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Abstract This chapter of the report of the “Flavor in the era
of the LHC” Workshop discusses the theoretical, phenom-
enological and experimental issues related to �avor phenom-
ena in the charged lepton sector and in �avor conserving CP-
violating processes. We review the current experimental lim-
its and the main theoretical models for the �avor structure
of fundamental particles. We analyze the phenomenologi-
cal consequences of the available data, setting constraints
on explicit models beyond the standard model, presenting
benchmarks for the discovery potential of forthcoming mea-
surements both at the LHC and at low energy, and exploring
options for possible future experiments.
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1 Charged leptons and fundamental dipole moments:
alternative probes of the origin of �avor and CP
violation

The understanding of the �avor structure and CP violation
(CPV) of fundamental interactions has so far been domi-
nated by the phenomenology of the quark sector of the stan-
dard model (SM). More recently, the observation of neutrino
masses and mixing has begun extending this phenomenol-
ogy to the lepton sector. While no experimental data avail-
able today link �avor and CP violation in the quark and
in the neutrino sectors, theoretical prejudice strongly sup-
ports the expectation that a complete understanding should
ultimately expose their common origin. Most attempts to
identify the common origin, whether through grand uni�ed
(GUT) scenarios, supersymmetry (SUSY), or more exotic
electroweak symmetry breaking mechanisms predict in ad-
dition testable correlations between the �avor and CP vi-
olation observables in the quark and neutrino sector on the
one side, and new phenomena involving charged leptons and
�avor conserving CP-odd effects on the other. This chapter
of the “Flavor in the era of the LHC” report focuses pre-
cisely on the phenomenology arising from these ideas, dis-
cussing �avor phenomena in the charged lepton sector and
�avor conserving CP-violating processes.

Several theoretical arguments make the studies discussed
in this chapter particularly interesting.

– The charged lepton sector provides unique opportunities
to test scenarios tailored to explain �avor in the quark and
neutrino sectors, for example by testing correlations be-
tween neutrino mixing and the rate forµ � e� decays, as
predicted by speci�c SUSY/GUT scenarios. Charged lep-
tons are therefore an indispensable element of the �avor
puzzle, without which its clari�cation could be impossi-
ble.

– The only observed source of CP violation is so far the
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix.
On the other hand, it is by now well established that this is
not enough to explain the observed baryon asymmetry of
the universe (BAU). The existence of other sources of CP
violation is therefore required. CP-odd phases in neutrino
mixing, directly generating the BAU through leptogene-
sis, are a possibility, directly affecting the charged lepton
sector via, e.g., the appearance of electric dipole moments
(EDMs). Likewise, EDMs could arise via CP violation in
�avor conserving couplings, like phases of the gaugino

�elds or in extended Higgs sectors. In all cases, the ob-
servables discussed in this chapter provide essential ex-
perimental input for the understanding of the origin of CP
violation.

– The excellent agreement of all �avor observables in the
quark sector with the CKM picture of �avor and CP vio-
lation has recently led to the concept of minimal �avor vi-
olation (MFV). In scenarios beyond the SM (BSM) with
MFV, the smallness of possible deviations from the SM
is naturally built into the theory. While these schemes
provide a natural setting for the observed lack of new
physics (NP) signals, their consequence is often a re-
duced sensitivity to the underlying �avor dynamics of
most observables accessible by the next generation of
�avor experiments. Lepton �avor violation (LFV) and
EDMs could therefore provide our only probe into this
dynamics.

– Last but not least, with the exception of the magnetic di-
pole moments, where the SM predicts non-zero values
and deviations due to new physics compete with the ef-
fect of higher order SM corrections, the observation of
a non-zero value for any of the observables discussed
in this chapter would be unequivocal indication of new
physics. In fact, while neutrino masses and mixing can
mediate lepton �avor violating transitions, as well as in-
duce CP-odd effects, their size is such that all these effects
are by many orders of magnitude smaller than anything
measurable in the foreseeable future. This implies that,
contrary to many of the observables considered in other
chapters of this report, and although the signal interpre-
tation may be plagued by theoretical ambiguities or sys-
tematics, there is nevertheless no theoretical systematic
uncertainty to claim a discovery once a positive signal is
detected.

The observables discussed here are also very interesting
from the experimental point of view. They call for a very
broad approach, based not only on the most visible tools of
high energy physics, namely the high energy colliders, but
also on a large set of smaller-scale experiments that draw
from a wide variety of techniques. The emphasis of these
experiments is by and large on high rates and high preci-
sion, a crucial role being played by the control of very large
backgrounds and subtle systematics. A new generation of
such experiments is ready to start or will start during the �rst
part of the LHC operations. More experiments have been on
the drawing board for some time, and could become reality
during the LHC era if the necessary resources were made
available. The synergy between the techniques and potential
results provided by both the large- and small-scale exper-
iments makes this �eld of research very rich and exciting
and gives it a strong potential to play a key role in exploring
the physics landscape in the era of the LHC.
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The purpose of this document is to provide a compre-
hensive overview of the �eld, from both the theoretical and
the experimental perspective. While we cover many model
building aspects of neutrino physics that are directly related
to the phenomenology of the quark and charged lepton sec-
tors, for the status of the determinations of the mixing pa-
rameters and for the review of the future prospects we refer
the reader to the vast existing literature, as documented for
example in [1–4].

Several of the results presented are already well known,
but they are nevertheless documented here to provide a self-
contained review, accessible to physicists whose expertise
covers only some of the many diverse aspects of this sub-
ject. Many results emerged during the workshop, including
ideas on possible new experiments, further enrich this re-
port. We present here a short outline and some highlights of
the contents.

Section2 provides the general theoretical framework that
allows us to discuss �avor from a symmetry point of view.
It outlines the origin of the �avor puzzles and lists the math-
ematical settings that have been advocated to justify or pre-
dict the hierarchies of the mixing angles in both the quark
and neutrino sectors. Section3 introduces the observables
that are sensitive to �avor in the charged lepton sector and
to �avor conserving CP violation, providing a uni�ed de-
scription in terms of effective operators and effective scales
for the new physics that should be responsible for them. The
existing data already provide rather stringent limits on the
size of these operators, as shown in several tables. We col-
lect here in Table1 some of the most signi�cant benchmark
results (for details, we refer to the discussion in Sect.3.1.2).
We constrain the dimensionless coef�cients� i of effective
operatorsOi describing �avor or CP-violating interactions.
Examples of these effective operators include

� i � µ� � 5� i F em
µ� , � i � µ� � j F em

µ� , (1.1)

which describe a CP-violating electric dipole moment
(EDM) of lepton� i or the �avor violating decay� i � � j � ,
or the four-fermion operators:

� i 	 a� j qk	 aql , � i 	 a� j � k	 a� l , (1.2)

where the	 a represent the various possible Lorentz struc-
tures. The overall normalization of the operators is cho-
sen to reproduce the strength of transitions mediated by
weak gauge bosons, assuming �avor mixing angles and CP-
violating phases of order unity. The smallness of the con-
straints on� therefore re�ects either the large mass scale of
�avor phenomena, or the weakness of the relative interac-
tions.

It is clear from this table that current data are already sen-
sitive to mass scales much larger than the electroweak scale,
or to very small couplings. On the other hand, many of these

constraints leave room for interesting signals coupled to the
new physics at the TeV scale that can be directly discov-
ered at the LHC. For example, a mixing of order 1 between
the supersymmetric scalar partners of the charged leptons
and a mass splitting among them of the order of the lepton
masses is consistent with the current limits if the scalar lep-
ton masses are just above 100 GeV, and it could lead both to
their discovery at the LHC, and to observable signals at the
next generation of� � � �� experiments.

Most of this report will be devoted to the discussion of
the phenomenological consequences of limits such as those
in Table1, setting constraints on explicit BSM models, pre-
senting benchmarks for the discovery potential of forthcom-
ing measurements both at the LHC and at low energy, and
exploring options for future experiments aimed at increasing
the reach even further.

Section3 also introduces the phenomenological parame-
terizations of the quark and lepton mixing matrices that are
found in the literature, emphasizing with concrete exam-
ples the correlations among the neutrino and charged lep-
ton sectors that arise in various proposed models of neutrino
masses. The section is completed by a discussion of the pos-
sible role played by leptogenesis and cosmological observ-
ables in constraining the neutrino sector.

Section4 reviews the organizing principles for �avor
physics. With a favorite dynamical theory of �avor still
missing, the extended symmetries of BSM theories can pro-
vide some insight in the nature of the �avor structures of
quarks and leptons, and give phenomenologically relevant
constraints on low energy correlations between them. In
GUT theories, for example, leptons and quarks belong to
the same irreducible representations of the gauge group,
and their mass matrices and mixing angles are consequently
tightly related. Extra dimensional theories provide a possible
dynamical origin for �avor, linking �avor to the geometry of
the extra dimensions. This section also discusses the impli-
cations of models adopting for the lepton sector the same
concept of MFV already explored in the case of quarks.

Section5 discusses at length the phenomenological con-
sequences of the many existing models, and represents the
main body of this document. We cover models based on

Table 1 Bounds on CP- or �avor violating effective operators, ex-
pressed as upper limits on their dimensionless coef�cients� , scaled
to the strength of weak interactions. For more details, in particular
the overall normalization convention for the effective operators, see
Sect.3.1.2

Observable Operator Limit on�

eEDM eL � µ� � 5eRFµ� � 2.1 × 10Š12

B(µ � e� ) µ� µ� eFµ� � 3.4 × 10Š12

B(� � µ� ) � � µ� µF µ� � 8.4 × 10Š8

B(K 0
L � µ ± e� ) (µ� µ PL e)(s� µ PL d) � 2.9 × 10Š7
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SUSY, as well as on alternative descriptions of electroweak
symmetry breaking, such as little Higgs or extended Higgs
sectors. In this section we discuss the predictions and the de-
tection prospects of standard observables, such as� � � ��
decays or EDMs, and connect the discovery potential for
these observables with the prospects for direct detection of
the new massive particles at the LHC or at a future Linear
Collider.

This section underlines, as is well known that the ex-
ploration of these processes has great discovery potential,
since most BSM models anticipate rates that are within the
reach of the forthcoming experiments. From the point of
view of the synergy with collider physics, the remarkable
outcome of these studies is that the sensitivities reached
in the searches for rare lepton decays and dipole moments
are often quite similar to those reached in direct searches
at high energy. We give here some explicit examples. In
SO(10) SUSY GUT models, where the charged lepton mix-
ing is induced via renormalization-group evolution of the
heavy neutrinos of different generations, the observation of
B(µ � e� ) at the level of 10Š13, within the range of the
just-starting MEG experiment, is suggestive of the existence
of squarks and gluinos with a mass of about 1 TeV, well
within the discovery reach of the LHC. Squarks and gluinos
in the range of 2–2.5 TeV, at the limit of detectability for the
LHC, would pushB(µ � e� ) down to the level of 10Š16.
While this is well beyond the MEG sensitivity, it would
well �t the ambitious goals of the next-generationµ � e
conversion experiments, strongly endorsing their plans. The
decayµ � e� induced by the mixing of the scalar part-
ners of muon and electron, and with aB(µ � e� ) at the
level of 10Š13, could give a
 0

2 � 
 0
1µ ± e� signal at the

LHC, with up to 100 events after 300 fbŠ1. Higher statistics
and a cleaner signal would arise at a Linear Collider. Mod-
els where neutrino masses arise not from a see-saw mech-
anism at the GUT scale but from triplet Higgs �elds at the
TeV scale can be tested at the LHC, where processes like
pp � H ++ H ŠŠ can be detected formH ++ up to 700 GeV,
using the remarkable signatures due toB(H ++ � � + � + ) �
B(H ++ � µ + µ + ) � B(H ++ � µ + � + ) � 1/ 3.

Should signals of new physics be observed, alternative
interpretations can be tested by exploiting different pat-
terns of correlations that they predict among the various ob-
servables. For example, while typical SUSY scenarios pre-
dict B(µ � 3e) � 10Š2B(µ � e� ) , these branching ratios
are of the same order in the case of little Higgs models
with T parity. Important correlations also exist in see-saw
SUSY GUT models betweenB(µ � e� ) andB(� � µ� )
or B(� � e� ) . Furthermore, SUSY models with CP vio-
lation in the Higgs or gaugino mass matrix, be they super-
gravity (SUGRA) inspired or of the split-SUSY type, predict
the ratio of electron and neutron EDM to be in the range of

10Š2–10Š1. Furthermore, in SUSY GUT models with see-
saw mechanism correlations exist between the values of the
neutron and deuteron EDMs and the heavy neutrino masses.

Section6 discusses studies of lepton universality. The
branching ratios	 (� � µ�)/	 (� � e�) and 	 (K �
µ�)/	 (K � e�) , for example, are very well known theo-
retically within the SM. Ongoing experiments (at PSI and
TRIUMF for the pion, and at CERN and Frascati for the
kaon) test the existence of �avor-dependent charged Higgs
couplings, by improving the existing accuracies by factors
of order 10.

In Sect.7 we consider CP-violating charged lepton de-
cays, which offer interesting prospects as alternative probes
of BSM phenomena. SM-allowed� decays, such as� �
�K� , can be sensitive to new CP-violating effects. The
decays being allowed by the SM, the CP-odd asymme-
tries are proportional to the interference of a SM amplitude
with the BSM, CP-violating one. As a result, the small CP-
violating amplitude contributes linearly to the rate, rather
than quadratically, enhancing the sensitivity. In the speci�c
case of� � �K� , and for some models, a CP asymmetry at
the level of 10Š3 would correspond toB(� � µ� ) around
10Š8. Another example is the CP-odd transverse polariza-
tion of the muon,PT , in K � �µ� decays. The current
sensitivity of the KEK experiment E246, which resulted in
PT < 5× 10Š3 at 90% C.L., can be improved to the level of
10Š4, by TREK proposed at J-PARC, probing models such
as multi-Higgs or R-parity-violating SUSY.

Section8 discusses experimental searches for charged
LFV processes. Transitions betweene, µ , and� might be
found in the decay of almost any weakly decaying parti-
cle and searches have been performed inµ , � , � , K , B,
D , W andZ decay. Whereas the highest experimental sen-
sitivities were reached in dedicatedµ andK experiments,
� decay starts to become competitive as well. In Sect.8 the
experimental limitations to the sensitivities for the various
decay modes are discussed in some detail, in particular forµ
and� decays, and some key experiments are presented. The
sensitivities reached in searches forµ + � e+ � are limited
by accidentale+ � coincidences and muon beam intensities
have to be reduced now already. Searches forµ –e conver-
sion, on the other hand, are limited by the available beam in-
tensities, and large improvements in sensitivity may still be
achieved. Similarly, in rare� decays some decay modes are
already background limited at the presentB-factories and
future sensitivities may not scale with the accumulated lu-
minosities. Prospects of LFV decays at the LHC are limited
to �nal states with charged leptons, such as� � 3µ and
B0

d,s � e± µ � , which are discussed in detail. This section
�nishes with the preliminary results of a feasibility study
for in-�ight µ � � conversions using a wide beam of high
momentum muons. No working scheme emerged yet.



18 Eur. Phys. J. C (2008) 57: 13–182

Section9 covers electric and magnetic dipole moments.
The muon magnetic moment has been much discussed re-
cently, so we limit ourselves to a short review of the theo-
retical background and of the current and foreseeable ex-
perimental developments. In the case of EDMs, we pro-
vide an extensive description of the various theoretical ap-
proaches and experimental techniques applied to test elec-
tron and quark moments, as well as other possible sources
of �avor diagonal CP-violating effects, such as the gluonic
� �F F coupling, or CP-odd four-fermion interactions. While
the experimental technique may differ considerably, the var-
ious systems provide independent and complementary in-
formation. EDMs of paramagnetic atoms such as Tl are sen-
sitive to a combination of the fundamental electron EDM
and CP-odd four-fermion interactions between nucleons and
electrons. EDMs of diamagnetic atoms such as Hg are sen-
sitive, in addition, to the intrinsic EDM of quarks, as well
as to a non-zero QCD� coupling. The neutron EDM more
directly probes intrinsic quark EDMs,� , and possible higher
dimension CP-odd quark couplings. EDMs of the electron,
without contamination from hadronic EDM contributions,
can be tested with heavy diatomic molecules with unpaired
electrons, such as YbF. In case of a positive signal the com-
bination of measurements would help to disentangle the var-
ious contributions.

The experimental situation looks particularly promising,
with several new experiments about to start or under con-
struction. For example, new ultracold-neutron setups at ILL,
PSI and Oak Ridge will increase the sensitivity to a neutron
EDM by more than two orders of magnitude, to a level of
about 10Š28 ecm in 5–10 years. This sensitivity probes e.g.
CP-violating SUSY phases of the order of 10Š4 or smaller.
Similar improvements are expected for the electron EDM.
One of the main new ideas developed in the course of the
workshop is the use of a storage ring to measure the deuteron
EDM. The technical issues related to the design and con-
struction of such an experiment, which could have a statis-
tical sensitivity of about 10Š29 ecm, are discussed here in
some detail.

All the results presented in this document prove the great
potential of this area of particle physics to shed light on one
of the main puzzles of the standard model, namely the origin
and properties of �avor. Low energy experiments are sensi-
tive to scales of new physics that in several cases extend be-
yond several TeV. The similarity with the scales directly ac-
cessible at the LHC supports the expectation of an important
synergy with the LHC collider programme, a synergy that
clearly extends to future studies of the neutrino and quark
sectors. The room for improvement, shown by the projec-
tions suggested by the proposed experiments, �nally under-
scores the importance of keeping these lines of research at
the forefront of the experimental high energy physics pro-
gramme, providing the appropriate infrastructure, support
and funding.

2 Theoretical framework and �avor symmetries

2.1 The �avor puzzle

The presence of three fermion families with identical gauge
quantum numbers is a puzzle. The very origin of this repli-
cation of families constitutes the �rst element of the SM �a-
vor puzzle. The second element has to do with the Yukawa
interactions of those three families of fermions. While the
gauge principle allows us to determine all SM gauge inter-
actions in terms of three gauge couplings only (once the SM
gauge group and the matter gauge quantum numbers have
been speci�ed), we do not have clear evidence of a guiding
principle underlying the form of the 3× 3 matrices describ-
ing the SM Yukawa interactions. Finally, a third element of
the puzzle is represented by the peculiar pattern of fermion
masses and mixing originating from those couplings.

The replication of SM fermion families can be rephrased
in terms of the symmetries of the gauge part of the SM La-
grangian. The latter is in fact symmetric under aU(3)5 sym-
metry acting on the family indexes of each of the �ve in-
equivalent SM representations forming a single SM family
(q,uc, dc, l, ec in Weyl notation). In other words, the gauge
couplings and interactions do not depend on the (canonical)
basis we choose in the �avor space of each of the �ve sets of
�elds qi , uc

i , dc
i , l, ec

i , i = 1, 2, 3.
This U(3)5 symmetry is explicitly broken in the Yukawa

sector by the fermion Yukawa matrices. It is because of
this breaking that the degeneracy of the three families is
broken and the �elds corresponding to the physical mass
eigenstates, as well as their mixing, are de�ned. An addi-
tional source of breaking is provided by neutrino masses.
The smallness of neutrino masses is presumably due to the
breaking of the accidental lepton symmetry of the SM at a
scale much larger than the electroweak, in which case neu-
trino masses and mixing can be accounted for in the SM
effective Lagrangian in terms of a dimension �ve operator
breaking theU(3)5 symmetry in the lepton doublet sector.

