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A MODEL FOR HEDGING LOAD AND PRICE RISK IN THE TEXAS
ELECTRICITY MARKET

Abstract. Energy companies with commitments to meet customers' daily electricity demands face
the problem of hedging load and price risk. We propose a joint model for load and price dynamics,
which is motivated by the goal of facilitating optimal hedgi ng decisions, while also intuitively cap-
turing the key features of the electricity market. Driven by three stochastic factors including the
load process, our power price model allows for the calculation of closed-form pricing formulas for
forwards and some options, products often used for hedging purposes. Making use of these results,
we illustrate in a simple example the hedging bene�t of these instruments, while also evaluating
the performance of the model when �tted to the Texas electric ity market.

Keywords: electricity market; structural model; spikes; forward pri ces; spread options; hedging
JEL Classi�cation Numbers: C60, C80, G12, G13, Q40

1. Introduction

In recent years, the use of �nancial products, such as futures and options, by retail suppliers
to hedge electricity price and demand spikes has grown. The occurrence of spikes in electric-
ity markets, as well as their relationship to loads (energy demands) which have strong seasonal
components, requires non-standard �nancial models. On theother hand, having continuous-time
stochastic models built around Brownian motion, as is typical for understanding options in �nan-
cial markets, allows for convenient pricing formulas whichcan reduce the simulation burden on an
optimization program for hedging risk.

The model we propose aims to capture the unique features and complex dependence structure
of electricity price and load dynamics while retaining enough mathematical tractability to allow
for such pricing results. In particular, we include as statevariables the key factors which drive
electricity prices, such as fuel price (natural gas in particular), load itself, and a proxy for capacity
available. We express power spot price as a parametric function of underlying factors, including
an additional `regime' to describe the risk of extreme pricespikes, which are most likely to occur
when demand is relatively high, for example during times of unexpectedly high temperatures. We
also model periodicity and seasonality in load and price at various time horizons to re
ect hourly
patterns, weekends, and also annual e�ects. Despite the richdependence structure embedded in
the model, convenient formulas for derivatives prices are available, facilitating the calibration to
market data and the model's application to hedging problems.

We choose to analyze data from the US electricity market in Texas, often referred to as ERCOT
(Electric Reliability Council of Texas), after the name of t he ISO (Independent System Operator)
which manages the Texas Interconnection power grid. Along with the Eastern and Western In-
terconnections, it is one of the three main electricity grids in the US and serves over 20 million
customers. As in many electricity markets around the world, deregulation in Texas occurred ap-
proximately ten years ago. Since then, the highly volatile and quite dramatic behaviour of prices
has drawn much attention to the challenges of electricity price modeling. Given the growth of
intermittent wind energy in Texas and the state's susceptibility to heat waves and other extreme
weather, features such as price spikes are particularly important for the ERCOT market. A strong

Date: August 2012.
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reminder of this was provided by the heat wave of early August2011, when the total load hit a
record level of 68.4 GWh, and day-ahead prices for peak afternoon hours reached their cap of $3000
per MWh on several consecutive days. Such extreme events maybe even more dramatic in the
future, following a recent decision by ERCOT to increase thecap to $4500 e�ective August 2012
and to increase it to as high as $9000 by 2015.

Much of the literature on quantitative models for electrici ty prices has focused on extending
traditional �nance approaches to account for these spikes,for example through jump processes.
Such approaches typically begin by specifying a stochasticprocess directly for the electricity spot
price, possibly incorporating several unobservable factors, seasonal functions and sometimes multi-
ple regimes (typically lasting just a few hours, so one should not interpret the terminology `regime'
to mean a lasting paradigm shift). An early single-factor model by [8] uses a jump di�usion process,
while [16] separates the jumps from the di�usion in a two-factor version to account for very rapid
recovery from price spikes. In [14], the authors instead propose a threshold level above which jumps
become negative to recover from spikes, while several authors (cf, [24, 12]) have instead suggested
regime-switching models to handle sudden spikes and rapid recoveries. In [4], a general framework
based on sums of Levy processes is advocated, which can allowfor some convenient results for
forward prices, while in [23] the authors apply multivariate Levy semistationary processes to the
EEX market in Europe. Another alternative is the use of heavy-tailed distributions such as the
Cauchy distribution, as presented in [18] and applied to twoUS markets, PJM and ERCOT.

While the above works di�er extensively in both their motivat ions and mathematical details,
they all share the characteristic of taking spot electricity prices as the starting point for a sto-
chastic model, thus placing them in the category of `reduced-form' models. While such approaches
may be successful for capturing price spikes and overall price distributions, they rarely capture the
complicated dependence structure between price, load and other factors, which is equally vital for
hedging purposes in practice. Hence, we instead favor the category often known as `structural'
models, as reviewed for example in the recent survey paper of[6]. In such a model, power price
is written as a function of several underlying supply and demand factors, and its dynamics are
therefore not speci�ed directly through an SDE (stochastic di�erential equation), but produced
indirectly as a result of the dynamics chosen for the factors. Early work by Barlow [3] treated
demand as the only driving factor, before various authors extended this branch of the literature to
include factors such as fuel prices [20, 7], capacity changes [5, 10], or both [11, 2].

