
CMB contraints on primordial non-Gaussianity from the 
bispectrum (f_{NL}) and trispectrum (g_{NL} and _{NL}) �
and a new consistency test of single-field inflation
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CMB contraints on primordial non-Gaussianity from the bispectrum (f NL )
and trispectrum (gNL and � NL ) and a new consistency test of single-Þeld inßation
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We outline the expected constraints on non-Gaussianity from the cosmic microwave background with
current and future experiments, focusing on both the third (f NL) and fourth-order (gNL and � NL)
amplitudes of the local con�guration or non-Gaussianity. The experimental focus is the skewness (two-
to-one) and kurtosis (two-to-two and three-to-one) power spectra from weighted maps. In addition to a
measurement of� NL andgNL with WMAP 5-year data, our study provides the �rst forecasts for future
constraints ongNL. We describe how these statistics can be corrected for the mask and cut-sky through a
window function, bypassing the need to compute linear terms that were introduced for the previous-
generation non-Gaussianity statistics, such as the skewness estimator. We discus the ratioANL ¼
� NL=ð6f NL=5Þ2 as an additional test of single-�eld in�ationary models and discuss the physical signi�-
cance of each statistic. Using these estimators with WMAP 5-YearV þ W-band data out tolmax ¼ 600we
constrain the cubic order non-Gaussianity parameters� NL, andgNL and �nd � 7:4 < g NL=105 < 8:2 and
� 0:6 < � NL=104 < 3:3 improving the previous COBE-based limit on� NL < 108 nearly 4 orders of
magnitude with WMAP.

DOI: 10.1103/PhysRevD.81.123007 PACS numbers: 98.70.Vc, 98.80.� k, 98.80.Bp, 98.80.Es

I. INTRODUCTION

We have now entered an exciting time in cosmological
studies where we are now beginning to constrain simple
slow-roll in�ationary models with high precision observa-
tions of the cosmic microwave background (CMB) and
large-scale structure. In addition to constraining in�ation-
ary model parameter space with traditional parameters
such as the spectral indexns and the tensor-to-scalar ratio
r , we may soon be able to use parameters associated with
primordial non-Gaussianity to improve model selection.

In the simplest realistic in�ationary models, the �eld(s)
responsible for in�ation have minimal interactions. Such
an interactionless situation should have led to Gaussian
primordial curvature perturbations, assuming that pertuba-
tions in the in�aton �eld generates the curvature perturba-
tion. In this case, the two point correlation function
contains all the informations on these perturbations. If
the early in�ation �eld(s) have nontrivial interactions,
higher-order correlation functions of the curvature pertur-
bations will containconnectedpieces encoding informa-
tion about the primordial in�ationary interactions. This is

analogous to the situation encountered in particle physics
where correlation functions can be separated into uncon-
nected and connected Feynman diagrams, the later con-
taining information about the underlying interactions (see
Fig. 1 for an example involving the four-point function). A
detection of non-Gaussianity therefore gives an important
window into the nature of the in�ation �eld(s) and their
interactions.

To parameterize the non-Gaussianity of a nearly
Gaussian �eld, such as the primordial curvature perturba-
tions � ðxÞ, we can expand them perturbatively [1] to sec-

FIG. 1. Four-point correlation function for the� 3 theory. The
correlation functions breaks up into interactionless unconnected
diagrams and connected diagrams containing information about
the interactions.
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ond order as:

� ðxÞ ¼� gðxÞ þ 3
5f NL½� 2

gðxÞ � h� 2
gðxÞi� þ 9

25gNL� 3
gðxÞ;

(1)

where� gðxÞis the purely Gaussian part withf NL andgNL

parametrizing the �rst and second-order deviations from
Gaussianity. This parameterization of the curvature pertur-
bations is known as the local model as this de�nition is
local in space.

Much effort has already gone into measuring non-
Gaussianity at �rst-order in curvature perturbations using
the bispectrum of the CMB anisotropies or large-scale
structure galaxy distribution parametrized byf NL (see
Eq. (1)). These studies have foundf NL to be consistent
with zero [2–5]. However, there is hope that a signi�cant
detection may be possible by future surveys that will lead
to improved errors [6].