As mentioned, the special pattern of masses and mixing
originating from theU(3)5 breaking is an important element
of the �avor puzzle. This pattern is quite peculiar. It suf�ces
to mention the smallness of neutrino masses; the hierarchy
of charged fermion masses relative to that of the two heavier
neutrinos; the smallness of Cabibbo–Kobayashi–Maskawa
mixing in the quark sector and the two large mixing angles
in Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix in
the lepton sector; the mass hierarchy in the up quark sector,
more pronounced than in the down quark and charged lep-
ton sectors; the presence of a large CP-violating phase in the
quark sector and the need of additional CP violation to ac-
count for baryogenesis; the approximate equality of bottom
and tau masses at the scale at which the gauge couplings
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unify1 and the approximate factor of 3 between the strange
and muon masses, both pointing at a grand uni�ed picture at
high energy.

The origin of family replication and of the peculiar pat-
tern of fermion masses and mixing are among the most in-
teresting open questions in the SM, which a theory of �avor,
discussed in Sect.2, should address. As seen in Sect.3, ex-
periment is ahead of theory in this �eld. All the physical
parameters describing the SM �avor structure in the quark
sector have been measured with good accuracy. In the lep-
ton sector crucial information on lepton mixing and neutrino
masses is being gathered and a rich experimental program is
under way to complete the picture.

Several tools are used to attack the �avor problem. Grand
uni�ed theories allow one to relate quark and lepton masses
at the GUT scale and provide an appealing framework to
study neutrino masses, leptogenesis, �avor models, etc. Note
that in a grand uni�ed context theU(3)5 symmetry of the
gauge sector is reduced (toU(3) in the case in which all
fermions in a family are uni�ed in a single representation,
as inSO(10)). Extra dimensions introduce new ways to ac-
count for the hierarchy of charged fermion masses (and in
some cases for the smallness of neutrino masses) through the
mechanism of localization in extra dimensions and by pro-
viding a new framework for the study of �avor symmetries.
The concept of minimal �avor violation may also provide a
framework for addressing �avor. The impact of those orga-
nizing principles on �avor physics is discussed in detail in
Sect.4.

From experimental point of view, however, additional
handles are needed to gain more insight in the origin of �a-
vor. Essentially this requires a discovery of new physics be-
yond the SM. New physics at the TeV scale may in fact be
associated with an additional �avor structure, whose origin
might well be related to the origin of the Yukawa couplings.
Some of the present attempts to understand the pattern of
fermion masses and mixing do link the �avor structure of
the SM and that of the new physics sectors. In which case
the search for indirect effects at low energy and for direct
effects at colliders may play a primary role in clarifying our
understanding of �avor. And conversely, the attempts to un-
derstand the pattern of fermion masses and mixing might
lead to the prediction of new �avor physics effects. Those
issues are addressed in Sect.5.

Finally, lepton �avor physics is not just related to the lep-
ton �avor violation or CP violation in the lepton sector but
also to understanding the unitarity and universality in the
lepton sector. Possible deviations from those are discussed
in Sect.5.6.

1Needless to say, precise uni�cation requires an extension of the SM,
with supersymmetry doing best from this point of view.

2.2 Flavor symmetries

The SM Lagrangian isU(3)5 invariant in the limit in which
the Yukawa couplings vanish. This might suggest that the
Yukawa couplings, or at least some of them, arise from
the spontaneous breaking of a subgroup ofU(3)5. Need-
less to say, the use of (spontaneously broken) symmetries
as organizing principles to understand physical phenomena
has been largely demonstrated in the past (chiral symmetry
breaking, electroweak, etc.). In the following, we discuss the
possibility of using such an approach to address the origin
of the pattern of fermion masses and mixing, the constraints
on the �avor structure of new physics, and to put forward
expectations for �avor observables.

The spontaneously broken “�avour” or “family” sym-
metry can be local or global. Many (most) of the conse-
quences of �avor symmetries are independent of this. The
�avor breaking scale must be suf�ciently high in such a way
to suppress potentially dangerous effects associated with the
new �elds and interactions, in particular with the new gauge
interactions (in the local case) or the unavoidable pseudo-
Goldstone bosons (in the global case). In the context of an
analysis in terms of effective operators of higher dimen-
sions, a generic bound of about 103 TeV on the �avor scale
from �avor changing neutral currents (FCNC) processes
would be obtained. Nevertheless, a certain evidence forb–�
uni�cation and the appeal of the see-saw mechanism for
neutrino masses seem to suggest that these Yukawa cou-
plings are already present near the GUT scale. This is indeed
what most �avor models assume, and we shall also assume
in the following.

The SM matter �elds belong to speci�c representations of
the �avor group, such that in the unbroken limit the Yukawa
couplings have a particularly simple form. Typically some
or all Yukawa couplings (with the possible exception of
third generation ones) are not allowed. The spontaneous
symmetry breaking of the �avor symmetry is provided by
the vacuum expectation value (VEV) of �elds often called
“�avons”. As the breaking presumably arises at a scale much
higher than the electroweak scale, such �avons are SM sin-
glets (or contain a SM singlet in the case of SM extensions)
and typically they are only charged under the �avor sym-
metry. Flavor breaking is communicated dynamically to the
SM �elds by some interactions (possibly renormalizable,
often not speci�ed) living at a scale� f not smaller than
the scale of the �avor symmetry breaking. A typical exam-
ple for these interactions that communicate the breaking is
the exchange of heavy fermions whose mass terms respect
the �avor symmetry. In that case the scale� f would cor-
respond to this fermion massMf . Many consequences of
the �avor symmetry are actually independent of the media-
tion mechanism. It is therefore useful to consider an effec-
tive �eld theory approach below the scale� f in which the
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Table 2 Transformation of the matter super�elds under the family symmetries. Thei th generation SM fermion �elds are grouped into the repre-
sentation̄5i = (D c,L) i , 10i = (Q,U c,E c)i , 1i = (N c)i

Field 103 102 101 5̄3 5̄2 5̄1 13 12 11 �

U(1) 0 2 3 0 0 1 nc
3 nc

2 nc
1 Š1

�avor messengers have been integrated out. Once the �avon
�elds have acquired their VEVs, the structure of the Yukawa
matrices (and other �avor parameters) can be obtained from
an expansion in non-renormalizable operators involving the
�avon �elds and respecting the different symmetries (�avor
and other symmetries) of the theory.

There are several possibilities for the �avor symmetry,
local, global, accidental, continuous or discrete, Abelian or
non-Abelian. Many examples are available in the literature
for each of those possibilities. Some of them will be dis-
cussed in next subsections in relation to the implications
considered in this study.

2.2.1 Continuous ßavor symmetries

In order to provide an explicit example, we shortly discuss
here one of the simplest possibilities, which goes back to
the pioneering work of Froggatt–Nielsen [5]. In this model
we have aU(1) �avor symmetry under which the three gen-
eration of SM �elds have different charges. In the simplest
version we assign positive integer charges to the SM fermi-
onic �elds, the Higgs �eld is neutral, and we have a single
�avon �eld � of chargeŠ1. The VEV of the �avon �eld
is somewhat smaller than the mass of the heavy mediator
�elds Mf , so that the ratio� = v/M f � 1. In this way the
various entries in the Yukawa matrices are determined by ep-
silon to the power of the sum of the fermion charges with an
undetermined order 1 coef�cient. This mechanism explains
nicely the hierarchy of fermion masses and mixing angles.

This idea is the basis for most �avor symmetries. It can
be implemented in a great variety of different models. For
the sake of de�niteness, we show here how it works using
as a concrete example a supersymmetric GUT model. Its su-
perpotential is of the form

WYukawa= cd
ij � qi + dc

j Qi Dc
j H1 + cu

ij � qi + uc
j Qi Uc

j H2

+ ce
ij � li + ec

j L i Ec
j H1 + c�

ij � li + lj L i L j
H2H2

M̄
,

(2.1)

where thec’s areO(1) coef�cients andM̄ is the scale asso-
ciated toB Š L breaking. The last term in this equation is
an effective operator, giving Majorana masses to neutrinos,
which can be generated, e.g., through a see-saw mechanism.
Notice that the power of� in each Yukawa coupling is pro-
portional to the sum of the fermion charges:Yu

ij = cu
ij � qi + uc

j ,

Yd
ij = cd

ij � qi + dc
j , etc. Hence, this mechanism explains the hi-

erarchy of fermion masses and mixing angles through a con-
venient choice of charges. The value of these charges and
the expansion parameter� are constrained by the observed
masses and angles. A convenient set of charges for example
is given in Table2. It turns out that this set of charges is the
only one compatible with minimalSU(5) uni�cation. By in-
troducing three right handed neutrinos with positive charges
it is also possible to successfully realize the see-saw mecha-
nism.

These charges give rise to the following Dirac Yukawa
couplings for charged fermions at the GUT scale

Yu =

�

�
� 6 � 5 � 3

� 5 � 4 � 2

� 3 � 2 1

�

� ,

�

�
� 4 � 3 � 3

� 3 � 2 � 2

� 1 1

�

� , (2.2)

whereO(1) coef�cients in each entry are understood here
and in the following. With� = O(
 c) (the Cabibbo angle),
the observed features of charged fermion masses and mixing
are qualitatively well reproduced. It is known that the high
energy relationYT

e = Yd is not satisfactory for the lighter
families and should be relaxed by means of some mecha-
nism [6–8]. The Dirac neutrino Yukawa couplings and the
Majorana mass matrix of right handed neutrinos are

Y� =

�

�
� nc

1+ 1 � nc
2+ 1 � nc

3+ 1

� nc
1 � nc

2 � nc
3

� nc
1 � nc

2 � nc
3

�

� ,

MR =

�

�
� 2nc

1 � nc
1+ nc

2 � nc
1+ nc

3

� nc
1+ nc

2 � 2nc
2 � nc

2+ nc
3

� nc
1+ nc

3 � nc
2+ nc

3 � 2nc
3

�

� M̄.

(2.3)

Applying the see-saw mechanism to obtain the effective
light neutrino mass matrixM� in the basis of diagonal
charged lepton Yukawa couplings,2 it is well known [9, 10]
that if all right handed neutrino masses are positive the de-
pendence on the right handed charges disappears:

U	
PMNSmdiag

� U†
PMNS = m� =

�

�
� 2 � �
� 1 1
� 1 1

�

� v2
2

M̄
. (2.4)

2Notice that going to the basis of diagonal charged leptons will only
change theO(1) coef�cients, but not the power in� of the different
entries.
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Experiments requireM̄ � 5 × 1014 GeV. The features
of neutrino masses and mixing are quite satisfactorily
reproduced—the weak point being the tuning in the 23-
determinant [9, 10] that has to be imposed. For later ap-
plication, it is useful to introduce the unitary matrices which
diagonalizeY� in the basis where bothYe andMR are di-
agonal:VL Y� VR = Ydiag

� � diag(� nc
1, � nc

2, � nc
3). Notice that,

as a consequence of the equal charges of the lepton doublets
L 2 andL 3, the model predicts thatVL has a large mixing,
although not necessarily maximal, in the 2–3 sector as ob-
served inUPMNS.

The literature is very rich of models based on �avor
symmetries. Some references are [5, 9–40]; for more re-
cent attempts the interested reader is referred for instance
to [41–64].

2.2.2 Discrete ßavor symmetries

2.2.2.1 Finite groups Discrete �avor symmetries have
gained popularity because they seem to be appropriate to
address the large mixing angles observed in neutrino oscil-
lations. To obtain a non-Abelian discrete symmetry, a simple
heuristic way is to choose two speci�c non-commuting ma-
trices and form all possible products. As a �rst example,
consider the two 2× 2 matrices

A =
�

0 1
1 0

�
, B =

�
� 0
0 � Š1

�
, (2.5)

where � n = 1, i.e. � = exp(2� i/n) . Since A2 = 1 and
Bn = 1, this group containsZ2 and Zn. For n = 1, 2, we
obtainZ2 andZ2 × Z2 respectively, which are Abelian. For
n = 3, the group generated has six elements and is in fact the
smallest non-Abelian �nite groupS3, the permutation group
of three objects. This particular representation is not the one
found in text books, but it is related to it by a unitary trans-
formation [65], and was �rst used in 1990 for a model of
quark mass matrices [66, 67]. Forn = 4, the group generated
has eight elements which are in fact± 1, ± i� 1,2,3, where
� 1,2,3 are the usual Pauli spin matrices. This is the group of
quaternionsQ, which has also been used [68] for quark and
lepton mass matrices. In general, the groups generated by
(2.5) have 2n elements and may be denoted as�( 2n).

Consider next the two 3× 3 matrices:

A =

�

�
0 1 0
0 0 1
1 0 0

�

� , B =

�

�
� 0 0
0 � 2 0
0 0 � Š3

�

� . (2.6)

SinceA3 = 1 andBn = 1, this group containsZ3 andZn.
For n = 1, we obtainZ3. For n = 2, the group generated
has 12 elements and isA4, the even permutation group of 4

objects, which was �rst used in 2001 in a model of lepton
mass matrices [36, 41]. It is also the symmetry group of the
tetrahedron, one of �ve perfect geometric solids, identi�ed
by Plato with the element “�re” [69]. In general, the groups
generated by (2.6) have 3n2 elements and may be denoted
as�( 3n2) [70]. They are in fact subgroups ofSU(3). In par-
ticular, �( 27) has also been used [57, 71]. Generalizing to
k × k matrices, we then have the series�(kn kŠ1). How-
ever, since there are presumably only three families,k > 3
is probably not of much interest.

Going back tok = 2, but using instead the following two
matrices:

A =
�

0 1
1 0

�
, B =

�
� 0
0 1

�
. (2.7)

Now againA2 = 1 andBn = 1, but the group generated will
have 2n2 elements. Call it� ( 2n2). For n = 1, it is justZ2.
For n = 2, it is D4, i.e. the symmetry group of the square,
which was �rst used in 2003 [47, 72]. For k = 3, consider

A =

�

�
0 1 0
0 0 1
1 0 0

�

� , B =

�

�
� 0 0
0 1 0
0 0 1

�

� , (2.8)

then the groups generated have 3n3 elements and may be
denoted as�( 3n3). They are in fact subgroups ofU(3). For
n = 1, it is justZ3. For n = 2, it is A4 × Z2. For n = 3, the
group�( 81) has been used [73] to understand the Koide for-
mula [74] as well as lepton mass matrices [75]. In general,
we have the series�(kn k).

2.2.2.2 Model recipe

1. Choose a group, e.g.S3 or A4, and write down its possi-
ble representations. For exampleS3 has 1, 1�, 2; A4 has 1,
1�, 1�� , 3. Work out all product decompositions. For exam-
ple 2× 2 = 1+ 1� + 2 in S3, and 3× 3 = 1+ 1� + 1�� + 3+ 3
in A4.

2. Assign (�, l) 1,2,3 and lc1,2,3 to the representations of
choice. To have only renormalizable interactions, it
is necessary to add Higgs doublets (and perhaps also
triplets and singlets) and, if so desired, neutrino singlets.

3. The Yukawa structure of the model is restricted by the
choice of particle content and their representations. As
the Higgs bosons acquire vacuum expectation values
(which may be related by some extra or residual symme-
try), the lepton mass matrices will have certain particular
forms, consistent with the known values ofme, mµ , m� ,
etc. If the number of parameters involved is less than the
number of observables, there will be one or more predic-
tions.

4. In models with more than one Higgs doublet, �avor non-
conservation will appear at some level. Its phenomeno-
logical consequences need to be worked out, to ensure
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the consistency with present experimental constraints.
The implications for phenomena at the TeV scale can
then be explored.

5. Insisting on using only the single SM Higgs doublet re-
quires effective non-renormalizable interactions to sup-
port the discrete �avor symmetry. In such models, there
are no predictions beyond the forms of the mass matrices
themselves.

6. Quarks can be considered in the same way. The two
quark mass matricesmu andmd must be nearly aligned
so that their mixing matrix involves only small angles.
In contrast, the mass matricesm� and me should have
different structures so that large angles can be obtained.

Some explicit examples will now be outlined.

2.2.2.3 S3 Being the simplest, the non-Abelian discrete
symmetryS3 was used already [76] in the early days of
strong interactions. There are many recent applications
[55, 77–86], some of which are discussed in [87]. Typically,
such models often require extra symmetries beyondS3 to
reduce the number of parameters, or assumptions of how
S3 is spontaneously and softly broken. For illustration, con-
sider the model of Kubo et al. [77] which has recently been
updated by Felix et al. [88]. The symmetry used is actually
S3 × Z2, with the assignments

(�, l), l c,N,
�
� + , � 0	

� 1+ 2, (2.9)

and equal vacuum expectation values for the two Higgs dou-
blets transforming as 2underS3. TheZ2 symmetry serves
to eliminate four Yukawa couplings, otherwise allowed by
S3, resulting in an inverted ordering of neutrino masses with

� 23 
 �/ 4, � 13 
 0.0034, mee
 0.05 eV, (2.10)

wheremeeis the effective Majorana neutrino mass measured
in neutrinoless double beta decay. This model relates� 13 to
the ratiome/m µ .

2.2.2.4 A4 To understand why quarks and leptons have
very different mixing matrices,A4 turns out to be very use-
ful. It allows the two different quark mass matrices to be
diagonalized by the same unitary transformations, implying
thus no mixing as a �rst approximation, but because of the
assumed Majorana nature of the neutrinos, a large mismatch
may occur in the lepton sector, thus offering the possibil-
ity of obtaining the so-called tri-bi-maximal mixing matrix
[89, 90], which is a good approximation to the present data.
One way of doing this is to consider the decomposition

UPMNS =

�

�

�
2/ 3 1/

�
3 0

Š1/
�

6 1/
�

3 Š1/
�

2
Š1/

�
6 1/

�
3 1/

�
2

�

�

=
1

�
3

�

�
1 1 1
1 � � 2

1 � 2 �

�

�

�

�
0 1 0

1/
�

2 0 Ši/
�

2
1/

�
2 0 i/

�
2

�

� ,

(2.11)

whereUPMNS is the observed neutrino mixing matrix and
� = exp(2� i/ 3) = Š 1/ 2 + i

�
3/ 2. The matrix involving�

has equal moduli for all its entries and was conjectured al-
ready in 1978 [91, 92] to be a possible candidate for the 3× 3
neutrino mixing matrix.

SinceUPMNS = V †
e V� , whereVe, V� diagonalize the ma-

tricesmem†
e, m� m†

� respectively, (2.11) may be obtained if
we have

V †
e =

1
�

3

�

�
1 1 1
1 � � 2

1 � 2 �

�

� (2.12)

and

m� =

�

�
a + 2b 0 0

0 a Š b d
0 d aŠ b

�

�

=

�

�
0 1 0

1/
�

2 0 Ši/
�

2
1/

�
2 0 i/

�
2

�

�

×

�

�
a Š b + d 0 0

0 a + 2b 0
0 0 Ša + b + d

�

�

×

�

�
0 1/

�
2 1/

�
2

1 0 0
0 Ši/

�
2 i/

�
2

�

� . (2.13)

It was discovered in Ref. [36] that (2.12) is naturally ob-
tained withA4 if

(�, l) 1,2,3 � 3, l c
1,2,3 � 1 + 1� + 1��,

�
� + , � 0

	
1,2,3 � 3

(2.14)

for � � 0
1
 = � � 0

2
 = � � 0
3
 . This assignment also allowsme,

mµ , m� to take on arbitrary values, because there are here
exactly three independent Yukawa couplings invariant un-
derA4. If we use this also for quarks [41], thenV †

u andV †
d

are also given by (2.12), resulting inUCKM = 1, i.e. no mix-
ing. This should be considered as a good �rst approximation
because the observed mixing angles are all small. In the gen-
eral case without any symmetry, we would have expectedVu

andVd to be very different.
It was later discovered in Ref. [93] that (2.13) may also be

obtained withA4, using two further assumptions. Consider
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the most general 3× 3 Majorana mass matrix in the form

m� =

�

�
a + b + c f e

f a + b� + c� 2 d
e d a+ b� 2 + c�

�

� ,

(2.15)

wherea comes from 1, b from 1�, c from 1�� , and(d,e, f )
from 3 of A4. To get (2.13), we neede = f = 0, i.e.
the effective scalarA4 triplet responsible for neutrino
masses should have its vacuum expectation value along the
(1, 0, 0) direction, whereas that responsible for charged lep-
ton masses should be(1, 1, 1) as remarked earlier. This mis-
alignment is a technical challenge to all such models [50,
94–104]. The other requirement is thatb = c. Since they
come from different representations ofA4, this is rather ad
hoc. A very clever solution [50, 94] is to eliminate both,
i.e. b = c = 0. This results in a normal ordering of neutrino
masses with the prediction [96]

|m� e|
2 
 | mee|2 + �m 2

atm/ 9. (2.16)

Other applications [60, 105–120] of A4 have also been con-
sidered. A natural (spinorial) extension ofA4 is the binary
tetrahedral group [30, 34] which is under active current dis-
cussion [64, 121–123].