A bene�t of the structural approach is that it makes use of readily available information on
fundamentals such as market load and in some cases supply side information like generation costs.
However, for mathematical tractability, it stops short of a full description of all the details of the
price setting mechanism such as operational and transmission constraints, instead simply approx-
imating the shape of the electricity stack. Nonetheless, itre
ects key features of load and price
dynamics, such as the observation that times of high load aremore likely to produce price spikes,
for example when the highest cost and least e�cient units areforced to run to satisfy demand. This
close relationship between load and price is important for energy companies to understand when
hedging the risk of either physical asset ownership or theirobligations to serve retail customers at
predetermined price levels. However, the relationship between price and load is blurred by e�ects
such as outages, transmission problems and other constraints or shocks which can sometimes pro-
duce price spikes even at periods of low or average demand. Such complications of the electricity
grid create a challenge for structural models that rely on a clear and consistent relationship be-
tween price and load. Adding additional unobservable factors such as jump processes is a common
reduced-form solution to such obstacles, but less in the spirit of the structural approach.
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We therefore propose a model which builds on the structural approaches mentioned above, but
also incorporates some ideas from the reduced-form literature in order to obtain a better �t to
the ERCOT market. In particular, we extend the typical stack -based methodology (e.g., as in
[20, 11, 1]) to include a `spike regime', in which the price-to-load relationship adjusts to re
ect such
times of extreme market conditions. Within each regime, thepower price is lognormal, but we show
that the mixing of these lognormals can produce the heavy-tailed price densities observed in the
market. The probability of being in the spike regime is also assumed to be load-dependent, yet we
retain the important advantage of closed-form solutions for forward and option prices, exploiting
convenient properties of multivariate Gaussian distributions. Section 2 introduces the model, while
Section 3 presents the results for forwards, as well as parameter estimation and calibration. In
Section 4, we present the related closed-form option pricing results and then in Section 5 study an
application of the model to hedging an obligation to serve customer load. Finally we conclude in
Section 6.

2. Model & Motivation

The electricity price model consists of several separate pieces, corresponding to each of the
underlying stochastic factors followed by their link with spot power price. In this section, we
address each of these in turn, and introduce the parameters and notation.

2.1. Load. The primary short-term driver for electricity prices is loa d, which is the starting point
of our analysis. Later we will incorporate the longer-term e�ects of fuel prices, speci�cally through
natural gas prices. Figure 1a shows the striking seasonal variation in daily average load. In fact

!"

#!"

$!"

%!"

&!"

'!"

(!"

)*
+

,!'
"

)-
.,!

'"

)*
+

,!(
"

)-
.,!

("

)*
+

,!/
"

)-
.,!

/"

)*
+

,!0
"

)-
.,!

0"

)*
+

,!1
"

)-
.,!

1"

)*
+

,#
!"

)-
.,#

!"

)*
+

,#
#"

)-
.,#

#"

23
45

6"
7*

8.
9"

:;<
=

*>
<

"?
@

*A
"B

C
D

E
F

G
"

(a) Historical daily average ERCOT loads
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(b) Historical daily average electricity
and gas prices

Figure 1. ERCOT load and electricity prices over 2005-11. Note that wechoose to plot
daily average power prices only for the range$0 to $300. However, during the period 2005-
11, there were nine days with averages above$300 (including �ve in August 2011), and two
days in Sept 2008 with averages just below zero (due to several hourly values below -$200).

as Figure 2 shows, the seasonal pattern varies signi�cantlyhour to hour throughout the day. For
example, hour 8 has both a summer and a winter peak, while hour16 only has a summer peak
and a much greater peak to trough ratio. There are also periodicities caused by weekends when
businesses are closed.
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We �rst de-seasonalize the ERCOT loadL t :

L t = S(t) + �L t ;

where the seasonal component (estimated using hourly data)is given by

S(t) = a1(h) + a2(h) cos(2�t + a3(h)) + a4(h) cos(4�t + a5(h)) + a6(h)t + a7(h)1we:

Here h is the hour, and 1we is an indicator variable for weekends;a2 to a5 are the seasonal compo-
nents, a6 picks up the upward trend visible in Figure 1a, and a7 captures the drop in demand on
weekends. Figure 2 shows the �tted seasonal components for hours 8 and 16.

