider different values for @, L, and § in order to illustrate their interplay in the
problems addressed here.

4.1. Accuracy. To evaluate the accuracy of the schemes, we made MC compu-
tations of

(4.1) < Hy(0)l >y = /ﬂ Hy(0)5(0]n)

with 7 being a coarse-grained configuration and the microscopic measure gg(o|n) being
either un g(o|n) or one of its approximations. We distinguish between two cases for :
1. n is sampled from fiar g, and we call it a “typical” 7.
2. 7 is sampled from Py, and we call it a “deviant” 7.
Due to the existence of a phase transition, fiar,g has two different qualititive behaviors,
depending on the relative values of 8 and f.. Roughly, when 8 < ., the probability
measure fiy, g is close to Pyr, and the obtained ”typical” and ”deviant” 7’s are similar.
Furthermore, in this regime and for these coarse-grained configurations, fias,g(-|n) is
close to Pys(+|n) which is also the case for v(9)(-;5). This explains why, when § <
B¢, the observed results of first approximation Schemes A and D are satisfactory
independently of Q/L.

When 8 > f., most of the coarse cells in typical n’s get covered: n(k) = £Q. In this
case most of the information on the microscopic configuration is already given by 7,
and again the observed result of first approximation Schemes A and D are satisfactory.
In order to fully illustrate the accuracy of our reconstruction schemes, we choose to
numerically investigate their behavior at low temperature with deviant n’s, i.e., coarse-
grained configurations where almost all information on the microscopic configurations
is lost in the transition micro-coarse-grained. In particular, we show that in situations
where Scheme A does not work well, the corrected algorithms B and C significantly
improve upon its results even at very low temperatures. These simulations confirm the
importance of the ratio SQ/L in the measure of the performance of these algorithms.

TABLE 4.1
N=512, L=16, Q=4.

Direct MC Scheme A Scheme B Scheme C
B8=0.5 -0.0018 -0.0018 0% | -0.0018 0% | -0.0018 0%
Typical n =1 -0.1001 -0.1001 0% | -0.1001 0% | -0.1001 0%
B=1.5 -0.3513 -0.3513 0% | -0.3513 0% | -0.3513 0%
B =2 -0.4382 -0.4382 0% | -0.4382 0% | -0.4382 0%
B=0.5 -0.0047 -0.0047 0% | -0.0047 0% | -0.0047 0%
=1 -0.0043 -0.0043 0% | -0.0043 0% | -0.0043 0%
Deviant n | 8 =1.5 -0.0086 -0.0086 0% | -0.0086 0% | -0.0086 0 %
=2 -0.0035 -0.0035 0% | -0.0035 0% | -0.0035 0%
B=5 -0.0060 -0.0059 2% | -0.0060 0% | -0.0060 0%
B =10 -0.0099 -0.0093 6% | -0.099 0% | -0.0096 3%
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N=512, L=16, Q=8.