Other recent applications of non-Abelian discrete �avor
symmetries include those ofD4 [47, 72, 124], Q4 [68], D5

[125, 126], D6 [127], Q6 [128–130], D7 [131], S4 [61, 132–
135], �( 27) [57, 71], �( 75) [15, 136], �( 81) [73, 75], and
B3 × Z 3

2 [137, 138] which has 384 elements.

2.2.3 Accidental ßavor symmetries

While �avor symmetries certainly represent one of the lead-
ing approaches to understanding the pattern of fermion
masses and mixing, it was recently found that the hierarchi-
cal structure of charged fermion masses and many other pe-
culiar features of the fermion spectrum in the SM (neutrinos
included) do not require a �avor symmetry to be understood,
nor any other special “horizontal” dynamics involving the
family indices of the SM fermions [63, 139]. Surprisingly
enough, those features can in fact be recovered in a model
in which the couplings of the three SM families not only are
not governed by any symmetry, but are essentially anarchi-
cal (uncorrelatedO(1) numbers) at a very high scale.

The idea is based on the hypothesis that the SM Yukawa
couplings all arise from the exchange of heavy degrees of
freedom (messengers) at a scale not far from the uni�ca-
tion scale. Examples of diagrams contributing to the up and
down quark Yukawa matrices are shown below, where� is
a SM singlet �eld getting a VEV. As discussed in Sects.2.2
and2.2.1, the same exchange mechanism is often assumed

Fig. 1 Contributions to the up- and down-type quark Yukawa mass
matrices, from the exchange of heavy messengers

to be at work in models with �avor symmetries. Here, how-
ever, the couplings of the heavy messengers to the SM �elds
are not constrained by any symmetry.3 An hierarchy among
Yukawa couplings still arises because a single set of left
handed messenger �elds (heavy quark doubletsQ + Q̄ in
the quark sector and heavy lepton doubletsL + L̄ in the lep-
ton sector) dominates the exchange at the heavy scale. For
example, the diagrams below represents the dominant con-
tribution to the quark Yukawa matrices. As only one �eld
is exchanged, the Yukawa matrices have rank one. There-
fore, whatever are theO(1) couplings in the diagram, the
top and bottom Yukawa couplings are generated (at theO(1)
level, giving large tan� ), but the �rst two families’ ones
are not, which is a good starting point to obtain a hierar-
chy of quark masses. This mechanism is similar to a the
single right handed neutrino dominance mechanism, used
in neutrino model building to obtain a hierarchical spectrum
of light neutrinos [140–143]. Note that the diagonalization
of the quark Yukawa matrices involves large rotations, as
all the couplings are supposed to beO(1). However, the
rotations of the up and down left handed quarks turn out
to be the same (because they have same couplings to the
left handed doublet messenger). Therefore, the two rotations
cancel when combined in the CKM matrix, which ends up
vanishing at this level.

The Yukawa couplings of the second family, and a non-
vanishingVcb angle, are generated by the subdominant ex-
change of heavier right handed messengersDc, Uc, Ec,
N c. Altogether, the messengers form a heavy (vector-like)
replica of a SM family, with the left handed �elds lighter
than the right handed ones. The (inter-family) hierarchy be-
tween the masses of the second and the third SM family
masses arises from the (intra-family) hierarchy between left
and right handed �elds in the single family of messengers.
In turn, in a Pati–Salam orSO(10) uni�ed model, the hi-
erarchy between right handed and left handed �elds can be
easily obtained by giving mass to the messengers through a
breaking of the gauge group along theT3R direction. This
way, the hierarchy among different families is explained in
terms of the breaking of a gauge group acting on single fam-
ilies, with no need of �avor symmetries or other dynamics
acting on the family indexes of the SM fermions.

3A discreteZ2 symmetry, under whichall the three SM families (and
the �eld � ) are odd, is used for the sole purpose of distinguishing the
light SM �elds from the heavy messengers.
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It is also possible to describe the mechanism outlined
above in terms of accidental �avor symmetries. In the effec-
tive theory below the scale of the right handed messengers,
in fact, the Yukawa couplings of the two lighter families are
“protected” by an accidentalU(2) symmetry. One can also
consider the effective theory below the cut-off of the model,
which is supposed to lie one or two orders of magnitude
above the mass of the right handed messengers. In the effec-
tive theory below the cut-off, the second family gets a non-
vanishing Yukawa coupling, but the Yukawa of the lightest
family is still “protected” by an accidentalU(1) symmetry.

Surprisingly enough, a number of important features of
the fermion spectrum can be obtained in this simple and
economical model. The relation|Vcb| � ms/m b is a direct
consequence of the principles of this approach. The stronger
mass hierarchy observed in the up quark sector is accounted
for without introducing a new scale (besides the left handed
and right handed messenger ones) or making the up quark
sector somehow different. In spite of the absence of small
coef�cients, the CKM mixing angles turn out to be small. At
the same time, a large atmospheric mixing can be generated
in a natural way in the neutrino sector, together with normal
hierarchical neutrino masses. In fact, a see-saw mechanism
dominated by the single right handed (messenger) neutrino
N c is at work. The bottom and tau mass unify at the high
scale, while aB Š L factor 3 enters the ratios of the muon
and strange masses. For a detailed illustration of the model,
we refer the reader to [63].

The study of FCNC and CPV effects in a supersymmet-
ric context is still under way. Such effects might represent
the distinctive signature of the model, due to the sizable ra-
diative effects one obtains in the (23) block of the “right
handed” sfermion mass matrices in both the squark and slep-
ton sector.

2.2.4 Flavor/CP symmetries and their violation from
supersymmetry breaking

While the vast literature on �avor symmetries covers a num-
ber of interesting aspects of the theory and phenomenology
of �avor, we are interested here in a (non-exhaustive) review
of only those aspects relevant to new physics. The relevance
of �avor symmetries to new physics follows from the fact
that SM extensions often contain new �avor dependent in-
teractions. In the following we shall consider the case of su-
persymmetry, in which new �avor violating gaugino or hig-
gsino interactions can be induced by possible new sources of
SU(5)5 breaking in the soft supersymmetry breaking terms.

While in the SM the Yukawa matrices provide the only
source of �avor (U(3)5) breaking, the supersymmetric ex-
tensions of the SM are characterized by a potentially much
richer �avor structure associated to the soft supersymmetry
breaking Lagrangian. Unfortunately, a generic �avor struc-
ture leads to FCNC and CPV processes that can exceed the

experimental bounds by up to two orders of magnitude—
the so-called supersymmetric �avor and CP problem. The
solution of the latter problem can lie in the supersymmetry
breaking and mediation mechanism (this is the case for ex-
ample of gauge mediated supersymmetry breaking) or in the
constraints on the soft terms provided by �avor symmetries.

In turn, the implications of �avor symmetries on the
structure of the soft terms depends on the interplay between
�avor and supersymmetry breaking. Without entering the
details of speci�c models, we can distinguish two opposite
situations.

– The soft terms are �avor universal, or at least symmetric
under the �avor symmetry, at the tree level, and

– �avor symmetry breaking enters the soft terms (as for
the Yukawa interactions) already at the tree level, through
non-renormalizable couplings to the �avon �elds.

Let us consider them in greater detail.
The �rst possibility is that the supersymmetry breaking

mechanism takes care of the FCNC and CPV problems. In
the simplest case, the new sfermion masses andA-terms do
not introduce new �avor structure at all. This is the case if

m2
ij = m2

0� ij , Aij = A0 � ij ,

wherei, j are family indexes and the universal valuesm2
0,

A0 can be different in the different sfermion sectors.4 The
breaking of the �avor symmetry is felt at the tree level only
by the Yukawa matrices. Needless to say, the tree level uni-
versality of the soft terms will be spoiled byrenormaliza-
tion effectsassociated to interactions sensitive to Yukawa
couplings [144, 145]. These effects can be enhanced by
large logarithms if the scale at which the soft terms and the
Yukawa interactions appear in the observable sector is suf-
�ciently high. The radiative contributions of Yukawa cou-
plings associated with neutrino masses (or Yukawa cou-
plings occurring in the context of grand uni�cation) are par-
ticularly interesting in this context, because they offer new
possibilities to test �avor physics by opening a window for
physics at very large scales. For example, in the minimal
SUSY see-saw model only the off-diagonal elements for
left-slepton soft supersymmetry breaking mass terms are
generated, while in supersymmetric GUTs also the right
handed slepton masses get renormalization induced �avor
non-diagonal contributions. In any case, all the �avor effects
induced by the soft terms can be traced back to the Yukawa
couplings, which remain the only source of �avor breaking.

4This is the case for example of gauge mediation. In supergravity, su-
persymmetry breaking can be fully �avor blind in the case of dila-
ton domination. In this case, we expect the diagonal elements of the
soft mass matrices to be exactly universal. However, this is not always
the case. Moduli domination is often encountered, in which case �elds
with different modular weights receive different soft masses.
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Such unavoidable effects of �avor breaking on the soft terms
will be discussed in Sects.5.2and5.3.

As we have just seen, the radiative contributions to soft
masses represent an unavoidable but indirect effect of the
physics at the origin of fermion masses and mixing. On the
other hand, the mechanism generating the soft terms might
not be blind to �avor symmetry breaking, in which case we
might also expect �avor breaking to enter the soft terms in
a more direct way. If this is the case, the soft term provide
a new independent source of �avor violation. Such model-
dependentÒtree levelÓeffects of �avor breaking on the soft
terms add to the radiative effects and will be discussed in
Sect.2.2.4.1. The actual presence in the soft terms of �avor
violating effects directly induced by the physics account-
ing for Yukawa couplings depends on the interplay of the
supersymmetry breaking and the �avor generation mecha-
nisms.

Theoretical and phenomenological [146–151] constraints
on supersymmetry breaking parameters essentially force su-
persymmetry breaking to take place in a hidden sector with
no renormalizable coupling to observable �elds.5 The soft
terms are therefore often characterized by the scale� SUSY
at which supersymmetry breaking is communicated to the
observable sector by some mediation mechanism. The soft
terms arise in fact from non-renormalizable operators in the
effective theory below� SUSY obtained by integrating out
the supersymmetry breaking messenger �elds. Analogously,
in the context of a theory addressing the origin of �avor, we
can de�ne a scale� f at which the �avor structure arises.
Let us consider for de�niteness the case of �avor symme-
tries. The analogy with supersymmetry breaking is in this
case even more pronounced. Above� f , the theory is �a-
vor symmetric. By this we mean that we can at least de�ne
conserved family numbers, perhaps part of a larger �avor
symmetry. The family numbers are then spontaneously bro-
ken by the VEV of �avons that couple to observable �elds
through non-renormalizable interactions suppressed by the
scale� f .

We are now in the position to discuss the presence
of “tree-level” �avor violating effects in the soft terms.
A �rst possibility is to have � f � � SUSY, as for in-
stance in the case of gravity mediation, in which we ex-
pect � f � MPlanck= � SUSY. The soft breaking terms are
already present belowMPlanck. However, the �avor sym-
metry is still exact at scales larger than� f . Therefore, the
soft terms must respect the family symmetries. At the lower
scale� f the effective Yukawa couplings are generated as
functions of the �avon VEVs,� � 
 /� f , and analogously the
soft breaking terms will also be functions of� � 
 /� f . In
the� f � � SUSY case, we therefore expect new “tree-level”

5The �elds of the minimal supersymmetric standard model (MSSM)
or its relevant extension.

sources of �avor breaking in the soft terms on top of the
effects radiatively induced by the Yukawa couplings.

On the other hand, if� SUSY � � f , the soft terms are not
present at the scale of �avor breaking. The prototypical ex-
ample in this case is gauge mediated supersymmetry break-
ing (GMSB) (see [152] and references therein). At� f the
�avor interactions are integrated and supersymmetry is still
unbroken. The only renormalizable remnant of the �avor
physics below� f are the Yukawa couplings. At the scale
� SUSY soft breaking terms feel �avor breaking only through
the Yukawa couplings. Strictly speaking, there could also
be non-renormalizable operators involving �avon �elds sup-
pressed by the heavier� f . The contributions of these terms
to soft masses would be proportional to� SUSY/� f and
therefore negligible [152]. We are then only left with the
radiatively induced effects of Yukawa couplings. The quali-
tative arguments above show that �avor physics can provide
relevant information on the interplay between the origin of
supersymmetry and �avor breaking in the observable sector.

As we just saw, the family symmetry that accounts for
the structure of the Yukawa couplings also constrains the
structure of sfermion masses. In the limit of exact �avor
symmetry, this implies family universal, or at least diago-
nal, sfermion mass matrices. After the breaking of the �avor
symmetry giving rise to the Yukawa couplings, we can have
two cases.

– The SUSY breaking mediation mechanism takes place at
a scale higher or equal to the �avor symmetry breaking
scale and is usually sensitive to �avor. The �avor symme-
try breaking accounts for both the structure of the Yukawa
couplings and the deviations of the soft breaking terms
from universality. This is the general expectation in grav-
ity mediation of the supersymmetry breaking from the
hidden sector.

– The supersymmetry breaking mediation mechanism takes
place at a scale much smaller than the �avor symmetry
breaking scale. In this case the �avor mediation mech-
anism, which is �avor-blind, guarantees the universality
of the soft breaking terms. The �avor symmetry breaking
generates the Yukawa couplings but �avor breaking cor-
rections in the soft mass matrices are suppressed by the
ratio of the two scales. This is the case of gauge-mediation
models of supersymmetry breaking [152].

We begin discussing the �rst case.

2.2.4.1 ÒTree levelÓ effects of ßavor symmetries in super-
symmetry breaking termsAfter the breaking of the �a-
vor symmetry responsible for the structure of the Yukawa
couplings, we can expect to have non-universal contribu-
tions to the soft breaking terms attree level. Under cer-
tain conditions, mainly related to the SUSY-breaking me-
diation mechanism, these tree-level contributions can be
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sizable and have important phenomenological effects. The
main example among these models where the tree level non-
universality in the soft breaking terms is relevant is provided
by models of supergravity mediation [153–157] (for a nice
introduction see the appendix in [158]).

The structure of the scalar mass matrices when SUSY
breaking is mediated by supergravity interactions is deter-
mined by the Kähler potential. We are not going to dis-
cuss here the supergravity Lagrangian; we refer the inter-
ested reader to Refs. [153–156, 158]. For our purposes,
we only need to know that the Kähler potential is a non-
renormalizable, real, and obviously gauge-invariant, func-
tion of the chiral super�elds with dimensions of mass
squared. This non-renormalizable function includes cou-
plings with the hidden sector �elds suppressed by different
powers ofMPlanck, �� 	 (1 + XX 	 /M 2

Planck + · · · ) with �
visible sector �elds andX hidden sector �elds. This Kähler
potential gives rise to SUSY breaking scalar masses once
a certain �eld of the hidden sector gets a non-vanishing F-
term. The important point here is that these couplings with
hidden sector �elds that will eventually give rise to the soft
masses are present in the theory at any scale belowMPlanck.
Below this scale, we can basically consider the hidden sector
as frozen and renormalize these couplings only with visible
sector interactions.

Therefore, in the following, to simplify the discussion,
we concentrate only on the soft masses and treat them as
couplings present at all energies belowMPlanck. The struc-
ture of the soft mass matrices is easily understood in terms
of the present symmetries. At high energies, our �avor sym-
metry is still an exact symmetry of the Lagrangian and there-
fore the soft breaking terms have to respect this symme-
try [46]. At some stage, this symmetry is broken generat-
ing the Yukawa couplings in the superpotential. In the same
way, the scalar masses will also receive new contributions
after �avor symmetry breaking from the �avon �eld VEVs
suppressed by mediator masses.

First we must notice that a mass term� †
i � i is clearly in-

variant under gauge, �avor and global symmetries and hence
gives rise to a �avor diagonal contribution to the soft masses
even before the family symmetry breaking.6 Then, after �a-
vor symmetry breaking, any invariant combination of �avon
�elds (VEVs) with a pair of sfermion �elds,� †

i � j , can also
contribute to the sfermion mass matrix and will break the
universality of the soft masses.

An explicit example with a continuous AbelianU(1) �a-
vor symmetry [5, 11, 13, 16, 19, 21, 44, 48, 54] was given
above in Sect.2.2.1.

6As we shall discuss in the following, these allowed contributions may
be universal, the same for the different generations, as in the case of
non-Abelian �avor symmetries, or they can be different for the three
generations in some cases with Abelian �avor symmetries.

We turn now to the structure of the scalar mass ma-
trices concentrating mainly on the slepton mass matrix
[13, 14, 16, 43]. In this case, even before the breaking of the
�avor symmetry, we have three different �elds with differ-
ent charges corresponding to each of the three generations.
As we have seen, diagonal scalar masses are allowed by the
symmetry, but being different �elds, there is no reason a pri-
ori for these diagonal masses to be the same, and in general
we have

L symm
m2 = m2

1� 	
1� 1 + m2

2� 	
2� 2 + m2

3� 	
3� 3. (2.17)

Notice, however, that this situation is very dangerous, es-
pecially in the case of squarks, given that the rotation to the
basis of diagonal Yukawa couplings from (2.2) will generate
too large off-diagonal entries [43]. In some cases, like dila-
ton domination, these allowed masses can be equal avoid-
ing this problem. In the following we assumem2

1 = m2
2 =

m2
3 = m2

0. However, even in this case, after the breaking of
the �avor symmetry we obtain new contributions propor-
tional to the �avon VEVs that break this universality. All
we have to do is to write all possible combinations of two
MSSM scalar �elds� i and an arbitrary number of �avon
VEVs invariant under the symmetry:

L m2 = m2
0

�
� 	

1� 1 + � 	
2� 2 + � 	

3� 3 +
�

� � 

M�

� q2Šq1

� 	
1� 2

+
�

� � 

M�

� q3Šq1

� 	
1� 3 +

�
� � 

M�

� q3Šq2

� 	
2� 3 + h.c.

�
.

(2.18)

Therefore, the structure of the charged slepton mass matrix
we would have in this model at the scale of �avor symmetry
breaking would be (suppressingO(1) coef�cients):

m2
�L




�

�
1 � �
� 1 1
� 1 1

�

� m2
0. (2.19)

This structure has serious problems with the phenomeno-
logical bounds coming fromµ � e� , etc. There are other
U(1) examples that manage to alleviate, in part, these prob-
lems [43]. However, large LFV effects are a generic prob-
lem of these models due to the required charge assignments
to reproduce the observed masses and mixing angles.

These FCNC problems in the sfermion mass matrices of
Abelian symmetries were one of the main reasons for the
introduction of non-Abelian �avor symmetries [18, 20]. The
mechanism used in non-Abelian �avor models to generate
the Yukawa couplings is again a variation of the Froggatt–
Nielsen mechanism, very similar to the mechanism we have
just seen for Abelian symmetries. The main difference is
that in this case the left handed fermions are grouped in
larger representations of the symmetry group. For instance,
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in a SU(3) symmetry all three generations are uni�ed in a
triplet. In aSO(3) �avor symmetry we can assign the three
generations to a triplet or to three singlets. In aU(2) �avor
symmetry the third generation is a singlet and the two light
generations are grouped in a doublet. Then we do not have
to assign different charges to the various generations, but in
exchange, we need several stages of symmetry breaking by
different �avon �elds with specially aligned VEVs.