Then we �t the residual load �L t to an Ornstein-Uhlenbeck (OU) model:

d�L t = � � L �L t dt + � L dW (L )
t :
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(a) Hour 8
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(b) Hour 16

Figure 2. ERCOT load over 2005-11 for chosen hours, along with �tted seasonality functions.

2.2. Structural Electricity Model. From Figure 1b, we observe that electricity prices exhibit
high volatility and numerous spikes, and they seem to 
uctuate around a level driven by natural
gas prices. We use the well-known one-factor Schwartz model[21] in which the gas priceGt is the
exponential of an OU process:

d logGt = � G(mG � logGt ) dt + � G dW (G)
t ;

where W (L ) and W (G) are independent.

We also introduce an additional factor X which proxies for the e�ect of capacity outages and
grid congestion, and is given by

X t = SX (t) + �X t ;

with seasonal component treated similarly to that of load:

SX (t) = b1(h) + b2(h) cos(2�t + b3(h)) + b4(h) cos(4�t + b5(h)) :

The process �X t follows
d �X t = � � X �X t dt + � X dW (X )

t ;
4



where the Brownian motionsW (X ) and W (L ) are correlated with parameter � . Note that �L and
�X are assumed to be mean-zero OU processes, since their mean levels are incorporated into S(t)

and SX (t) respectively.

While we pose our model in continuous time to take advantage of the convenient properties of
Brownian motion, we note that in reality spot power is observed at discrete times, only once per hour
(in most markets). See, for instance, the discussion in [4, Section 1.5]. Therefore any spike is only
observed at an hourly frequency, and so we use the following regime-switching model forPt which
is driven by a sequence of independent random variablesmk de�ned for times tk 2 T = f t1; t2; : : :g,
the set containing the start of every hour. At each tk , the value of mk 2 f 1; 2g is determined by
an independent coin 
ip whose probabilities depend on the current load �L tk :

(1) mk =

8
<

:

1 with probability 1 � ps�
� �L t k � � s

� s

�

2 with probability ps�
� �L t k � � s

� s

�
;

whereps, � s and � s are positive constants and �( �) is the standard Gaussian cumulative distribution
function (cdf). Then, for each time t,

(2) Pt = Gt exp(� mk + � mk L t + 
 mk X t ) for tk � t < t k+1 ; k 2 N:

Hence,mk determines each hour whether we are in the `normal' regime (with parameters � 1; � 1; 
 1)
or the `spike' regime (with parameters � 2; � 2; 
 2). Note that the parameter 
 1 is a redundant
parameter in the model �tting since X t is an unobserved variable. Thus
 1 could be set equal to 1
if desired, but we choose to keep it for notational symmetry,and hence more convenient formulas
later. The parameter ps represents the maximum spike probability (ie, as�L t ! 1 ), while � s and
� s control the precise dependence on load. A sensible choice for the parameters � s and � s is the
mean and standard deviation of the stationary distribution of deseasonalized load�L t , such that the
probability of a spike is then linear in the quantile of load:

(3) � s = 0 ; � s =
� Lp
2� L

This model has three stochastic factors, gasGt , load L t and the additional factor X t , as well as
a regime switching mechanism to capture spikes. We comment on each of these:

� The gas multiplies a function which can be interpreted as approximating the range of
generator heat rates in the market. This multiplicative str ucture has been proposed by
other authors (cf. [20, 13, 7]) and re
ects the fact that fuel costs are typically the dominant
driver of the production cost curve, which in turn determines bid levels.

� The empirical relationship between price and load is typically convex and often modelled
with an exponential function (c.f.[22, 10, 19]), as less e�cient generators are used only
at peak demand times, producing signi�cantly higher prices. Often driven primarily by
temperature, demand is well-known to be mean-reverting (around seasonal levels) and often
chosen to be Gaussian as proposed here.

� The additional factor X t is not strictly equal to market capacity, but represents all additional
factors including most notably changes in capacity available and short-term outages or
congestion-related events. In this way, we capture the additional volatility present in power
prices which cannot be explained by load and gas price 
uctuations alone.

� Finally, an important feature of the model is its second regime, which occurs with some
`spike probability', and allows us to reproduce the extremely heavy-tailed nature of the
price distributions. Although both regimes have the same exponential form, the choice of
� 2; � 2; 
 2 allows for a steeper and potentially more volatile price to load relationship. In
addition, as spikes are observed to increase in likelihood as load increases (but do also occur

5



at o�-peak times), we allow the spike probability to depend on �L t , and in particular to be
linear in the quantile of the deseasonalized load distribution.

Notice that the resulting model for spot power prices is in fact a mixture of lognormal distribu-
tions, due to the choice of Gaussian processes forX t , L t and logGt . This convenient form will have
bene�ts for the pricing of forwards and options, as we shall discuss later.