TABLE 4.2

1673

Direct MC Scheme A Scheme B Scheme C
B8=0.5 -0.0235 -0.0235 0% -0.0235 0% | -0.0235 0%
Typical n | B =1 20.0244 0.0244 0% | 00244 0% | 00244 0%
B=1.5 -0.3765 -0.3765 0% -0.3765 0% | -0.3765 0%
B=2 -0.4695 -0.4695 0% -0.4695 0% | -0.4695 0%
B8=0.5 -0.00048 -0.00048 0% | -0.00048 0 % | -0.00048 0 %
=1 0.0039 0.0039 0% 0.0039 0% 0.0039 0%
Deviant n | B =1.5 0.0010 0.0010 0% 0.0010 0% 0.0010 0%
B=2 -0.0016 -0.0016 0% -0.0016 0% -0.016 0%
B=5 -0.0068 -0.0062 9 % -0.0068 0% | -0.0064 6%
B =10 -0.0167 -0.0129 23 % | -0.0174 4% | -0.0155 7%
TABLE 4.3
N=512, L=16, Q=16.
Direct MC Scheme A Scheme B Scheme C
B8=0.5 -0.0036 -0.0036 0% | -0.0036 0% | -0.0036 0 %
Typical n B=1 -0.0666 -0.0666 0% | -0.0666 0% | -0.0666 0 %
B=1.5 -0.3387 -0.3387 0% [ -0.3387 0% | -0.3387 0%
B=2 -0.4136 -0.4136 0% | -04136 0% | -0.4136 0%
B8=0.5 -0.0096 -0.0096 0% [ -0.0096 0% | -0.0096 0%
B=1 -0.0058 -0.00568 0% | -0.0068 0% | -0.0058 0 %
Deviant n | 8 =1.5 -0.0042 -0.0040 5% | -0.0042 0% | -0.0042 0%
B=2 -0.0100 -0.0095 5% | -0.0100 0% | -0.0099 1%
B=5 -0.0286 -0.0204 29 % | -0.0303 6 % | -0.0269 6 %
B =10 -0.0616 -0.0340 45 % | -0.0675 10 % | -0.0600 3 %
TABLE 4.4
N=512, L=4, Q=4.
Direct MC | Scheme D, R=1 | Scheme D, R=2
B8=0.5 -0.0605 -0.0605 0% -0.0605 0%
Typical n | B =1 01944 | -0.1944 0% | -0.1944 0%
B=1.5 -0.2957 -0.2956 0% -0.2957 0%
B =2 -0.4129 -0.4129 0% -0.4129 0%
B8=0.5 0.0046 0.0046 0% 0.0046 0%
=1 -0.0155 -0.0154 0% -0.0155 0%
Deviant n | 8 =1.5 -0.0135 -0.0129 4% -0.0134 1%
B =2 -0.0474 -0.0464 2% -0.0474 0%
B =5 -0.0774 -0.0712 8 % -0.0769 1%
B =10 -0.0942 -0.0844 10 % | -0.0929 1%
TABLE 4.5
N=512, L=4, Q=8.
Direct MC | Scheme D, R=1 | Scheme D, R=2
B8=0.5 -0.0380 -0.0379 0% -0.0380 0%
Typical n B=1 -0.1608 -0.1605 0% -0.1608 0%
B=1.5 -0.3192 -0.3183 0% -0.3192 0%
B =2 -0.4120 -0.4119 0% -0.4120 0%
B8=0.5 -0.0219 -0.0218 0% -0.0219 0%
=1 -0.0413 -0.0407 2% -0.0413 0%
Deviant n | 8 =1.5 -0.0547 -0.0513 6 % -0.0543 1%
B=2 -0.0784 -0.0679 13 % | -0.0761 3%
B =5 -0.1779 -0.1330 25 % | -0.1589 10 %
B8 =10 -0.1878 -0.1427 25 % | -0.1679 10 %
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TABLE 4.6
N=512, L=4, Q=16.

Direct MC | Scheme D, R=1 | Scheme D, R=2

B=0.5 -0.0599 -0.0599 0% -0.0599 0%

Typical n B=1 -0.1202 -0.1196 0% -0.1203 0%
B=1.5 -0.2600 -0.2558 2% -0.2598 0%

B=2 -0.4200 -0.4205 0% -0.4199 0%

B=0.5 -0.0321 -0.0320 0% -0.0321 0%

B=1 -0.0768 -0.0761 1% -0.0768 0%

Deviant n | 8 =1.5 -0.1603 -0.1518 5% -0.1592 1%
=2 -0.2592 -0.0229 12 % -0.2431 6 %

B=5 -0.3400 -0.2995 12 % | -0.3068 10 %

B =10 -0.3435 -0.3005 12 % [ -0.3096 10 %

TABLE 4.7
N=512, L=16.
£=0.5 B=1 B=1.5 B=2
Direct MC -0.0124 -0.0659 -0.3579 -0.4574

Scheme E, Q=4 | -0.0124 0% | -0.0659 0% | -0.3579 0% | -0.4574 0%
Scheme E, Q=8 | -0.0124 0% | -0.0659 0% | -0.3579 0% | -0.4574 0%
Scheme E, Q=16 | -0.0124 0% | -0.0659 0% | -0.3579 0% | -0.4574 0%

In the Tables 4.1-4.6 below, we first give the value of (4.1) with g (-|n) = ps(:|n)
computed by a direct MCMC algorithm which is a straightforward adaptation of the
algorithm proposed in Chapter 5 in [19] to get samples from the conserved order
parameter Ising model. Then we give the value of (4.1), where og(+|n) is one of the
approximating measures suggested in Schemes A-D. This value is obtained by taking
the mean over independent and identically distributed samples from the correspond-
ing 0s(+|n). We further give the relative error when compared to the reference value
obtained by the direct MC simulation. Finally, in Table 4.7, we compare the result of
the MC computation of [; Hy(o)un(o) and [q HN(O')g](\?) (o) with g}v” given in
section 2.2.3.