We begin analyzing a non-AbelianU(2) �avor sym-
metry. As stressed above, if the sfermions mass matrices
are only constrained by aU(1) �avor symmetry there is
no reason whym2

1 should be close tom2
2 in (2.17). Un-

less an alignment mechanism between fermions and sfermi-
ons is available, the family symmetry should then suppress
( �m2

1 Š �m2
2)/ �m2. At the same time, in the fermion sector,

the family symmetry must suppress the Yukawa coupling
of the �rst two families,m1,m2 � m3. If the small break-
ing of a �avor symmetry is responsible for the smallness of
( �m2

1 Š �m2
2)/ �m2 on one hand and ofm1/m 3,m2/m 3 on the

other, the symmetric limit should correspond to�m2
1 = �m2

2
and tom1 = m2 = 0. Interestingly enough, the largest fam-
ily symmetry compatible withSO(10) uni�cation that forces
m1 = m2 = 0 automatically also forces�m2

1 = �m2
2. This is a

U(2) symmetry under which the �rst two families transform
as a doublet and the third one, as well as the Higgs, as a sin-
glet [16, 18, 20, 24, 26].

� = � a � � 3.

The same conclusion can be obtained by using discrete sub-
groups [30, 64]. In the limit of unbrokenU(2), only the third
generation of fermions can acquire a mass, whereas the �rst
two generations of scalars are exactly degenerate. While the
�rst property is not a bad approximation of the fermion spec-
trum, the second one is what is needed to keep FCNC and
CP-violating effects under control. This observation can ac-
tually be considered as a hint that the �avor structure of the
mass matrices of the fermions and of the scalars are related
to each other by a symmetry principle. The same physics
responsible for the peculiar pattern of fermion masses also
accounts for the structure of sfermion masses.

The rank 2 ofU(2) allows for a two step breaking pattern:

U(2)
�

� U(1)
� �

� 0, (2.20)

controlled by two small parameters� and� � < � , to be at the
origin of the generation mass hierarchiesm3 � m2 � m1 in
the fermion spectrum. Although it is natural to viewU(2)
as a subgroup ofU(3), the maximal �avor group in the case
of full intra-family gauge uni�cation,U(3) will be anyhow
strongly broken toU(2) by the large top Yukawa coupling.

A nice aspect of theU(2) setting is that there is little
arbitrariness in the way the symmetry breaking �elds cou-
ple to the SM fermions. This is unlike what happens e.g.

with the choice of fermion charges in the cases ofU(1)
symmetries. The Yukawa interactions transform as(� 3� 3),
(� 3� a), (� a� b) (a, b, c, . . . = 1, 2). Hence the only rele-
vantU(2) representations for the fermion mass matrices are
1, � a, Sab andAab, whereS andA are symmetric and an-
tisymmetric tensors, and the upper indices denote aU(1)
charge opposite to that of� a. While � a andAab are both
necessary, models with [20, 26] or without [24] Sab are both
possible.

Let us �rst consider the case withSab. At leading order,
the �avons couple to SM fermions throughD = 5 opera-
tors suppressed by a �avor scale� . Normalizing the �avons
to � , it is convenient to choose a basis in which� 2 = O(�)
and� 1 = 0, while A12 = Š A21 = O(� �). If S is present, it
turns out to be automatically aligned with� [27], in such a
way that in the limit� � � 0 a U(1) subgroup is unbroken.
More precisely,S22 = O(�) and all other components es-
sentially vanish. We are then led to Yukawa matrices of the
form
�

�
0 � � 0

Š� � � �
0 � 1

�

� . (2.21)

All non-vanishing entries have unknown coef�cients of or-
der unity, while still keeping
 12 = Š 
 21. In the context of
SU(5) or SO(10) uni�cation, the mass relationsm� � mb,
mµ � 3ms, 3me � md are accounted for by the choice of
the transformations ofAab, Sab under the uni�ed group. The
stronger mass hierarchy in the up quark sector, a peculiar
feature of the fermion spectrum, is then predicted, due to
the interplay of theU(2) and the uni�ed gauge symmetry.

The texture in (2.21) leads to the predictions








Vtd

Vts








 =

�
md

ms
,









Vub

Vcb








 =

�
mu

mc
. (2.22)

While the experimental determination of|Vtd/V ts| based on
one loop observables might be affected by new physics, the
tree-level determination of|Vub/V cb| is less likely to be af-
fected and at present is signi�cantly away from the predic-
tion in (2.22) [29, 39]. A better agreement can be obtained
by (i) relaxing the condition
 12 = Š 
 21, (ii) allowing for
small contributions to the 11, 13, 31 entries in (2.21) or by
(iii) allowing for asymmetric textures [39]. The latter pos-
sibility is realized in models in which theSab �avon is not
present [20].

While the model building degrees of freedom in the quark
and charged lepton sector are limited, a virtue of theU(2)
symmetry, the neutrino sector is less constrained. This is
due, in the see-saw context, to the several possible choices
involved in the modelization of the singlet neutrino mass
matrix. This is re�ected for example in the possibility to get
both small and large mixing angles [25, 28, 31, 34, 35].
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In the case of anSU(3) �avor symmetry, all three gener-
ations are grouped in a single triplet representation,� i . In
addition we have several new scalar �elds (�avons) which
are either triplets,� 3, � 23 and� 2, or antitriplets,� 3 and� 23.
SU(3)� is broken in two steps: the �rst step occurs when
� 3 and �̄ 3 get a large VEV breakingSU(3) to SU(2), and
de�ning the direction of the third generation. Subsequently
a smaller VEV of� 23 and �̄ 23 breaks the remaining sym-
metry and de�nes the second generation direction. To repro-
duce the Yukawa textures the large third generation Yukawa
couplings require a� 3 (and�̄ 3) VEV of the order of the me-
diator scale,M� , while � 23/M � (and �̄ 23/M � ) have small
VEVs7 of order � . After this breaking chain we obtain
the effective Yukawa couplings at low energies through
the Froggatt–Nielsen mechanism [5] integrating out heavy
�elds. The resulting superpotential invariant underSU(3)
would be

WY = H� i � c
j
�
� i

3� j
3 + � i

23�
j
23 + � ikl � 23,k � 3,l �

j
23(� 23� 3)

+ � ijk � 23,k(� 23� 3)2 + � ijk � 3,k(� 23� 3)(� 23� 23)

+ · · ·


. (2.23)

In this equation we can see that each of theSU(3) indices
of the external MSSM particles (triplets) are either satu-
rated individually with an antitriplet �avon index (a “me-
son” in QCD notation) or in an antisymmetric couplings
with other two triplet indices (a “baryon”). The presence
of other singlets in the different term is due to the pres-
ence of additional global symmetries necessaries to en-
sure the correct hierarchy in the different Yukawa elements
[37, 45, 46]. This structure is quite general for the dif-
ferent SU(3) models we can build. Here we are not spe-
cially concerned with additional details and we refer to
[37, 45, 46] for more complete examples. The Yukawa
texture we obtain with this superpotential is the follow-
ing:

Yf =

�

�
�

0 �� 3 �� 3

�� 3 � 2

a2 � � 2

a2

�� 3 � � 2

a2 1

�

�
� a2, (2.24)

with a = � � 3

M , and �, �, � unknown coef�cients of or-

derO(1).
Let us now analyze the structure of scalar soft masses. In

analogy with the Abelian case, in the unbroken limit diago-
nal soft masses are allowed. However, the three generations
belong to the same representation of the �avor symmetry
and now this implies the mass is the same for the whole

7In fact, in realistic models reproducing the CKM mixing matrix, there
are two different mediator scales and expansion parameters,� in the up
quark and̄� in the down quark sector [37, 45, 46].

triplet. After the breaking ofSU(3) symmetry the scalar soft
masses deviate from exact universality [46, 160–162]. Any
invariant combination of �avon �elds can also contribute to
the sfermion masses, although �avor symmetry indices can
be contracted with fermion �elds. Including these correc-
tions the leading contributions to the sfermion mass matrices
are given by

�
m2

�f

	 ij = m2
0

�
� ij +

1

M 2
f

�
� i †

3 � j
3 + � i †

23�
j
23




+
1

M 4
f

�
� ikl � 3,k � 23,l

	 †�
� jmn � 3,m� 23,n

	
�

. (2.25)

Notice that each term inside the parentheses is trivially neu-
tral under the symmetry because it contains always a �eld
together with its own complex conjugate �eld. However, as
the �avor indices of the �avon �elds are contracted with the
external matter �elds this gives a non-trivial contribution to
the sfermion mass matrices. Therefore in this model, sup-
pressing factors of order 1 we have,

m2
�f



�

�
1

1
1

�

� m2
0 +

�

�
�
�

� 2 0 0

0 � 2

a2
� 2

a2

0 � 2

a2 1

�

�
�
� a2m2

0, (2.26)

with a = � � 3
 /M � which is still O(1). In the model [37, 45,
46], the expansion parameter for right handed down quarks
and charged leptons is̄� = 0.15. Using (2.24) and (2.26) we
can obtain the slepton mass matrix in the basis of diagonal
charged lepton Yukawa couplings:

m2
�eR




�

�
1 + �̄ 2 Š �̄ 3 Š �̄ 3

Š �̄ 3 1 + �̄ 2 �̄ 2

Š �̄ 3 �̄ 2 1

�

� m2
0, (2.27)

where we have useda3 
 O(M� ). Therefore that gener-
ates the order̄� 3 entry in the(1, 2) element. The modulo
of this entry is order 3× 10Š3 at MGUT. These estimates at
MGUT are slightly reduced through renormalization group
evolution to the electroweak scale and is order 1× 10Š3 at
MW. This value implies that supersymmetric contribution to
µ � e� is very big and can even exceed the present bounds
for light slepton masses and large tan� if we are not in the
cancellation region[163–165]. This makes this process per-
haps the most promising one to �nd deviations from uni-
versality in �avor models. The presence of theSU(3) �avor
symmetry controls the structure of the sfermion mass ma-
trices and the supersymmetric �avor problem can be nicely
solved. However, interesting signals of the supersymmetric
�avor structure can be found in the near future LFV experi-
ments.
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3 Observables and their parameterization

3.1 Effective operators and low scale observables

In spite of the clear success of the SM in reproducing all
the known phenomenology up to energies of the order of
the electroweak scale, nobody would doubt the need of a
more complete theory beyond it. There remain many funda-
mental problems such as the experimental evidence for dark
matter (DM) and neutrino masses, as well as the theoretical
puzzles posed by the origin of �avor, the three generations,
etc., that a complete theory should address. Therefore, we
can consider the SM as the low energy effective theory of
some more complete model that explains all these puzzles.
Furthermore, we have strong reasons (gauge hierarchy prob-
lem, uni�cation of couplings, dark matter candidate, etc.)
to expect the appearance of new physics close to the elec-
troweak scale. Suppose that these new particles from the
more complete theory are to be found at the LHC. Exper-
iments at lower energiesE < m NP are also sensitive [166]
to this new physics (NP). Indeed the exchange of new parti-
cles can induce:

– corrections to the SM observables (such as S, T and U),
and

– the appearance ofnewobservables or new (d > 4) opera-
tors, (e.g. the �avor violating dipole operators).

Note that both effects can be parameterized bySU(3) ×
SU(2) × U(1)-invariant operators of mass dimensiond > 4.
We refer to these non-renormalizable operators aseffective
operators. Any NP proposed to explain new phenomena at
the LHC must satisfy the experimental constraints on the ef-
fective operators it generates.

3.1.1 Effective Lagrangian approach:L eff

Considering the SM as an effective theory below the scale
of NP, mNP, where the heavy �elds have been integrated
out, we can describe the physics through an effective La-
grangian,L eff. This effective Lagrangian contains all pos-
sible terms invariant under the SM gauge group and built
with the SM �elds. Besides the usual SM �elds, we could
introduce new light singlet fermions with renormalizable
Yukawa couplings to the lepton doublets (and possibly small
Majorana masses) to accommodate the observed neutrino
masses. In this case we would have more operators allowed
in the effective Lagrangian of the SM+ extra light sterile
states. On the assumption that the light sterile particles are
weakly interacting, if present, and therefore not relevant to
the LHC, we focus on the effective Lagrangian that can be
constructed only from the known SM �elds. Then, the effec-
tive Lagrangian at energiesE � mNP can be written as an

expansion in 1/m NP as,

L SM
eff = L 0 +

1
mNP

L 1 +
1

m2
NP

L 2 +
1

m3
NP

L 3 + · · · , (3.1)

where L 0 is the renormalizable SM Lagrangian contain-
ing the kinetic terms of theU(1), SU(2) andSU(3) gauge
bosonsAµ , the gauge interactions and kinetic terms of the
SM fermions,{f }, and Higgs, and the Yukawa couplings of
the Higgs and SM fermions. In order to �x the notation, we
list the SM fermions as

qi =
�

uLi

dLi

�
, � i =

�
� Li

eLi

�
,

uRi , dRi , eRi ,
(3.2)

wherei is a �avor/family/generation index. Note that in the
following we use always four-component Dirac spinors in
the different Lagrangians. Explicit expressions, forL 0 in
similar notation, can be found in [167].

The differentL n are Lagrangians of dimensiond = 4+ n
invariant underSU(3) × SU(2) × U(1) and can be schemat-
ically written

L n =
�

a

Ca · Oa
�
H, {f }, {Aµ }

	
+ h.c. (3.3)

The local operatorsOa are gauge invariant combinations of
SM �elds of dimension 4+ n. Their coef�cient, which in
the full Lagrangian has mass dimensionŠn, is unknown in
bottom-up effective �eld theory, but calculable in NP mod-
els. We write this coef�cient as a dimensionlessCa divided
by thenth power of the mass scale of the NP mediator,mn

NP,
which for new physics relevant at LHC energies would be
mNP �

�
sLHC. We shall later normalize toGF (see (3.21)).

We are mainly interested in dimension �ve and di-
mension six operators. We assume that any particles cre-
ated at the LHC could generate dimension six operators,
and then we can neglect higher dimension operators con-
tributing to the same physical processes. Operators of di-
mension 7 include the lepton number violating opera-
tor � ab� cdH a� b

[i �
µ� H c� d

j ]Fµ� which gives neutrino transi-
tion moments (�avor-changing dipole moments) after elec-
troweak symmetry breaking (EWSB). At dimension 8 are
two-Higgs-four-fermion operators, which can give four-
fermion operators after EWSB, with a different �avor struc-
ture from the dimension six terms. We shall not analyze
these operators here, but they are studied in the context of
non-standard neutrino interactions [168]. Therefore, in the
following, we restrict our analysis toL 1 andL 2.

The unique operator allowed with the standard model
�elds and symmetries at dimension �ve isOij

�� =

� ab� mnH a� cb
i H m� n

j (a, b, n,m areSU(2) indices). Thus we
have,

L 1 =
1
4

� ij
��� · � ab� mnH a� cb

i H m� n
j + h.c., (3.4)
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where� c is the charge conjugate of the lepton doublet. Af-
ter electroweak symmetry breaking, this gives rise to a Ma-
jorana mass matrix14� ij

�� �H 0
 2� ci � j + h.c. In the neutrino
mass eigenstate basis, the masses are� ii

�� �H 0
 2/ 2. The co-

ef�cient � ij
�� = 2Yki M

Š1
k Ykj is generated for instance after

integrating out heavy right handed neutrinos of massMk in
a see-saw mechanism with Yukawa couplingY.

L 2 is constructed with dimension-six operators built out
of SM �elds. An exhaustive list is given in [167], includ-
ing operators with Higgs,W± and Z 0 external legs. Here
we list operators which give interactions among leptons and
photons, and leptons and quarks. We can classify the possi-
ble operators according to the external legs as follows:

– operators with a pair of leptons and an (on-shell) photon:

Oij
eB = � i � µ� eRj HBµ� ,

(3.5)
Oij

eW = � i � µ� � I eRj HWI
µ� ,

– four-lepton operators, with Lorenz structureLL LL ,
RRRR or LR RL, singlet or tripletSU(2) gauge contrac-
tions (described in the operator subscript), and all possible
inequivalent �avor index combinations (see Sect.3.1.2).
TheSU(2) × U(1) invariant operators, with �avor indices
in the superscript, are

Oijkl
(1)�� =

�
� i � µ � j

	
(� k� µ � l ),

Oijkl
(3)�� =

�
� i � I � µ � j

	�
� k� I � µ � l

	
,

Oijkl
ee =

�
ei � µ PRej

	
(ek� µ PRel ),

Oijkl
�e = (� i ej )(ek� l ),

(3.6)

– two lepton two-quark operators, with Lorentz structure
LL LL , RRRR or LR RL, singlet or tripletSU(2) gauge
contractions (described in the operator subscript), and
all possible inequivalent �avor index combinations (see
Sect.3.1.2). The S(3) × SU(2) × U(1) invariant opera-
tors, with color indices implicit and �avor indices in the
subscript, are

Oijkl
(1)�q =

�
� i � µ � j

	
(qk� µ ql ),

Oijkl
(3)�q =

�
� i � I � µ � j

	�
qk� I � µ ql

	
,

Oijkl
ed =

�
ei � µ PRej

	
(dk� µ PRdl ),

Oijkl
eu =

�
ei � µ PRej

	
(uk� µ PRul ),

Oijkl
�u = (� i ul )(uk� j ), Oijkl

�d = (� i dl )(dk� j ),

Oijkl
�qS = (� i ej )(qkul ), Oijkl

qde= (� i ej )(dkql ).

(3.7)

Therefore the LagrangianL 2 for leptons onlyis

L 2 = Cij
eB · Oij

eB + Cij
eW · Oij

eW

+
1

1 + �

�
Cijkl

(1)�� · Oijkl
(1)�� + Cijkl

(3)�� · Oijkl
(3)��

+ Cijkl
ee · Oijkl

ee + 2Cijkl
�e · Oijkl

�e .
	

+ h.c., (3.8)

where we introduce the parameter� to cancel possible fac-
tors of 2 that can arise from the+ h.c.: it is 1 forOij ...

... =
[Oij ...

... ]†; otherwise it is 0. The sums overi, j, k, l run over
inequivalent operators, taking an operator to be inequivalent
if neither it, nor its h.c., are already in the list. The factor of
2 in the de�nition ofO�e is included to compensate the 1/ 2
in the Fierz rearrangement below (second line of (3.13)).8

The effective operators whose coef�cients we constrain in
the next section are related to those of (3.8) through an ex-
pansion in terms of theSU(2) components of the �elds and
taking into account the electroweak symmetry breaking. For
example, for the lepton operators:

Oij
eB = � i � µ� eRj HBµ� = cos� W�H 
ei � µ� PRej F em

µ� , (3.9)

Oij
eW = � i � µ� � I eRj HWI

µ�

= Š sin� W�H 
ei � µ� PRej F em
µ� , (3.10)

Oijkl
(1)�� =

�
� i � µ � j

	
(� k� µ � l )

=
�
� i � µ PL � j + ei � µ PL ej

	

× (� k� µ PL � l + ek� µ PL el ), (3.11)

Oijkl
(3)�� =

�
� i � I � µ � j

	�
� k� I � µ � l

	

= 2
�
� i � µ PL ej

	
(ek� µ PL � l )

+ 2
�
ei � µ PL � j

	
(� k� µ PL el )

+
��

� i � µ PL � j
	
(� k� µ PL � l )

+
�
ei � µ PL ej

	
(ek� µ PL el )

Š
�
� i � µ PL � j

	
(ek� µ PL el )

Š
�
ei � µ PL ej

	
(� k� µ PL � l )



, (3.12)

Oijkl
�e = 2(� i ej )(ek� l )

= 2
�
(� i PRej )(ekPL � l ) + (ei PRej )(ekPL el )




= Š
��

� i � µ PL � l
	
(ek� µ PRej )

+
�
ei � µ PL el

	
(ek� µ PRej )



. (3.13)

All these operators, together withOijkl
ee , induce dipole

moments and four-charged-lepton (4CL) vertices, as appear

8Note there will sometimes be other 2 s for identical fermions.