We note that various straightforward extensions to the set-up are possible. For example, we
might add a third regime if we wish to include negative spikes(and negative prices), as is discussed
further in [6]. The regime probabilities could also be allowed to bepiecewiselinear in load quantile,
for example for markets in which spikes are only observed to occur for demand above some threshold
level. Furthermore, in order to obtain longer duration spikes, the transitions between regimes could
be driven by a Markov chain in which the previous hour's statea�ects the spike probability this
hour. However, given the important load-dependence built into these probabilities, this extension
would come at the cost of less convenient forward and option pricing results, with little bene�t
if we care more about the frequency of spikes than their exacttiming or duration. Finally, while
the current value of load provides some information about future spike probability, we might also
incorporate additional forward-looking information about supply or demand (e.g., weather forecasts
or outage schedules) into the regime probabilities, along the lines of [9]. However, for our current
purposes, the simpler framework su�ces.

2.3. Empirical Evidence. Empirical evidence from ERCOT provides justi�cation for th e form of
the model proposed in (2) above. Firstly, as power prices in ERCOT are most often set by natural
gas generators at the margin, the co-movement of gas and electricity prices over long time horizons
is striking, as observed earlier in Figure 1b. This appears consistent with the multiplicative rela-
tionship proposed above, and further evidence is provided by Figure 3a which plots monthly average
power prices against gas prices for the period 2005-11. As gas is the most slowly moving factor
in the model (see parameter estimates later), taking monthly averages highlights this relationship
more than others. The points in the scatter plot are fairly well �t by a straight line through the
origin (with slope approximately 8, corresponding intuiti vely to the heat rate in MWh/mmBTU
of the typical marginal unit), although exceptional months can occur, most notably the previously
mentioned case of August 2011, responsible for the outlier in the upper left corner.

Next, Figure 3b illustrates the relationship between priceand load in ERCOT via a scatter plot
for all hours in the year 2011. By plotting only one year of data here, the relationship is clearer
since gas prices moved relatively slowly during 2011. In addition, plotting log prices allows us to
include the huge spikes (eg, up to the price cap of $3000) while still illustrating clearly the strong
relationship in the typical price region (between about $20and $60). This relationship appears
close to linear (as suggested in the model) for the vast majority of data points, although it is
worth noting that on this log plot a signi�cant lower tail of p rices near zero is visible even after
removing all prices below $1. However, our focus in this model is not on these o�-peak price drops
but instead on the dramatic positive spikes. We observe thatthe majority of these spikes, as well
as the largest spikes, tend to occur at times of very high demand, but that somewhat smaller
spikes do occur at times of lower to medium demand. Figure 3c illustrates this same point by
using a rough de�nition of a spike as a price three times the average monthly value in a given
time period. The plot shows that the probability of a spike does indeed appear to increase roughly
linearly (apart from the last data point) in the quantile of d emand, as suggested by the model in (2).

It is important to understand that any one of the relationshi ps betweenPt and a single underlying
factor will of course be weakened by the volatility of the other factors driving prices. For example, in
Figure 3d, we repeat the scatter plot of Figure 3b, but with 2008 data added to the 2011 data (and

6



!"

#!"

$!"

%!"

&!"

'!!"

'#!"

'$!"

!" (" '!" '("

)*
+

,-
./,

/-
0"

1.
/,+

"2
34

5-
6*

0"
78

9:
"

;7-<.7*"=7>"1./,+"2345-6*0"789:"

(a) Monthly average gas vs power

!"

#"

$"

%"

&"

'"

("

)"

*"

$!!!!" %!!!!" &!!!!" '!!!!" (!!!!" )!!!!"

+
,-

".
/0

12
"3

45
"

62789:"3;<=5"

(b) Hourly price vs load for 2011
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(d) Hourly price vs load for 2008 and 2011

Figure 3. Relationship between power price and gas price (top left), between power
price and load (right column), and between spike probability and load (bottom left).

the price axis shifted slightly). Recall from Figure 1b that 2008 was a time of very high gas prices,
and more generally record price levels throughout commodity markets. As a result, the entire
cloud of 2008 points in the price-load scatter plot is shifted signi�cantly upwards relative to the
2011 points. For each of the years, the linear relationship between log price and load is reasonably
strong, but if combined together would be much weaker, causing di�culties for a structural model
basedonly on load. This evidence thus highlights the importance of including gas prices in the
model, both in order to better reproduce movements observedin historical data, and to capture
this additional risk in future electricity price distribut ions. In Figure 4, we now plot the price ratio
Pt =Gt against loadL t , thus avoiding the issue discussed above. Although we do notsee the highest
spikes in this plot, we do observe that the model's two exponential functions (one for each regime)
can provide a reasonable �t to the data. We shall refer back tothis plot when describing parameter
estimation in the next section.
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