4.2. Efficiency. It is an intrinsic feature of the direct MCMC reconstruction
algorithm that it must be run on a single processor since it requires to simulate the
configuration of the system over the entire lattice at once. As a consequence, (i) each
step of the MCMC simulation involves huge computations, and (ii) the relaxation
time of the dynamic is expected to be important as it depends on the size of the
configuration space (among other things).

In contrast with this situation, our reconstruction schemes allow to distribute
the computations in two ways. First we need to simultaneously simulate only the
configuration of the system on the sublattices £;. Second each of these simulations can
be spread over several processors running in parallel (one per reconstruction domain
in Schemes A, C, D, and E). In short, we propose to replace one costly computation
by a cascade of comparatively simple computations. More precisely, we observe the
following:

(i) Taking (as in [13]) as a reference for the computational complexity of the
direct MCMC reconstruction algorithm the number of operations for evalu-
ation of the microscopic Hamiltonian Hy, we obtain O((nL)?), while the
computation of its analogue over the reconstruction domains in Scheme
A requires O(L??) operations and the computation of its analogue over
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TABLE 4.8
N =512, L=16, =5, deviant 7.

Direct MCMC | Scheme A | Scheme C
Q=4 1000 50 100
Q=8 1500 100 200
Q=16 3000 200 300
TABLE 4.9

N=512, L=4, =5, deviant 7.

Direct MCMC | Scheme D, R=1 | Scheme D, R=2
Q=4 4000 20 50
Q=8 1500000 150 300
Q=16 10000000 500 3000

the reconstruction domains in Scheme C require O(L3?) operations. The
computational complexity of Scheme B is of the same order of that of a di-
rect MCMC reconstruction. This is due to the coupling of the reconstruction
domains present in that particular scheme. In the ¢ > L case, the compu-
tation of the local microscopic Hamiltonian in Scheme D requires O(Rq?L?)
operations. Note that in the latter case, a prior computation of the boundary
terms XJ(\?‘)Z is required.

(ii) The number of microscopic configurations compatible with a coarse-grained

d
configuration on the entire domain T can be as large as O((Ld)md). In com-
q

parison, the number of microscopic configurations compatible with a coarse-
grained configuration on a reconstruction domain in Scheme A cannot exceed

O(\z/L:—d), O((\z/q:_d)g) in Scheme C, and O((\Q/q—:—d)rd) in Scheme D. As a conse-

quence of this size reduction, the number of MC steps required to reach equi-
librium on a reconstruction domain for any of our approximation algorithms
is much smaller than the relaxation time of the direct MCMC simulation on
the whole T. Tables 4.8 and 4.9 give the corresponding observed quantities
for § =5 and deviant n’s.

5. Conclusions. Starting from a microscopic stochastic system and the corre-
sponding coarse-grained model, we introduced a mathematical strategy to recover
microscopic information given the coarse-grained data. We defined “reconstructed”
microscopic measures satisfying two conditions: (i) they are close in specific relative
entropy to the initial microscopic equilibrium measure conditioned on the coarse-
grained data, and (ii) their sampling is computationally advantageous when com-
pared to sampling directly from the conditioned microscopic equilibrium measure. We
worked out these questions in the context of equilibrium stochastic lattice systems of
Ising type spins. We met condition (i) by defining reconstructed Hamiltonians that
are uniformly close to the original microscopic one. We met condition (ii) by defining
reconstructed models fitted for parallel computations. We employed different tools
depending on whether the coarse-graining is performed over or below the interaction
length of the microscopic Hamiltonian. In the latter case, we used a high-temperature
cluster expansion, while in the former, we exploited the factorization properties of
high-temperature multicanonical constrained Gibbs measures.
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