Eur. Phys. J. C (2008) 57: 13–182 31

to the right-hand side (RHS) in the above equations. Con-
straints on the coef�cients of the 4CL operators

Oijkl
P P =

1
1 + �

�
ei � µ P ej

	
(ek� µ P el ),

Oijkl
RL =

1
1 + �

�
ei � µ PRej

	
(ek� µ PL el ),

(3.14)

whereP = PR or PL , are listed in Tables4, 5, 6 and7.
After electroweak symmetry breaking, the operatorsOij

eB

andOij
eW become the chirality-�ipping dipole moments as

written in (3.9), (3.10) (where we did not include theZ–
lepton–lepton operators [169]). These dipoles can be �avor
conserving or transition dipole moments. The �avor diag-
onal operators are specially interesting because they corre-
spond to the anomalous magnetic moments and the electric
dipole moments of the different fermions. TakingCij

e� (q2) =

Cij
eB(q2) cos� W Š Cij

eW(q2) sin� W as the Wilson coef�cient
with momentum transfer equal toq2, we have forq2 = 0,

Cii
e� (q2 = 0)

m2
NP

�H 
ei � µ� PRei F em
µ� + h.c.

=
Re{Cii

e� (q2 = 0)}

m2
NP

�H 
ei � µ� ei F em
µ�

+
Im{Cij

e� (q2 = 0)}

m2
NP

�H 
 i ei � µ� � 5ei F em
µ�

= e
aei

4mei

ei � µ� ei F em
µ� +

i
2

dei ei � µ� � 5ei F em
µ� , (3.15)

with aei = (gei Š 2)/ 2 the anomalous magnetic moment and
dei the electric dipole moment of the leptonei that can be
found in [170].

In a given model, the coef�cients of the effective op-
erators can be obtained by matching the effective theory
of (3.1) onto the model, at some matching scale (for in-
stance, the mass scale of new particles). However, in partic-
ular models there can appear various pitfalls in constraining
the generic coef�cientsCijkl

... . This is illustrated, for example,
in the model of [171] which corresponds to adding a singlet
slepton �Ec of �avor k, in R-parity violating (RPV) SUSY. In
this case, after integrating out the heavy slepton we obtain
the following effective operator:


 k
[ij ] 


	 k
[mn]

M 2

�
(� L )c

i eLj
	�

(eL )n(� L )c
m

	

=

 k

[ij ] 

	 k
[mn]

2M 2

�
en� µ PL ej

	
(� m� µ PL � i ), (3.16)

where
 k
[ij ] is antisymmetric ini, j because theSU(2) con-

traction of� i � j is antisymmetric. This is an example of op-

eratorO��( 1) , but since it is induced by singlet scalar ex-
change, there is no four-charged-lepton operator (compare
to (3.11)). This illustrates that the bounds obtained here, by
assuming thatCijkl

... �= 0 for one choice ofijkl at a time, are
not generic. Each process receives contributions from a sum
of operators, and that sum could contain cancellations in a
particular model.

Many models of new physics introduce new TeV-scale
particles carrying a conserved quantum number (e.g. R-
parity, T-parity. . . ).Such particles appear in pairs at ver-
tices, so they contribute via boxes and penguins to the
four-fermion and dipole moment operators considered here.
Generic formulae for the one loop contribution to a dipole
moment can be found in [172], and for boxes in [173]. Extra
Higgses [174, 175] would contribute to the same operators
constructed from SM �elds, so they are constrained by the
experimental limits on the coef�cients of such operators.

3.1.2 Constraints on low scale observables

In this section we present the low energy constraints on
the different Wilson coef�cients introduced before. Any NP
found at LHC will necessarily respect the bounds presented
here.

3.1.2.1 Dipole transitions After electroweak symmetry
breaking, the operators of (3.9), (3.10) generate magnetic
and electric dipole moments for the charged leptons. Flavor-
diagonal operators give rise to anomalous magnetic mo-
ments and electric dipole moments as shown in (3.15).
The anomalous magnetic moment of the electronae =
(g Š 2)e/ 2 is used to determine� em. The current measure-
ment of the muon anomalous momentaµ = (g Š 2)µ / 2 de-
viates from the (uncertain) SM expectation by 3.2� using
e+ eŠ -data [176], and can be taken as a constraint, or indica-
tion on the presence of new physics. Currently there is only
an upper bound on the magnetic moment of the� from the
analysis ofe+ eŠ � � + � Š [170, 177]. Electric dipole mo-
ments have not yet been observed, although we have very
constraining bounds specially on the electron dipole mo-
ment. In Table3 we present the bounds of �avor diagonal di-
pole moments. The EDMs are discussed in detail in Sect.5.

The bounds on off-diagonal dipole transitions are pre-
sented in Table3. It is convenient to normalize these coef-
�cients, Cij

e� = Cij
eB cos� W Š Cij

eW sin� W, to the Fermi in-
teractions given our ignorance on the scale of new physics
mNP:

Cij
e�

m2
NP

=
4GF�

2
� ij

e� . (3.17)

In the literature, it is customary to use the left and right form
factors for lepton �avor violating transitions de�ned by
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Table 3 Bounds on the different dipole coef�cients. Flavor diagonal
dipole coef�cients are given in terms of the corresponding anomalous
magnetic moment,aei , and the dipole moment,dei . Bounds on transi-
tion moments are given in terms of the dimensionless coef�cients|� ij

e� |

(de�ned in (3.17)) from the bounds on the branching ratios given in
the last column. These bounds apply also both to|� ij

e� | and|� j i
e� |. See

Sect.3.1.2for details

(ij ) ai = gi Š2
2 edmi (ecm) Ref.

ee 0.0011596521859(38) de � 1.6 × 10Š27 PDG [170, 186]

µµ 11659208.0(5.4)(3.3) × 10Š10 dµ � 2.8 × 10Š19 Muon g-2 Coll. [187, 188]

� � Š0.052< a � < 0.013 (Š2.2 < d � < 4.5) × 10Š17 LEP2 [189], Belle [190]

(ij ) � i � µ� eRj F em
µ� expt. limit Ref.

eµ � 3.4 × 10Š11 � 1.2 × 10Š11 MEGA Coll. [180]

e� � 1.2 × 10Š7 � 1.1 × 10Š7 BaBar [182]

µ� � 8.4 × 10Š8 � 4.5 × 10Š8 Belle, BaBar [181, 191]

� L 2 = e mli Aµ f j
�
i� µ� q�

�
Aij

L PL + Aij
RPR

	

f i + h.c.

(3.18)

wheref is a Dirac (4-component) fermion. The radiative
decayf i � f j + � proceeds at the rate	 = m5

i e2/( 16�) ×

(|Aij
L |2 + | Aij

R |2) [178]. QED corrections to those decays
are unusually large and may reach as much as 15% [179].
Bounds on the dimensionless coef�cientsCij

e� and� ij
e� can

be obtained by translating fromAij
L andAij

R :

Cij
e�

m2
NP

�H 
 = e
mi

2
Aij

R ,
Cj i 	

e�

m2
NP

�H 
 = e
mi

2
Aij

L . (3.19)

The experimental bounds on radiative lepton decays can
be used to set bounds on these off-diagonal Wilson coef�-
cients. The current experimental bounds areB(µ � e� ) <
1.2 × 10Š11 [180], B(� � µ� ) < 4.5 × 10Š8 [181], and
B(� � e� ) < 1.1× 10Š7 [182].

For the off-shell photon,q2 �= 0, there exist additional
form factors,

� L = emli Aµ ej

��
gµ� Š

qµ q�

q2

�
� �

�
Bij

L PL + Bij
R PR

	
�
ei

+ h.c., (3.20)

which induce contributions to the four-fermion operators
to be discussed in the next subsections. These form fac-
tors may be enhanced by a large factor compared to the
on-shell photon form factors [184], ln(mNP/m li ), depend-
ing on the nature of new physics. Therefore, those operators
become relevant for constraining new physics in R-parity vi-
olating SUSY [185] and in low-scale type-II see-saw mod-
els [184].

3.1.2.2 Four-charged-lepton operatorsAs before, to pres-
ent the bounds on the dimensionless four-charged-fermion

coef�cients in (3.14), we normalize them to the Fermi inter-
actions:

Cijkl
(n)��

m2
NP

= Š
4GF�

2
� ijkl

(n)�� ,
Cijkl

ee

m2
NP

= Š
4GF�

2
� ijkl

ee ,

(3.21)
Cilkj

�e

m2
NP

=
4GF�

2
� ijkl

�e .

The current low energy constraints on the dimensionless
� ’s are shown in Tables4, 5, 6 and7. The rows of the ta-
bles are labeled by the �avor combination, and the column
by the Lorentz structure. The numbers given in this tables
correspond to the best current experimental bound on the
coef�cient of each operator, assuming it is the only non-
zero coef�cient present. The last column in the table lists
the experiment setting the bound. The compositeness search
limits � @ LEP are at 95% C.L., the decay rate bounds at
90% C.L.

Regarding the de�nition of the different coef�cients we
have to make some comments. First, note the �avor index
permutation betweenC�e and� �e :

Cilkj
�e (� i el )(ek� j ) = Š

1
2

� ijkl
�e

�
� i � µ � j

	
(ek� µ el ). (3.22)

There are relations between the �avor indices of the differ-
ent operators. ForOLL = (e� µ PL e)(e� µ PL e) andORR =
(e� µ PRe)(e� µ PRe) we have

Oijkl
P P = Oklij

P P , Oijkl
P P = O	 j ilk

P P , Oijkl
P P = Oilkj

P P ,

(3.23)

by symmetry, Hermitian conjugation and Fierz rearrange-
ment, respectively. Therefore, the constraints oneeµ� in the
�rst two columns of Tables4 to 7 apply to � eeµ�

(n)xx , � µ�ee
(n)xx ,

� 	 ee�µ
(n)xx , � 	 �µee

(n)xx , � e�µe
(n)xx , � µee�

(n)xx , � 	 �eeµ
(n)xx , and� 	 eµ�e

(n)xx with (n)xx
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Table 4 Bounds on coef�cients of �avor four-lepton operators, from
four-charged-lepton processes. The number is the upper bound on the
dimensionless operator coef�cient� ijkl (de�ned in (3.21)), arising from
the measurement in the last column. The bound applies also to� klij .
The second column is the bounds on� ijkl

(3)�� , and� ijkl
(1)�� [except in the

case of the bracketed limits, which are the upper bound on� ijkl
(1)�� and

2� ijkl
(1)�� ]. The third column is the bound on� ijkl

(1)ee. The bounds in these

two columns apply also when the �avor indices are permuted toj ilk
andilkj . The fourth column is the bound on� ijkl

�e (which does not apply
to the �avor permutationilkj , so this is listed with a line of its own).
The constraints in [brackets] apply to the two charged lepton–two
neutrino operator of the same �avor structure, and arise from lepton
universality in� decays. See Sect.3.1.2for details

(ijkl ) (e� µ PL e)(e� µ PL e) (e� µ PRe)(e� µ PRe) (e� µ PL e)(e� µ PRe) expt. limit Ref.

eeee (Š1.8 Š + 2.8) × 10Š3 (Š1.8 Š + 2.8) × 10Š3 (Š2.4 Š + 4.9) × 10Š3 � @LEP2 [194]

eeµµ ( Š7.2 Š + 5.2) × 10Š3 (Š7.8 Š + 5.8) × 10Š3 (Š9.0 Š + 9.6) × 10Š3 � @LEP2 [193, 195]

eµµe (Š7.2 Š + 5, 2) × 10Š3 (Š7.8 Š + 5.8) × 10Š3 1.3 × 10Š2 �,RP V @LEP2 [193, 195]

ee� � ( Š7.3 Š + 13) × 10Š3 (Š8.0 Š + 15) × 10Š3 (Š1.2 Š + 1.8) × 10Š2 � @LEP2 [193, 195]

�ee� (Š7.3 Š + 13) × 10Š3 (Š8.0 Š + 15) × 10Š3 1.3 × 10Š2 �,RP V @LEP2 [193, 195]

µµ µµ � 1 � 1 � 1 B(Z � µ µ̄)

µµ � � � 1 [0.0014] � 1 � 1 [0.01] B(Z � µ µ̄)

µ� �µ � 1 [0.0014] � 1 B(Z � µ µ̄)

� � � � � 1 � 1 � 1 B(Z � � �̄ )

Table 5 Bounds on coef�cients of four-lepton operators with�L � =
Š�L � = 1. They apply also to �avor index permutationsklij andilkj ,
except in the case of� �eµ , where the bound on�µe� in the fourth col-

umn is fromµ decay and is listed separately. See the caption of Table4
and Sect.3.1.2for further details

(ijkl ) (e� µ PL e)(e� µ PL e) (e� µ PRe)(e� µ PRe) (e� µ PL e)(e� µ PRe) expt. limit

eeeµ 7.1 × 10Š7 7.1 × 10Š7 7.1 × 10Š7 B(µ � eee) < 10Š12

eee� 7.8 × 10Š4 7.8 × 10Š4 7.8 × 10Š4 B(� � eee) < 2 × 10Š7

eeµ� 1.1 × 10Š3 1.1 × 10Š3 1.1 × 10Š3 B(� � eeµ) < 1.9 × 10Š7

µµ eµ � 1 � 1 � 1 B(Z � eµ̄) < 1.7 × 10Š6

µµ e� 1.1 × 10Š3 1.1 × 10Š3 1.1 × 10Š3 B(� � µeµ) < 2.0 × 10Š7

µµ µ� 7.8 × 10Š4 7.8 × 10Š4 7.8 × 10Š4 B(� � 3µ) < 1.9 × 10Š7

� � eµ � 1 [0.05] � 1 � 1 [0.05] B(Z � eµ̄) < 1.7 × 10Š6

�µ e� � 1 [0.05] � 1 [0.05] B(Z � eµ̄) < 1.7 × 10Š6

� � e� � 3 [0.05] � 3 � 3 [0.05] B(Z � e�̄ ) < 9.8 × 10Š6

� � �µ � 3 [0.05] � 3 � 3 [0.05] B(Z � � µ̄) < 1.2 × 10Š5

Table 6 Bounds on coef�cients of four-lepton operators with�L � = �L � = 2. See the caption of Table4 and Sect.3.1.2for details

(ijkl ) (e� µ PL e)(e� µ PL e) (e� µ PRe)(e� µ PRe) (e� µ PL e)(e� µ PRe) expt. limit

eµeµ 3.0 × 10Š3 3.0 × 10Š3 2.0 × 10Š3 (µ̄e) � (ēµ)

e� e� [0.05] [0.05]

µ� µ� [0.05] [0.05]

Table 7 Bounds on coef�cients of four-lepton operators with�L � = �L � = Š 1
2�L � . See the caption of Table4 and Sect.3.1.2for details

(ijkl ) (e� µ PL e)(e� µ PL e) (e� µ PRe)(e� µ PRe) (e� µ PL e)(e� µ PRe) expt. limit

eµe� 2.3 × 10Š4 2.3 × 10Š4 2.3 × 10Š4 B(� � µee) < 1.1 × 10Š7

µeµ� 2.6 × 10Š4 2.6 × 10Š4 2.6 × 10Š4 B(� � eµµ) < 1.3 × 10Š7

�e�µ [0.05] [0.05]
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equal to(3)��, ( 1)�� , or (1)ee. Note, however that it is cal-
culated assuming only one of these� is non-zero. Similarly,
the operatorOijkl

LR = (ei � µ PL ej )(ek� µ PRel ), with coef�-

cient� ijkl
�e , is related by Hermitian conjugation:

Oijkl
LR = O	 j ilk

LR , (3.24)

so again the bounds on� ijkl
�e apply to� 	 j ilk

�e . We can usually

apply also these bounds to� klij
�e because the chirality of the

fermion legs does not affect the matrix element squared, but
� ilkj

�e is bounded separately in the tables.
The bounds fromZ decays in Tables4 and 5 are esti-

mated from the one loop penguin diagram obtained closing
two of the legs of the four-fermion operator and coupling
it with the Z [192]. These bounds would be more correctly
included by renormalization group mixing between the four-
fermion operators and the Z–fermion–fermion operators dis-
cussed in [169]. They are listed in the tables to indicate the
existence of a constraint. The bound can be applied to� iikl

�e

and� ijkk
�e but it does not apply to� ilki

�e .
Contact interaction bounds are usually quoted on the

scale� , where

� ijkl
ab

4GF�
2

= ±
1

1 + �
4�
� 2 , (3.25)

and� = 1 for the operatorsOeeee
LL andOeeee

RR of (3.14), 0 oth-
erwise. Since our normalization does not have this factor
of 2, we have a Feynman rule� 8GF/

�
2 for these oper-

ators, and correspondingly stricter bounds on the� ’s. The
bounds are the same for� ikki

�e and � kiik
�e . However, contact

interaction bounds are not quoted on operators of the form
(ei � µ PL ej )(ej � µ PRei ), corresponding to� iijj

�e . Such oper-
ators are generated by sneutrino exchange in R-parity violat-
ing SUSY, so we estimate the bound
 2/m 2

�� < 4/( 9 TeV2)

from the plotted constraints in [193], and impose 4|� ijkl
ab |GF/�

2 < 
 2/( 2m2
�� ).

Many of the 4CL operators involving two� ’s are poorly
constrained. In some cases, see (3.11), (3.12), new physics
that generates 4CL operators also induces(ei � 
 P ej ) ×
(� k� 
 L� l ). The coef�cients of operators of the form
(µ� 
 P e)(� k� 
 L� l ), (µ� 
 P � )( � k� 
 L� l ) or (e� 
 P � ) ×
(� k� 
 L� l ), are constrained from lepton universality mea-
surements inµ and � decays [196]. The decay rate� �
ei � k�̄ l in the presence of the operators of (3.14), divided by
the SM prediction for� � ei � � � i , is
�

1 Š 2� k� � il Re
�
� � � ii

(1)�� + 2� � � ii
(3)��

�
+

4mi

m�
� k� � il Re

�
� � � ii

�e
�

+



� i� kl

(1)��




2 + 4




� i� kl

(3)��




2 +




� i� kl

�e




2

�
. (3.26)

Within the experimental accuracy, the weak� and µ de-
cays verify lepton universality and agree with LEP precision

measurements ofmW. Rough bounds on the� ’s can there-
fore be obtained by requiring the new physics contribution
to the decay rates to be less than the errors�B

B (� � e� �) =
0.05/ 17.84, �B

B (� � µ� �) = 0.05/ 17.36. These are listed
in the tables in [brackets]. The bracketed limit in the sec-
ond column applies to� ijkl

(1)�� ; the bound on� ijkl
(3)�� is 1/ 2 the

quoted number. The limit on� �e�µ
�e is from its contribution

to µ � e� � �̄ � .
Finally, we would like to remind the reader the various

caveats to these four-fermion vertex bounds.

– The constraints are calculated “one operator at a time”.
This is unrealistic; new physics is likely to induce many
non-renormalizable operators. In some cases, see (3.16),
a symmetry in the new physics can cause cancellations
such that it does not contribute to certain observables.

– The coef�cients of the 4CL operators, and two� –two
charged lepton (2� 2CL) operators may differ by a factor
of few, because they are induced by the exchange of dif-
ferent members of a multiplet, whose masses differ [197].

– The list of operators is incomplete. Perhaps some of
the neglected operators give relevant constraints on new
physics. For instance, bounds from lepton universality on
the (H 	 �)� µ � µ (H �) operator [198] are relevant to extra
dimensional scenarios [199].

– Operators of dimension> 6 are neglected. If the mass
scale of the new physics is� TeV, then higher dimension
operators with Higgs VEVs [200] such asHH ¯�� ¯� �
are not signi�cantly suppressed.