In the trispectrum, two parameters of second-order non-
Gaussianity at fourth-order in curvature perturbations,� NL
andgNL, can be measured. In this paper we also introduce a
third parameter,ANL is an additional parameter that com-
pares� NL of the trispectrum toð6f NL=5Þ2 from the bispec-
trum as a ratio:

ANL ¼
� NL

ð6f NL=5Þ2 : (2)

This ratio can be quite different for many in�ationary
models [7,8] and, as will be shown below,ANL � 1 rules
out single-�eld in�ationary models altogether, including
the standard curvaton scenario (which neglects perturba-
tions from the in�aton �eld).

In this paper we discuss the skewness and kurtosis power
spectra method for probing primordial non-Gaussianity
and give constraints for the �rst (f NL) and second-order
(gNL and� NL) amplitudes of the local model in addition to
their ratioANL. Using the bispectrum of CMB anisotropies
as seen by WMAP 5-year data, Smidtet al. (2009) found
� 36:4 < f NL < 58:4 at 95% con�dence [5]. This is to be
compared with the most recent WMAP 7 measurement of
� 10< f NL < 74 [4], where part of the discrepancy is due
to a difference in optimization [9]. As outlined in Sec.VI ,
using the trispectrum of the same data we �nd that� 0:6 <
� NL=104 < 3:3 and � 7:4 < g NL=105 < 8:2 at 95% con�-
dence level showing second-order non-Gaussianity is con-
sistent with zero in WMAP. This paper serves as a guide to
the analysis process behind our derived limits on� NL, gNL,
andANL.

Furthermore, in this paper we analyze what to realisti-
cally expect when measuring non-Gaussianity from CMB
temperature data. We believe establishing what constraints
can be placed uponf NL, � NL, gNL and ANL by future
experiments is important in determining what models
may and may not be tested by future data. We also high-

light several advantages of our work, including ways to
correct the cut-sky and mask through a window function
without using linear terms which are computationally pro-
hibitive [10,11].

This paper is organized as follows: In Sec.II we review
how non-Gaussianity may be used to distinguish between
common in�ationary models and stress the physical sig-
ni�cance of each statistic. In Sec.III we describe the
skewness and kurtosis power spectra and explain how
they may be used to extract information about primordial
non-Gaussianity from the CMB. In Sec.IV, we describe the
signal-to-noise of each estimator, how to add the experi-
mental beam and noise to these calculations and discuss
why these power spectra have the advantage for dealing
with a cut sky. In Sec.V we calculate the �sher bounds for
upcoming experiments for each statistic. In Sec.VI we
discuss the technical details for measuring non-
Gaussianity in the trispectrum and in Sec.VII we conclude
with a discussion.

II. NON-GAUSSIANITY FROM COMMON
INFLATIONARY MODELS

Non-Gaussinity is a powerful tool that may be used to
distinguish between in�ationary models. The simplest
models do not produce a detectable amount of non-
Gaussianity. Maldacena [12] has shown that a single-�eld,
experiencing slow roll with canonical kinetic energy and
an initial Bunch-Davies vacuum state produces

f NL ¼ 5
12ðns þ f ðkÞntÞ: (3)

Herens andnt are the scalar and tensor spectral indices,
respectively. The functionf ðkÞhas a range0 � f ðkÞ � 5

6
based on the triangle shapes (see below) of theki such that
f ¼ 0 in the squeezed limit andf ¼ 5

6 for an equilateral
triangle. For this reason,f NL < 1 will remain undetectable
in the simple slow-roll scenario with CMB data alone. If
any of the above assumptions are violated, very speci�c
types of non-Gaussianity are produced [6,13,14]. In the
bispectrumB� ðk1; k2; k3Þde�ned by

h� k 1
� k 2

� k 3
i ¼ ð2� Þ3� ðk 1 þ k 2 þ k 3ÞB� ðk1; k2; k3Þ; (4)

where � is the primordial curvature perturbation, non-
Gaussianities show up as triangles in Fourier space.
Different triangle shapes are be produced by different
underlying physics, for example:

(i) squeezed triangle(k1 � k2 � k3) This is the domi-
nating shape from multi�eld, curvaton, inhomoge-
neous reheating and Ekpyrotic models.

(ii) equilateral triangle (k1 ¼ k2 ¼ k3) This shape is
produced by noncanonical kinetic energy with
higher derivative interactions and nontrivial speeds
of sound.

(iii) folded triangle (k1 ¼ 2k2 ¼ 2k3) These triangles
are produced by non-adiabatic-vacuum models.
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