3.1.2.3 Two leptonÐtwo quark operatorsOnce more, we
normalize the coef�cients of the two lepton–two quark op-
erators in (3.6) to the Fermi interactions:

Cijkl
(n)�q

m2
NP

= Š
4GF�

2
� ijkl

(n)�q ,
Cijkl

ed

m2
NP

= Š
4GF�

2
� ijkl

ed ,

Cijkl
�d

m2
NP

=
4GF�

2
� ijkl

�d ,
Cijkl

eu

m2
NP

= Š
4GF�

2
� ijkl

eu ,

(3.27)

Cijkl
�u

m2
NP

= Š
4GF�

2
� ijkl

�u ,
Cijkl

�qS

m2
NP

= Š
4GF�

2
� ijkl

�qS ,

Cijkl
qde

m2
NP

= Š
4GF�

2
� ijkl

qde.

The main bounds on the dimensionless� s are given in Ta-
bles 8 and 9. These numbers correspond to the best cur-
rent experimental bound on the coef�cient of each opera-
tor, assuming it is the only non-zero coef�cient present. The
bounds on� �q in Table 8 apply both to� (1)�q and � (3)�q .
These bounds have been obtained from the corresponding
bounds on leptoquark couplings in Refs. [201, 202] that can
be checked for further details.
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Table 8 Bounds on coef�cients of the left handed two quark–two lep-
ton operators. Bound is the upper bound on the dimensionless operator
coef�cient � ijkl (de�ned in (3.28)), arising from the experimental de-

termination of the observable in the next column. Bounds with a	 are
also valid under the exchange of the lepton indices

(e� µ PL e)(q� µ PL q)

(ijkl ) Bound on� ijkl
�q Observable (ijkl ) Bound on� ijkl

�q Observable

11 11 5.1 × 10Š3 R� 22 11 5.1 × 10Š3 R�

12 11 8.5 × 10Š7 µ–e conversion on Ti 12 12	 2.9 × 10Š7 B(K 0
L � µe)

ij 12 4.5 × 10Š6 B(K + � � + ��)
B(K + � � 0e+ � e)

ij 22 1.0 Vcs

ij 13 3.6 × 10Š3 Vub ij 23 4.2 × 10Š2 Vcb

11 23 6.6 × 10Š5 B(B + � e+ eŠ K + ) 11 13 9.3 × 10Š4 B(B + � e+ eŠ � + )

22 23 5.4 × 10Š5 B(B + � µ + µ Š K + ) 22 13 1.4 × 10Š3 B(B + � µ + µ Š � + )

21 23	 4.5 × 10Š3 B(B + � e+ µ Š K + ) 21 13	 3.9 × 10Š5 B(B + � e+ µ Š � + )

12 23	 1.2 × 10Š2 B(B 0
s � µ + eŠ ) 33 12 6.6 × 10Š2 K –K

22 22 6.0 × 10Š2 B(D +
s � µ + � µ )

B(D +
s � � + � � )

33 22 6.0 × 10Š2 B(D +
s � µ + � µ )

B(D +
s � � + � � )

32 23	 1.2 × 10Š3 B(B + � µ + � Š X + ) 33 23 9.3 × 10Š3 B(B + � � + � Š X + )

Table 9 Bounds on coef�cients of the right handed vector and scalar 2
quark-2 lepton operators. Bound is the upper bound on the dimension-
less operator coef�cient� ijkl (de�ned in (3.28)), arising from the ex-

perimental determination of the observable in the next column. Bounds
with a 	 are also valid under the exchange of the lepton indices

(e� µ PRe)(q� µ PRq)

(ijkl ) Bound on� ijkl
eu Observable (ijkl ) Bound on� ijkl

eu Observable

11 12 1.7 × 10Š2 B(D + � � + e+ eŠ )
B(D 0� � Š e+ � e)

21 12	 1.3 × 10Š2 B(D + � � + µ Š e+ )
B(D 0� � Š e+ � e)

22 12 9.0 × 10Š3 B(D + � � + µ + µ Š )
B(D 0� � Š e+ � e)

33 12 0.19 B(D 0 Š D
0
)

(�P Re)(dPL q)

(ijkl ) Bound on� ijkl
qde Observable (ijkl ) Bound on� ijkl

qde Observable

11 11 1.5 × 10Š7 R� 22 11 3.0 × 10Š4 R�

12 11 5.1 × 10Š3 B(� + � µ + � e) 12 12	 2.1 × 10Š8 B(K 0
L � µ + eŠ )

11 12 2.7 × 10Š8 B(K 0
L � e+ eŠ ) 22 12 8.4 × 10Š7 B(K 0

L � µ + µ Š )

22 21 1.3 × 10Š2 B(D + � µ + � µ ) 22 22 1.2 × 10Š2 B(D +
s � µ + � µ )

B(D +
s � � + � � )

33 22 0.2 B(D +
s � µ + � µ )

B(D +
s � � + � � )

33 13 2.5 × 10Š3 B(B + � � + � � )

11 13 9.0 × 10Š5 B(B 0 � e+ eŠ ) 12 13	 1.2 × 10Š4 B(B 0 � µ + eŠ )

13 13	 2.5 × 10Š3 B(B 0 � � + eŠ ) 23 13	 3.3 × 10Š3 B(B 0 � � + µ Š )

22 13 7.5 × 10Š5 B(B 0 � µ + µ Š ) 11 23 6.0 × 10Š4 B(B 0
s � e+ eŠ )

12 23	 2.1 × 10Š4 B(B 0
s � µ + eŠ ) 22 23 1.2 × 10Š4 B(B 0

s � µ + µ Š )

3.2 Phenomenological parameterizations of quark and
lepton Yukawa couplings

3.2.1 Quark sector

The quark Yukawa sector is described by the following La-
grangian:

L quark= uc
Ri Y

u
ij Qj H + dc

Ri Y
d
ij Qj H + h.c., (3.28)

wherei, j = 1, 2, 3 are generation indices,Qi = (dL i , uL i )
are the left handed quark doublets,uc

R anddc
R are the right

handed up and down quark singlets respectively, andH is
the Higgs �eld. On the other hand,Yu andYd are complex
3 × 3 matrices, which can be cast by means of a singular
value decomposition as

Yu = V u
RDu

YV u
L

†,
(3.29)

Yd = V d
RDd

YV d
L

†
.
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Here,Du
Y = diag(yu

1 , yu
2 , yu

3) is a diagonal matrix whose en-
tries can be chosen real and positive withyu

1 < y u
2 < y u

3 , and
similarly for Dd

Y. V u,d
R and V u,d

L are 3× 3 unitary matri-
ces that depend on three real parameters and six phases. The
unitary matricesV u,d

R can be absorbed in the de�nition of
the right handed �elds without any physical effect. In neu-
tral currents the left rotations cancel out via the Glashow–
Iliopoulos–Maiani (GIM) mechanism [203]. On the other
hand, the rede�nition of the left handed �elds produces �a-
vor mixing in the charged currents. In the physical basis
where both the up and down Yukawa couplings are simul-
taneously diagonal, the charged current reads

J µ
cc = uc

L
� µ (1 Š � 5)

2

�
V u

L
†V d

L
	
dL . (3.30)

The matrixV u
L

†V d
L can be generically written asV u

L
†V d

L =
� 1UCKM� 2, where� 1,2 are diagonal unitary matrices (thus,
containing only phases) that can be absorbed by appropri-
ate rede�nitions of the left handed �elds. Finally,UCKM de-
pends on three angles and one phase that cannot be removed
by �eld rede�nitions and accounts for the physical mixing
between quark generations and the CP violation [204, 205].
It is usually parameterized thus:

UCKM =

�

�
�

c13c12 c13s12 s13eŠi�

Šc23s12 Š s23s13c12ei� c23c12 Š s23s13s12ei� s23c13

s23s12 Š c23s13c12ei� Šs23c12 Š c23s13s12ei� c23c13

�

�
� ,

(3.31)

wheresij = sin� ij , cij = cos� ij and � is the CP-violating
phase. Experiments show a hierarchical structure in the off-
diagonal entries of the CKM matrix:|Vub| � Vcb � Vus,
that can be well described by the following phenomeno-
logical parameterization of the CKM matrix, proposed by
Wolfenstein [206]. It reads

UCKM =

�

�
�
�

1 Š 
 2

2 
 A
 3(� Š i�)

Š 
 1Š 
 2

2 A
 2

A
 3(1 Š � Š i�) ŠA
 2 1

�

�
�
�

+ O
�

 4	

, (3.32)

where
 is determined with a very good precision in semi-
leptonicK decays, giving
 
 0.23, andA is measured in
semileptonicB decays, givingA 
 0.82. The parameters�
and� are more poorly measured, although a rough estimate
is � 
 0.1, � 
 0.3 [207].

3.2.2 Leptonic sector with Dirac neutrinos

A Dirac mass term for the neutrinos requires the existence
of three right handed neutrinos, which are singlets under the
standard model gauge group. In consequence, the leptonic

Lagrangian would contain in general a Majorana mass term
for the right handed neutrinos, which has to be forbidden by
imposing exact lepton number conservation. Then the lep-
tonic Lagrangian reads

L lep = ec
Ri Y

e
ij L j H + � c

Ri Y
�
ij L j H + h.c., (3.33)

whereL i = (� L i , eL i ) are the left handed lepton doublets
andec

R and� c
R are respectively the right handed charged lep-

ton and neutrino singlets. Analogously to the quark sector,
the Yukawa couplings can be decomposed as

Ye = V e
RDe

YV e
L

†, (3.34)

Y� = V �
RD �

YV �
L

†, (3.35)

where V e,�
R do not have any physical effect, whereas the

V e,�
L have an effect in the charged current, that in the ba-

sis where the charged lepton and neutrino Yukawa couplings
are simultaneously diagonal reads

J µ
cc = ec

L
� µ (1Š � 5)

2

�
V e

L
†V �

L
	
� L . (3.36)

As in the case of the quark sector, the matrixV e
L

†V �
L de-

pends on three angles and six phases and can be expressed
as V e

L
†V �

L = � 1UPMNS� 2. The matrices� 1 and � 2 can
be absorbed by appropriate rede�nitions of the left handed
�elds, yielding a physical mixing matrixUPMNS [208, 209]
that depends on three angles and one phase, and that can
be parameterized by the same structure as for the quark
sector, (3.31). However, the values for the angles differ
substantially from the quark sector. The experimental val-
ues that result from the global �t are sin2 � 12 = 0.26–0.36,
sin2 � 23 = 0.38–0.63 and sin2 � 13 � 0.025 at 2� [210, 211].
On the other hand, the CP-violating phase� is completely
unconstrained by present experiments.

In the theory under discussion the total lepton number
L = L e + L µ + L � is conserved, but the individual lep-
ton �avors L l , l = e,µ, � , are not, and LFV processes like
µ Š � eŠ � decay are allowed. For the neutrino massesm� j ,
j = 1, 2, 3, satisfying the existing upper limits obtained in
3H � -decay experiments,mj < 2.3 eV, theµ Š � eŠ � de-
cay branching ratio is given by [212]

B(µ � e� ) =
3�

32�









�

j

UPMNS
ej UPMNS	

µj

m2
� j

M 2
W










2

, (3.37)

whereMW is the W± -boson mass. Thus, theµ Š � eŠ �
decay rate is suppressed by the factor(mj /M W)4 < 6.7 ×
10Š43, which renders it unobservable. The same conclusion
is valid for all other LFV decays and reactions in the min-
imal extension of the standard theory with light neutrino
masses we are considering. The only observable manifes-
tation of the non-conservation of the lepton chargesL l in
this theory is the oscillations of neutrinos.
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3.2.3 Leptonic sector with Majorana neutrinos

Neutrino masses can also be accommodated in the standard
model without extending the particle content, just by adding
a dimension �ve operator to the leptonic Lagrangian [213]:

L lep = ec
Ri Y

e
ij L j H +

1
4

� ij (L i H )(L j H ) + h.c. (3.38)

with � a 3× 3 complex symmetric matrix that breaks ex-
plicitly lepton number and that has dimensions of massŠ1.
Then, after the electroweak symmetry breaking, a Majorana
mass term for neutrinos is generated:

m� =
1
2

�
�
H 0�2. (3.39)

This term can be diagonalized asm� = V �
L

	 Dm� V �
L

†, so
that the charged current reads as in (3.36), with V e

L
†V �

L =
� 1U� 2, where the matrixU has the form of the CKM ma-
trix, (3.31). The matrix� 1 containing three phases can be
removed by a rede�nition of the left handed charged lepton
�elds. However, due to the Majorana nature of the neutri-
nos, the matrix� 2 cannot be removed and is physical, yield-
ing a leptonic mixing matrixUPMNS = U� 2 that is de�ned
by three angles and three phases [214, 215], one associated
to U, the “Dirac phase”, and two associated to� 2, the “Ma-
jorana phases”.

In the leptonic Lagrangian given by (3.38) the origin of
the dimension �ve operator remains open. In the rest of this
section, we shall review the heavy Majorana singlet (right
handed) neutrino mass mechanism (type I see-saw) [216–
220] and the triplet Higgs mass mechanism (type II see-saw)
[215, 221–224] as the possible origins of this effective op-
erator. The third [225] tree level realization of the opera-
tor (3.38) via triplet fermion (type III see-saw) [226] is dis-
cussed in Sect.4.1.

3.2.3.1 Type I see-sawIn the presence of singlet right
handed neutrinos, the most general Lagrangian compatible
with the standard model gauge symmetry reads

L lep = ec
Ri Y

e
ij L j H + � c

Ri Y
�
ij L j H Š

1
2

� cT
Ri Mij � c

Rj + h.c.,

(3.40)

where lepton number is explicitly broken by the Majorana
mass term for the singlet right handed neutrinos.9 The see-
saw mechanism is implemented when eig(M) � � H 0
 . If
this is the case, at low energies the right handed neutrinos
are decoupled and the theory can be well described by the

9Here we explicitly assume three generations of singlet neutrinos. For
the phenomenology of a large number of singlets as predicted by string
theories, see [227, 228].

effective Lagrangian for Majorana neutrinos, (3.38), with
[216–220]

� = 2Y� T M Š1Y� . (3.41)

Working in the basis where the charged lepton Yukawa ma-
trix and the right handed mass matrix are simultaneously
diagonal, it can be checked that the complete Lagrangian,
(3.40), contains �fteen independent real parameters and six
complex phases [229]. Of these, three correspond to the
charged lepton masses, three to the right handed masses,
and the remaining nine real parameters and six phases, to
the neutrino Yukawa coupling. The independent parameters
of the neutrino Yukawa coupling can be expressed in several
ways. The most straightforward parameterization uses the
singular value decomposition of the neutrino Yukawa ma-
trix:

Y� = V �
RD �

YV �
L

†, (3.42)

whereD�
Y = diag(y �

1, y �
2, y �

3), with y�
i � 0 andy�

1 � y�
2 �

y�
3 . On the other hand,V �

L andV �
R are 3× 3 unitary matri-

ces, that depend in general on three real parameters and six
phases. Both can be generically written as� 1V � 2, whereV
has the form of the CKM matrix and� 1,2 are diagonal uni-
tary matrices (thus, containing only phases). One can check
that forV �

R the� 2 matrix can be absorbed into the de�nition
of V �

L , so that

V �
R =

�

�
�

ei� R
1

ei� R
2

1

�

�
�

×

�

�
�
�

cR
2 cR

3 cR
2 sR

3 sR
2 eŠi� R

ŠcR
1 sR

3 Š sR
1 sR

2 cR
3 ei� R

cR
1 cR

3 Š sR
1 sR

2 sR
3 ei� R

sR
1 cR

2

sR
1 sR

3 Š cR
1 sR

2 cR
3 ei� R

ŠsR
1 cR

3 Š cR
1 sR

2 sR
3 ei� R

cR
1 cR

2

�

�
�
� .

(3.43)

Similarly, for VL the � 1 matrix can be absorbed into the
de�nition of L andeR, while keepingYe diagonal and real.
In consequence,

V �
L =

�

�
�
�

cL
2 cL

3 cL
2 sL

3 sL
2 eŠi� L

ŠcL
1 sL

3 Š sL
1 sL

2 cL
3 ei� L

cL
1 cL

3 Š sL
1 sL

2 sL
3 ei� L

sL
1 cL

2

sL
1 sL

3 Š cL
1 sL

2 cL
3 ei� L

ŠsL
1 cL

3 Š cL
1 sL

2 sL
3 ei� L

cL
1 cL

2

�

�
�
�

×

�

�
�

ei� L
1

ei� L
2

1

�

�
� . (3.44)

Therefore, in this parameterization the independent para-
meters in the Yukawa coupling can be identi�ed with the
three Yukawa eigenvalues,yi , the three angles and three
phases inVL , and the three angles and three phases in
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VR [229–231]. The requirement that the low energy phe-
nomenology is successfully reproduced imposes constraints
among these parameters. To be precise, the low energy lep-
tonic Lagrangian depends just on the three charged lepton
masses and the six real parameters and three complex phases
of the effective neutrino mass matrix. In consequence, there
are still six real parameters and three complex phases that
are not determined by low energy neutrino data; this infor-
mation about the high energy Lagrangian is “lost” in the de-
coupling of the three right handed neutrinos and cannot be
recovered just from neutrino experiments.

The ambiguity in the determination of the high energy
parameters can be encoded in the three right handed neu-
trino masses and an orthogonal complex matrixR de�ned
as [232]

R = DŠ1�
M

Y� UPMNSDŠ1�
m

�
H 0�

, (3.45)

so that the most general Yukawa coupling compatible with
the low energy data is given by:

Y� = D�
M RD�

mU†
PMNS

�
H 0�

. (3.46)

It is straightforward to check that this equation indeed sat-
is�es the seesaw formula, (3.41). In this expression,D�

m
andD�

M are diagonal matrices whose entries are the square
roots of the light neutrino and the right handed neutrino
masses, respectively, andUPMNS is the leptonic mixing ma-
trix. It is customary to parameterizeR in terms of three com-
plex angles,�� i :

R =

�

�
�
�

�c2 �c3 Š�c1�s3 Š �s1�s2 �c3 �s1�s3 Š �c1�s2 �c3

�c2�s3 �c1 �c3 Š �s1�s2�s3 Š�s1 �c3 Š �c1�s2�s3

�s2 �s1 �c2 �c1 �c2

�

�
�
� , (3.47)

up to re�ections, where�ci � cos�� i , �si � sin �� i .
Whereas the physical interpretation of the right handed

masses is very transparent, the meaning ofR is more ob-
scure.R can be interpreted as a dominance matrix in the
sense that [233]

– R is an orthogonal transformation from the basis of the
left handed leptons mass eigenstates to the one of the right
handed neutrino mass eigenstates;

– if and only if an eigenvaluemi of m� is dominated—in the
sense already given before - by one right handed neutrino
eigenstateNj , then|Rj i | � 1;

– if a light pseudo-Dirac pair is dominated by a heavy
pseudo-Dirac pair, then the corresponding 2× 2 sector
in R is a boost.

An interesting limit of this dominance behavior is the
seesaw model with two right handed neutrinos (2RHN)
[234, 235]. In this limit, the parameterization (3.46) still

holds, with the substitutionsD�
M = diag(M Š1

1 ,M Š1
2 ) and

[236–239]

R =
�

0 cos�� � sin ��
0 Š sin �� � cos��

�
(normal hierarchy), (3.48)

R =
�

cos�� � sin �� 0
Š sin �� � cos�� 0

�
(inverted hierarchy), (3.49)

with �� a complex parameter and� = ± 1 a discrete parame-
ter that accounts for a discrete indeterminacy inR.

A third possible parameterization of the neutrino Yukawa
coupling uses the Gram–Schmidt decomposition, in order to
cast the Yukawa coupling as a product of a unitary matrix
and a lower triangular matrix [240]:

Y� = U� Y� = U�

�

�
y11 0 0
y21 y22 0
y31 y32 y33

�

� , (3.50)

where the diagonal elements ofY� are real. Three of the
six phases inU� can be absorbed into the de�nition of the
charged leptons. Therefore, the nine real parameters and the
six phases of the neutrino Yukawa coupling are identi�ed
with the three angles and three phases inU� and the six real
parameters and three phases inY� .

In the SM extended with right handed neutrinos, the
charged lepton masses and the effective neutrino mass ma-
trix are the only source of information about the leptonic
sector. However, if supersymmetry is discovered, the struc-
ture of the low energy slepton mass matrices would provide
additional information about the leptonic sector, provided
the mechanism of supersymmetry breaking is speci�ed. As-
suming that the slepton mass matrices are proportional to the
identity at the high energy scale, quantum effects induced by
the right handed neutrinos would yield at low energies a left
handed slepton mass matrix with a complicated structure,
whose measurement would provide additional information
about the seesaw parameters [144, 145]. To be more spe-
ci�c, in the minimal supersymmetric seesaw model the off-
diagonal elements of the low energy left handed and right
handed slepton mass matrices andA-terms read, in the lead-
ing log approximation [178]

�
m2

�L

	
ij 
 Š

1
8� 2

�
3m2

0 + A2
0
	
Y�

ik
†Y�

kj log
MX

Mk
, (3.51)

�
m2

�eR

	
ij 
 0, (3.52)

(Ae)ij 
 Š
3

8� 2 A0YeY�
ik

†Y�
kj log

MX

Mk
, (3.53)

where m0 and A0 are the universal soft supersymmetry
breaking parameters at high scaleMX . Note that the diag-
onal elements of those mass matrices include the tree level
soft mass matrix, the radiative corrections from gauge and
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charged lepton Yukawa interactions, and the mass contribu-
tions from F- and D-terms (which are different for charged
sleptons and sneutrinos). Therefore, the measurement at low
energies of rare lepton decays, electric dipole moments and
slepton mass splittings would provide information about the
combination

Cij �
�

k

Y�
ik

†Y�
kj log

MX

Mk
�

�
Y†

� LY�
	
ij , (3.54)

whereL ij = log MX
Mi

� ij .
Interestingly enough,C encodes precisely the additional

information needed to reconstruct the complete seesaw La-
grangian from low energy observations [241, 242] (note in
particular thatC is a Hermitian matrix that depends on six
real parameters and three phases, which together with the
nine real parameters and three phases of the neutrino mass
matrix sum up to the independent �fteen real parameters and
six complex phases inY� andM ).

To determineY� andM from the low energy observables
C andm� , it is convenient to de�ne

�Y� = diag
� �

log
MX

M1
,

�

log
MX

M2
,

�

log
MX

M3

�
Y� ,

(3.55)
�Mk = Mk log

MX

Mk
,

so that the effective neutrino mass matrix andC now read

m� = �Y�t diag
�

�M Š1
1 , �M Š1

2 , �M Š1
3

	
�Y� �

H 0
u

�2,
(3.56)

C = �Y� † �Y� ,

whereH 0
u is the neutral component of the up-type Higgs

doublet. Using the singular value decomposition�Y� =
�V �
R

�D �
Y

�V � †
L , one �nds that �V � †

L and �D �
Y could be straight-

forwardly determined fromC, since

C � �Y� † �Y� = �V †
L

�D2
Y

�VL . (3.57)

On the other hand, fromm� = �Y�t �DŠ1
M

�Y� �H 0
u 
 2 and the sin-

gular value decomposition of�Y� ,

�DŠ1
Y

�V 	
L m� �V � †

L
�D � Š1

Y = �V � 	
R

�DŠ1
M

�V � †
R , (3.58)

where the left hand side of this equation is known (m� is one
of our inputs, and�V �

L and �D �
Y were obtained from (3.57)).

Therefore, �V �
R and �DM can also be determined. This sim-

ple procedure shows that starting from the low energy ob-
servablesm� andC it is possible to determine uniquely the
matrices �DM and �Y� = �V �

R
�D �

Y
�V � †
L . Finally, inverting (3.56),

the actual parameters of the LagrangianMk andY� can be
computed.

This procedure is particularly powerful in the case of the
two right handed neutrino model, as the number of inde-
pendent parameters involved (either at high energies or at
low energies) is drastically reduced. The matrixC de�ned
in (3.54) depends in general on six moduli and three phases.
However, since the Yukawa coupling depends in the 2RHN
model on only three unknown moduli and one phase, so does
C, and consequently it is possible to obtain predictions on
the moduli of threeC-matrix elements and the phases of
two C-matrix elements. Namely, from (3.46) one obtains

U†CU = U† �Y� † �Y� U = D�
mR† �DM RD�

m/
�
H 0

u
�2, (3.59)

where we have writtenU � UPMNS. Sincem1 = 0 in the
2RHN model,10 it follows that (U †CU)1i = 0, for i =
1, 2, 3, leading to three relations among the elements inC.
For instance, one could derive the diagonal elements inC in
terms of the off-diagonal elements:

C11 = Š
C	

12U
	
21 + C	

13U
	
31

U	
11

,

C22 = Š
C12U	

11 + C	
23U

	
31

U	
21

, (3.60)

C33 = Š
C13U	

11 + C23U	
21

U	
31

.

The observation of these correlations would be non-trivial
tests of the 2RHN model.

The relations for the phases arise from the hermiticity
of C, since the diagonal elements inC have to be real. Tak-
ing as the independent phase the argument ofC12, one can
derive from (3.60) the arguments of the remaining elements:

ei argC13 =
�
Š i Im

�
C12U21U	

11
	

±
�

|C13|2|U11|2|U31|2 Š
�
Im

�
C12U21U	

11

	
 2
�

×
�
|C13|U31U	

11

 Š1,

(3.61)
ei argC23 =

�
i Im

�
C12U21U	

11
	

±
�

|C23|2|U21|2|U31|2 Š
�
Im

�
C12U21U	

11

	
 2
�

×
�
|C23|U31U	

21

 Š1,

where the± sign has to be chosen so that the eigenvalues
of C are positive. We conclude then that theC-matrix para-
metersC12, |C13| and|C23| can be regarded as independent
and can be used as an alternative parameterization of the

10Here we are assuming a neutrino spectrum with normal hierarchy. In
the case with inverted hierarchy, the analysis is similar, usingm3 = 0.
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2RHN model [243]. Together with the �ve moduli and the
two phases of the neutrino mass matrix, we sum up to the
eight moduli and the three phases necessary to reconstruct
the high energy Lagrangian of the 2RHN model.

3.2.3.2 Type II seesawThe type II seesaw mechanism
[215, 221–224] consists on adding to the SM particle con-
tent a Higgs triplet

T =

�
T0 Š 1�

2
T+

Š 1�
2
T+ ŠT++

�

. (3.62)

Then, the leptonic potential compatible with the SM gauge
symmetry reads

L lep = ec
Ri Y

e
ij L j H + YT

ij L i T Lj + h.c. (3.63)

From this Lagrangian, it is apparent that the tripletT carries
lepton numberŠ2. If the neutral component of the triplet
acquires a VEV and breaks lepton number spontaneously as
happens in the Gelmini–Roncadelli model [224], the associ-
ated massless majoron rules out the model. Therefore phe-
nomenology suggests to break lepton number explicitly via
the triplet coupling to the SM Higgs boson [244]. The most
general scalar potential involving one Higgs doublet and one
Higgs triplet reads

V = m2
H H †H +

1
2


 1
�
H †H

	 2 + M 2
T T†T +

1
2


 2
�
T†T

	 2

+ 
 3
�
H †H

	�
T†T

	
+ µ �H †T H†, (3.64)

where the term proportional toµ � breaks lepton number
explicitly. The type II seesaw mechanism is implemented
whenMT � � H 0
 . Then the minimization of the scalar po-
tential yields

�
H 0�2 


Šm2
H


 1 Š 2µ 2
L/ /M 2

T

,
�
T0�



Šµ ��H 0
2

M 2
T

, (3.65)

which produce Majorana masses for the neutrinos given by

m� = YT
Šµ ��H 0
2

M 2
T

. (3.66)

The Yukawa matrixYT has the same �avor structure as the
non-renormalizable operator� de�ned in (3.38) for the ef-
fective Lagrangian of Majorana neutrinos. Therefore, the pa-
rameterization of the type II seesaw model is completely
identical to that case.

Supersymmetric models with low scale triplet Higgses
have been extensively considered in studies of collider phe-
nomenology [245–247]. The model [244] was �rst super-
symmetrized in Ref. [248] as a possible scenario for lepto-
genesis. The requirement of a holomorphic superpotential

implies introducing the triplets in a vector-likeSU(2)W ×
U(1)Y representation, asT � (3, 1) andT̄ � (3, Š1). The
relevant superpotential terms are

1
�

2
Yij

T L i T Lj +
1

�
2


 1H1T H1 +
1

�
2


 2H2T̄ H2

+ MT TT̄ + µH 2H1, (3.67)

whereL i are theSU(2)W lepton doublets andH1(H2) is
the Higgs doublet with hyperchargeY = Š 1/ 2(1/ 2). De-
coupling the triplet at high scale at the electroweak scale the
Majorana neutrino mass matrix is given by (v2 = � H2
 )

mij
� = Yij

T
v2

2
 2

MT
. (3.68)

Note that in the supersymmetric case there is only one mass
parameter,MT , while the mass parameterµ � of the non-
supersymmetric version is absent.

The couplingsYT also induce LFV in the slepton mass
matrix m2

�L
through renormalization group (RG) running

from MX to the decoupling scaleMT [249]. In the leading-
logarithm approximation those are given by (i �= j ):

�
m2

�L

	
ij �

Š1
8� 2

�
9m2

0 + 3A2
0
	�

Y†
T YT

	
ij log

MX

MT
,

�
m2

�eR

	
ij � 0, (3.69)

(Ae)ij �
Š9

16� 2 A0
�
YeY†

T YT
	
ij log

MX

MT
.

Phenomenological implications of those relations will be
presented in Sect.5.

3.2.3.3 Renormalization of the neutrino mass matrixTo
make a connection between high scale parameters and low
scale observables one needs to consider renormalization ef-
fects on neutrino masses and mixing. Below the scale where
the dimension �ve operator is generated, the running of the
neutrino mass matrix is governed by the renormalization
group (RG) equation of the coupling matrix� � , given by
[250–253]

(4�) 2 d
d ln µ

� � = (4�) 2Ag � � + Ce
��

Y†
e Ye

	 T� � + � � Y†
e Ye

	
,

(3.70)

whereCe = Š 3/ 2 for the SM andCe = 1 for the MSSM.
The �rst term does not affect the running of the neutrino
mixing angles and CP violation phases; however, it affects
of course the running of the neutrino mass eigenvalues. The
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�avor universal factorAg is given by

Ag =

�
��

� 

Š3� 2(4�) + 
 + 2 tr(3Y†
u Yu + 3Y†

d Yd + Y†
e Ye)

SM,

Š2� 1(4�) Š 6� 2(4�) + tr(Y†
u Yu) MSSM,

(3.71)

where
 denotes the Higgs self-coupling constant and� i =
g2

i /( 4�) , whereg1 andg2 are theU(1)Y andSU(2) gauge
coupling constants, respectively.

Due to the smallness of the tau–Yukawa coupling in the
SM, the mixing angles are not affected signi�cantly by the
renormalization group running below the generation scale
of the dimension �ve operator. However, if the neutrino

mass matrixm� = � � 
 2

2 � � is realized in the seesaw sce-
nario (type I), running effects above and between the see-
saw scales can also lead to relevant running effects in the
SM. Note that in the MSSM case the running of the mixing
angles and CP violation phases can be large even below the
seesaw scales due to the possible enhancement of the tau–
Yukawa coupling by the factor(1 + tan� 2)1/ 2.

In order to understand generic properties of the RG evo-
lution and to estimate the typical size of the RG effects, it
is useful to consider RGEs for the leptonic mixing angles,
CP phases and neutrino masses themselves, which can be
derived from the RGE in (3.70). For example, below the
seesaw scales, up toO(� 13) corrections, the evolution of
the mixing angles in the MSSM is given by [254] (see also
[255, 256])

d� 12

d ln µ
=

Šy2
�

32� 2 sin 2� 12s2
23

|m1ei� M + m2|2

�m 2
21

, (3.72)

d� 13

d ln µ
=

y2
�

32� 2 sin 2� 12sin 2� 23
m3

�m 2
31(1+ � )

× I (m 1,m2, � M , � M , �), (3.73)

d� 23

d ln µ
=

Šy2
�

32� 2

sin 2� 23

�m 2
31

�
c2

12




m2ei� M + m3ei� M




2

+ s2
12

|m1ei� M + m3|2

1+ �

�
, (3.74)

whereI (m 1,m2, � M , � M , �) � m1 cos(� M Š �) Š (1+ � ) ×
m2 cos(� M Š � M + �) Š �m 3 cos� , sij = sin� ij , cij =
cos� ij , and � = �m 2

21/�m
2
31. Here y� denotes the tau–

Yukawa coupling, and one can safely neglect the contri-
butions coming from the electron– and muon–Yukawa cou-
plings. For the matrixP containing the Majorana phases, we
use the conventionP = diag(1,ei� M / 2, ei� M / 2). In addition
to the above formulae, formulae for the running of the CP
phases have been derived [254]. For example, the running

of the Dirac CP-violating phase� , observable in neutrino
oscillation experiments, is given by

d�
d ln µ

=
Cy2

�

32� 2

� (Š1)

� 13
+

Cy2
�

8� 2 � (0) + O(� 13). (3.75)

The coef�cients� (Š1) and� (0) are omitted here and can be
found in [254], where also formulae for the running of the
Majorana CP phases and for the neutrino mass eigenvalues
(mass squared differences) can be found. From (3.75), it can
be seen that the Dirac CP phase generically becomes more
unstable under RG corrections for smaller� 13.

In the seesaw scenario (type I), the SM or MSSM are
extended by heavy right handed neutrinos and their super-
partners, which are SM gauge singlets. Integrating them out
below their mass scalesMR yields the dimension �ve oper-
ator for neutrino masses in the SM or MSSM. AboveMR,
the neutrino Yukawa couplings are active, and the RGEs in
the MSSM above the scalesMR are

(4�) 2 d� �

d ln µ
=

!
Š

6
5

� 1(4�) Š 6� 2(4�) + 2 tr
�
Y†

� Y�
	

+ 6 tr
�
Y†

u Yu
	
"

� � +
�
Y†

e Ye
	 T� � + � �

�
Y†

e Ye
	

+
�
Y†

� Y�
	 T� � + � �

�
Y†

� Y�
	
, (3.76)

(4�) 2 dMR

d ln µ
=

1
8� 2

��
Y� Y†

�
	
MR + MR

�
Y� Y†

�
	 T


, (3.77)

(4�) 2 dY�

d ln µ
= Š Y�

�
3
5

� 1(4�) + 3� 2(4�)

Š tr
�
3Y†

u Yu + Y†
� Y�

	

Š 3Y†
� Y� Š Y†

e Ye

�
. (3.78)

For non-degenerate seesaw scales, a method for dealing with
the effective theories, where the heavy singlets are partly
integrated out, can be found in [257]. Analytical formulae
for the running of the neutrino parameters above the seesaw
scales are derived in [258, 259]. The two loop beta functions
can be found in Ref. [260].

The running correction to the neutrino mass matrix and
its effects on the related issue have been widely analyzed
(see e.g. [250–279]). We shall summarize below some of the
features of RG running of the neutrino mixing parameters in
the MSSM (cf. (3.72)–(3.74)).

– The RG effects are enhanced for relatively large tan� ,
because the tau–Yukawa coupling becomes large.

– The mixing angles are comparatively stable with respect
to the RG running in the case ofnormal hierarchicalneu-
trino mass spectrum,m1 � m2 � m3 even when tan�
is large [261–267]. Nevertheless, the running effects can
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have important implications facing the high precision of
future neutrino oscillation experiments.

– For m1 � 0.05 eV and the case of tan� � 10, the RG
running effects can be rather large and the leptonic mixing
angles can run signi�cantly. Particularly, the RGE effects
can be very large for the solar neutrino mixing angle� 12
[261–267, 274, 275].

– The solar neutrino mixing angle� 12 at MR depends
strongly on the Majorana phase� M [254, 267, 268, 275],
which is the relative phase betweenm1 andm2, and plays
very important role in the predictions of the effective
Majorana mass in(��) 0� -decay. The effect of RG run-
ning for � 12 is smallest for the CP-conserving odd case
� M = ± � , while it is signi�cant for the CP-conserving
even case� M = 0. For � M = 0 and tan� � 50, for in-
stance, we have tan2 � 12(MR) � 0.5 × tan2 � 12(MZ ) for
m1 � 0.02 eV.

– The RG running effect on� 12 due to the� –Yukawa cou-
pling always makes� 12(MZ ) larger than� 12(MR) [267].
This constrains the models which predict the value of so-
lar neutrino mixing angle atMR, � 12(MR) > � 12(MZ ).
For example, the bi-maximal models are strongly re-
stricted. However, the running effects due to the neutrino
Yukawa couplings are free from this feature [257]. Thus,
bi-maximal models can predict the correct value of neu-
trino mixing angles with the neutrino Yukawa contribu-
tions [269–272].

– The RG corrections to neutrino mixing angles depend
strongly on the deviation of the seesaw parameter matrix
R (3.45) from identity [274]. For hierarchical light neu-
trinos, m1 � 0.01 eV, tan� � 30 andR non-trivial, the
correction to� 23 and� 13 can be beyond their likely future
experimental errors while� 12 is quite stable against the
RG corrections [274].

– The correction to� 23 can be large whenm1 and/or tan�
are/is relatively large, e.g., (i) whenm1 � 0.2 eV if
tan� � 10, and (ii) for anym1 and� M if tan� � 40 [274,
275].

– The RG corrections to sin� 13 can be relatively small, even
for the large tan� if m1 � 0.05 eV, and for anym1 �
0.30 eV, if � 13(MZ ) �= 0 and� M �= 0 (with � M = � = 0).
For � M = � and tan� � 50 one can have sin� 13(MR) �
0.10 for m1 � 0.08 eV even if sin� 13(MZ ) = 0 [274,
275].

– For tan� � 30, the value of�m 2
21(MR) depends strongly

on m1 in the intervalm1 � 0.05 eV, and on� M , � M , � ,
ands13 for m1 � 0.1 eV. The dependence of�m 2

31(MR)
on m1 and the CP phases is rather weak, unless tan� �
40,m1 � 0.10 eV, ands13 � 0.05 [275].

– Some products of the neutrino mixing parameters, such
as s12c12c23(m1/m 2 Š ei� M ) are practically stable with
respect to RG running if one neglects the �rst and sec-
ond generation charged lepton Yukawa couplings ands13
[268, 273, 275].

3.2.4 QuarkÐlepton complementarity

3.2.4.1 Golden complementarityQuark–lepton comple-
mentarity [280–282] is based on the observation that� 12 +
� C is numerically close to�/ 4. Here� 12 is the solar neutrino
mixing angle and� C is the Cabibbo angle. For hierarchical
light neutrino masses this result is relatively stable against
the renormalization effects [274]. To illustrate the idea we
�rst review the model of exact golden complementarity.

Consider the following textures [283] for the light neu-
trino Majorana mass matrixm� and for the charged lepton
Yukawa couplingsYe:

m� =

�

�
0 m 0
m m 0
0 0 matm

�

� ,

(3.79)

Ye =

�

�

 e 0 0
0 
 µ /

�
2 
 � /

�
2

0 Š
 µ /
�

2 
 � /
�

2

�

� .

It just assumes some texture zeroes and some strict equal-
ities among different entries. The mass eigenstates of the
neutrino mass matrix are given bym1 = Š m/�, m 2 = m� ,
m3 = matm, where � = (1 +

�
5)/ 2 = 1 + 1/� � 1.62 is

known as the golden ratio [284]. Thanks to its peculiar math-
ematical properties this constant appears in various natural
phenomena, possibly including solar neutrinos. The three
neutrino mixing angles obtained from (3.79) are� atm = �/ 4,
� 13 = 0 and, more importantly,

tan2 � 12 = 1/� 2 = 0.382, i.e. sin2 2� 12 = 4/ 5, (3.80)

in terms of the parameter sin2 2� 12 directly measured by vac-
uum oscillation experiments, such as KamLAND. This pre-
diction for � 12 is 1.4� below the experimental best �t value.
A positive measurement of� 13 might imply that the predic-
tion for � 12 suffers an uncertainty up to� 13.

Those properties follow from the Z2 � Z�
2 symmetry of

the neutrino mass matrix. ExplicitlyRm� RT = m� , where

R =

�

�
Š1/

�
5 2/

�
5 0

2/
�

5 1/
�

5 0
0 0 1

�

� , R� =

�

�
1 0 0
0 1 0
0 0 Š1

�

� ,

(3.81)

and the rotations satisfy detR = Š 1, R · RT = 1 and
R · R = 1. The �rst Z2 is a re�ection along the diagonal
of the golden rectangle in the(1, 2) plane, see Fig.2. The
second Z�2 is theL 3 � Š L 3 symmetry. Those symmetries
allow contributions proportional to the identity matrix to be
added tom� . This property allows one to extend this type
symmetries to the quark sector.
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A seesaw model with singlet neutrinos satisfying the
Z2 � Z �

2 symmetry and giving rise to the mass matrix (3.79)
is presented in [283].

Noticing that the golden prediction (3.80) satis�es with
high accuracy the quark–lepton complementarity motivates
one to give a golden geometric explanation also to the
Cabibbo angle.SU(5) uni�cation relates the down-quark
Yukawa matrixYd to Ye and suggests that the up-quark
Yukawa matrixYu is symmetric, likem� . One can there-
fore assume thatYd is diagonal in the two �rst genera-
tions and thatYu is invariant under aZ2 re�ection described
by a matrix analogous toR in (3.81), but with the factors
1 � 2 exchanged. Figure2 illustrates the geometrical mean-
ing of two re�ection axis (dashed lines): the up-quark re-
�ection is along the diagonal of the golden rectangle tilted
by �/ 4; note also the connection with the decomposition of
the golden rectangle as an in�nite sum of squares (‘golden
spiral’). Similarly to the neutrino case, this symmetry al-
lows for two independent terms that can be tuned such that
mu � mc:

Yu = 


�

�
1 0 0
0 1 0
0 0 1

�

� +



�
5

�

�
Š2 1 0
1 2 0
0 0 c

�

� . (3.82)

The second term �xes cot� C = � 3, as can be geometrically
seen from Fig.2. We therefore have

sin2 2� C = 1/ 5 i.e. � 12 + � C = �/ 4 i.e.
(3.83)

Vus = sin� C =
�
1 + � 6	 Š1/ 2 = 0.229.

This prediction is 1.9� above the present best-�t value,
sin� C = 0.2258± 0.0021. However, as the basic elements

Fig. 2 Geometrical illustration of the connection between the predic-
tions for � 12 and � C and the golden rectangle. The twodashed lines
are the re�ection axis of theZ2 symmetry for the neutrino mass matrix
and for the up quark mass matrix

of �avor presented here follow by construction from the
2 × 2 submatrices, one naturally expects that the golden
prediction forVus has an uncertainty at least comparable
to |Vub| � | Vtd| � few × 10Š3. Thus the numerical accu-
racy is amazing. Should the 1.4� discrepancy between the
golden prediction (3.80) and the experimental measurement
hold after �nal SNO and KamLAND results, analogy with
the quark sector would allow one to predict the order of mag-
nitude of neutrino mixing angle� 13.

Interestingly, similar predictions on the mixing angles
are obtained if some suitably chosen assumptions are made
on the properties of neutral currents of quarks and lep-
tons [285].

3.2.4.2 Correlation matrix fromS3 ßavor symmetry in GUT
On more general phenomenological ground the quark–
lepton complementarity [281, 282] can be described by the
correlation matrixV M between the CKM and the PMNS
mixing matrices,

V M = UCKM U PMNS, (3.84)

where = diag(ei� i ) is a diagonal matrix. In the singlet
seesaw mechanism the correlation matrixV M diagonalizes
the symmetric matrix

C= mdiag
D V �

R
† 1
M

V �
R

! mdiag
D , (3.85)

whereM is the heavy neutrino Majorana mass matrix and
V �

R diagonalizes the neutrino Dirac matrixmD from the
right. In GUT models such asSO(10) or E6 we have in-
triguing relations between the Yukawa coupling of the quark
sector and the one of the lepton sector. For instance, in min-
imal renormalizableSO(10) with Higgs in the10, 126, and
120, we haveYe � YT

d . In fact the �avor symmetry implies
the structure of the Yukawa matrices: the equivalent entries
of Ye andYd are usually of the same order of magnitude. In
such a case one gets

UPMNS =
�
UCKM	 †V M .

As a consequence, aS3 �avor permutation symmetry, softly
broken intoS2, gives us the prediction ofV M

13 = 0 [286] and
the correlations between CP-violating phases and the mixing
angle� 12 [287].

The six generators of theS3 �avor symmetry are the el-
ements of the permutation group of three objects. The ac-
tion of S3 on the �elds is to permute the family label of
the �elds. In the following we shall introduce theS2 sym-
metry with respect the second and third generations. The
S2 group is an Abelian one and swap the second fam-
ily {µ L , (� µ )L , sL , cL , µ R, (� µ )R, sR, cR} with the third one
{� L , (� � )L , bL , tL , � R, (� � )R, bR, tR}.
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Let us assume that there is anS3 �avor symmetry at high
energy, which is softly broken intoS2 [84]. In this case, be-
fore theS3 breaking all the Yukawa matrices have the fol-
lowing structure:

Y =

�

�
a b b
b a b
b b a

�

� , (3.86)

wherea andb independent. TheS3 symmetry implies that
(1/

�
3, 1/

�
3, 1/

�
3) is an eigenvector of our matrix in

(3.86). Moreover these kind of matrices have two equal
eigenvalues. This gives us an undetermined mixing angle in
the diagonalizing mixing matrices.

WhenS3 is softly broken intoS2, one gets

Y =

�

�
a b b
b c d
b d c

�

� , (3.87)

with c � a and d � b. When S3 is broken the degener-
acy is removed. In general theS2 symmetry implies that
(0, 1/

�
2, Š1/

�
2) is an exact eigenvector of our matrix

(3.87). The fact thatS3 is only softly broken intoS2 al-
lows us to say that(1/

�
3, 1/

�
3, 1/

�
3) is still in a good

approximation an eigenvector ofY in (3.87). Then the mix-
ing matrix that diagonalize from the right the Yukawa mix-
ing matrix in (3.87) is given in good approximation by the
tri-bi-maximal mixing matrix (2.11).

Let us now investigate theV M in this model. The mass
matrix mD will have the general structure in (3.87). To be
more de�ned, let us assumed that there is an extra softly
brokenZ2 symmetry under which the 1st and the 2nd fam-
ilies are even, while the 3rd family is odd. This extra softly
brokenZ2 symmetry gives us a hierarchy between the off-
diagonal and the diagonal elements ofmD , i.e. b, d � a, c.
In fact if Z2 is exact bothb andd are zero. For simplicity, we
assume also a quasi-degenerate spectrum for the eigenvalues
of the Dirac neutrino matrix as in [288].

The right handed neutrino Majorana mass matrix is of the
form

M =

�

�
a b b�

b c d
b� d e

�

� . (3.88)

BecauseS3 is only softly broken intoS2 we have thata �
c � e, andb � b� � d. In this approximation theM matrix
is diagonalized by aU of the form in (2.11). In this case we
have thatm� is near to beS3 andS2 symmetric, then it is
diagonalized by a mixing matrixU� near the tri-bi-maximal
one given in (2.11). TheCmatrix is diagonalized by the mix-
ing matrix VM = U� U. We obtain thatVM is a rotation in
the(1, 2) plane, i.e. it contains a zero in the(1, 3) entry. As
shown in [288], it is possible to �t the CKM and the PMNS
mixing matrix within this model.

3.3 Leptogenesis and cosmological observables

3.3.1 Basic concepts and results

CP violation in the leptonic sector can have profound cos-
mological implications, playing a crucial role in the genera-
tion, via leptogenesis, of the observed baryon number asym-
metry of the universe [289]:

nB

n�
=

�
6.1+ 0.3

Š0.2

	
× 10Š10. (3.89)

In the original framework a CP asymmetry is generated
through out-of-equilibriumL -violating decays of heavy Ma-
jorana neutrinos [290] leading to a lepton asymmetryL �= 0.
In the presence of sphaleron processes [291], which are
(B + L) -violating and(B Š L) -conserving, the lepton asym-
metry is partially transformed to a baryon asymmetry.

The lepton number asymmetry resulting from the decay
of heavy Majorana neutrinos,� Nj , was computed by several
authors [292–294]. The evaluation of� Nj , involves the com-
putation of the interference between the tree level diagram
and one loop diagrams for the decay of the heavy Majorana
neutrinoNj into charged leptonsl±� (� = e,µ, � ). Summing
the asymmetries� �

Nj
over charged lepton �avor, one obtains

� Nj =
g2

MW
2

�

�,k �=j

�
Im

��
m†

D

	
j � (mD )�k

�
m†

D mD
	
jk

	

×
1

16�

�
I (x k) +

�
xk

1Š xk

��
1

(m†
D mD )jj

, (3.90)

whereMk denote the heavy neutrino masses, the variable

xk is de�ned as xk = Mk
2

Mj
2 and I (x k) =

�
xk(1 + (1 +

xk) log( xk
1+ xk

)). From (3.90) it can be seen that, when one
sums over all charged leptons, the lepton number asymme-
try is only sensitive to the CP-violating phases appearing in
m†

D mD in the basis whereMR is diagonal. Note that this
combination is insensitive to rotations of the left-hand neu-
trinos.

If the lepton �avors are distinguishable in the �nal state,
it is the �avored asymmetries that are relevant [295–298].
Below T � 1012 GeV, the� Yukawa interactions are fast
compared to the Hubble rate, so at least one �avor may
be distinguishable. The asymmetry in family� , generated
from the decay of thekth heavy Majorana neutrino depends
on the combination [299] Im((m†

D mD )kk� (m	
D )�k (mD )�k � )

as well as on Im((m†
D mD )k�k(m	

D )�k (mD )�k � ). Summing
over all leptonic �avors� the second term becomes real so
that its imaginary part vanishes and the �rst term gives rise
to the combination Im((m†

D mD )jk (m†
D mD )jk ) that appears

in (3.90). Clearly, when one works with separate �avors the
matrix UPMNS does not cancel out and one is lead to the
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interesting possibility of having viable leptogenesis even in
the case ofR being a real matrix [300–303].

The simplest leptogenesis scenario corresponds to the
case of heavy hierarchical neutrinos whereM1 is much
smaller thanM2 andM3. In this limit, the asymmetries gen-
erated byN2 andN3 are frequently ignored, because the pro-
duction ofN2 andN3 can be suppressed by kinematics (for
instance, they are not produced thermally, if the re-heat tem-
perature after in�ation is<M 2,M 3), and the asymmetries
from their decays are partially washed out [295, 304, 305].
In this hierarchical limit, the� �

N1
can be simpli�ed into

� �
N1


 Š
3

16�v 2

�
I �
12

M1

M2
+ I �

13
M1

M3

�
, (3.91)

where

I �
1i �

Im[(m†
D )1� (mD )�i (m†

D mD )1i ]

(m†
D mD )11

. (3.92)

The �avor-summed CP asymmetry� N1 can be written in
terms of the parameterization equation (3.46) as

� N1 � Š
3

8�
M1

v2

#
i m2

i Im(R2
1i )#

i mi |R1i |2
. (3.93)

In this case, obviously, leptogenesis demands non-zero
imaginary parts in theR matrix. It has an upper bound
|� N1| < � DI

N1
where [306]

� DI
N1

=
3

8�
(m3 Š m1)M1

v2 , (3.94)

which is proportional toM1. So the requirement of generat-
ing a suf�cient baryon asymmetry gives a lower bound on
M1 [306, 307]. Depending on the cosmological scenario,
the range for minimalM1 varies from order 107 GeV to
109 GeV [308, 309]. This bound does not move much with
the inclusion of �avor effects [296, 310, 311]. In a super-
symmetric world there is an upper boundTRH < 108 GeV
on the re-heating temperature of the universe from the pos-
sible overproduction of gravitinos, the so called gravitino
problem [312–315]. Together with the lower bound onM1
the gravitino problem puts severe constraints on supersym-
metric thermal leptogenesis scenarios.

However, the upper bound (3.94) is based on the (nat-
ural) assumption that higher order corrections suppressed by
M1/M 2, M 1/M 3 in (3.90) are negligible. This may not be
true as explicitly demonstrated in [316] in which neutrino
mass model is presented realizing� N1 � � DI

N1
. In such a case

low scale standard thermal leptogenesis consistent with the
gravitino bound is possible also for hierarchical heavy neu-
trinos.

Thermal leptogenesis is a rather involved thermodynami-
cal non-equilibrium process and depends on additional para-
meters and on the proper treatment of thermal effects [309].

In the simplest case, theNi are hierarchical, andN1 decays
into a combination of �avors which are indistinguishable.11

In this case, the baryon asymmetry only depends on four pa-
rameters [306, 308, 318, 319]: the massM1 of the lightest
heavy neutrino, together with the corresponding CP asym-
metry� N1 in its decay, as well as the rescaledN1 decay rate,
or effective neutrino mass�m1 de�ned as

�m1 =
�

�

�
m†

D

	
1� (mD )� 1/M 1, (3.95)

in the weak basis whereMR is diagonal, real and positive.
Finally, the baryon asymmetry depends also on the sum of
all light neutrino masses squared,m2 = m2

1+ m2
2+ m2

3, since
it has been shown that this sum controls an important class
of washout processes. If lepton �avors are distinguishable,
the �nal baryon asymmetry depends on partial decay rates
�m�

1 and CP asymmetries� �
1 .

The N1 decays in the early universe at temperatures
T � M1, producing asymmetries in the distinguishable �nal
states. A particular asymmetry will survive once washout
by inverse decays go out of equilibrium. In the un�a-
vored calculation (where lepton �avors are indistinguish-
able), the fraction of the asymmetry that survives is of order
min{1,H/	 }, where the Hubble rateH and theN1 total de-
cay rate	 are evaluated atT = M1. This is usually written
H/	 = m	 / �m1, where [320–322]

m	 =
16� 5/ 2

3
�

5
g1/ 2

	
v2

MPlanck

 10Š3 eV, (3.96)

andMPlanckis the Planck mass (MPlanck= 1.2× 1019 GeV),
v = � � 0
 /

�
2 
 174 GeV is the weak scale andg	 is the

effective number of relativistic degrees of freedom in the
plasma and equals 106.75 in the SM case. In a �avored cal-
culation, the fraction of a �avor asymmetry that survives can
be estimated in the same way, replacing	 by the partial de-
cay rate.

3.3.2 Implications of ßavor effects

For a long time the �avor effects in thermal leptogene-
sis were known [295] but their phenomenological implica-
tions were considered only in speci�c neutrino �avor mod-
els [235]. As discussed, in the single-�avor calculation, the
most important parameters for thermal leptogenesis fromN1

decays areM1, �m1, � N1 and the light neutrino mass scale.
Including �avor effects gives this parameter space more di-
mensions (M1, � � , �m�

1), but it can still be projected ontoM1,
�m space. For the readers convenience we summarize here

11This can occur above� 1012 GeV, before the� Yukawa interaction
becomes fast compared to the Hubble rate, or in the case where theN1
decay rate is faster than the charged lepton Yukawa interactions [317].
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some general results on the implications of �avored lepto-
genesis.

In the un�avored calculation, leptogenesis does not work
for degenerate light neutrinos with a mass scale above
� 0.1 eV [323–326]. This bound does not survive in the �a-
vored calculation, where models with a neutrino mass scale
up to the cosmological bound,

#
m� < 0.68 eV [327], can

be tuned to work [296, 317].
Considering the scale of leptogenesis, �avored leptoge-

nesis works forM1 a factor of � 3 smaller in the “inter-
esting” region of �m < matm. But the lower bound onM1,
in the optimized �m region, remains� 109 GeV [310, 311].
A smaller M1 could be possible for very degenerate light
neutrinos [296].

An important, but disappointing, observation in single-
�avor leptogenesis was the lack of a model-independent
connection between CP violation for leptogenesis and
PMNS phases. It was shown [328, 329] that thermal lep-
togenesis can work with no CP violation inUPMNS, and
conversely, that leptogenesis can fail in spite of phases in
UPMNS. In the “�avoured” leptogenesis case, it is still true
that the baryon asymmetry is not sensitive to PMNS phases
[330, 331] (leptogenesis can work for any value of the
PMNS phases). However, interesting observations can be
made in classes of models [297, 300, 302, 331].

3.3.3 Other scenarios

We have presented a brief discussion of minimal thermal
leptogenesis in the context of type I seesaw with hierarchical
heavy neutrinos. This scenario is the most popular one be-
cause it is generic, supported by neutrino mass mechanism
and, most importantly, it has predictions for the allowed see-
saw parameter space, as described above. There are many
other scenarios in which leptogenesis may also be viable.

Resonant leptogenesis [293, 332] may occur when two
or more heavy neutrinos are nearly degenerate in mass and
in this scenario the scale of the heavy neutrino masses can
be lowered whilst still being compatible with thermal lepto-
genesis [332–335]. Heavy neutrinos of TeV scale or below
could in principle be detected at large colliders [336]. In the
seesaw context low scale heavy neutrinos may follow from
extra symmetry principles [334, 337–339]. Also, the SM ex-
tensions with heavy neutrinos at TeV scale or below include
Kaluza–Klein modes in models with extra dimensions or ex-
tra matter content of little Higgs models.

Leptogenesis from the out-of-equilibrium decays of a
Higgs triplet [244, 340, 341] is another viable scenario but
requires the presence of at least two triplets for non-zero
CP asymmetry. Despite the presence of gauge interactions
the washout effects in this scenario are not drastically larger
than those in the singlet leptogenesis scenario [341]. Hybrid
leptogenesis from type I and type II seesaw can for instance

occur inSO(10) models [340, 342, 343]. In that case there
are twelve independent CP-violating phases.

“Soft leptogenesis” [344, 345] can work in a one genera-
tional SUSY seesaw model because CP violation in this sce-
nario comes from complex supersymmetry breaking terms.
If the soft SUSY-breaking terms are of suitable size, there is
enough CP violation in�N– �N 	 mixing to imply the observed
asymmetry. Unlike non-supersymmetric triplet Higgs lepto-
genesis, soft leptogenesis with a triplet scalar [341, 346] can
also work in the minimal supersymmetric model of type II
seesaw mechanism.

A very predictive supersymmetric leptogenesis scenario
is obtained if the sneutrino is playing the role of in�aton
[307, 347–350]. In this scenario the universe is dominated
by �N. Relating �N properties to neutrino masses via the see-
saw mechanism implies a lower boundTRH > 106 GeV on
the re-heating temperature of the universe [349]. A connec-
tion of this scenario with LFV is discussed in Sect.5.2.

Dirac leptogenesis is another possibility considered in the
literature. In this case neutrinos are of Dirac type rather than
Majorana. In the original paper [351] two Higgs doublets
were required and their decays create the leptonic asym-
metry. Recently some authors have studied the connection
between leptogenesis and low energy data with two Higgs
doublets [352].

Finally, let us mention that right handed neutrinos could
have been produced non-thermally in the early universe, by
direct couplings to the in�ation �eld. If this is the case,
the constraints on neutrino parameters from leptogenesis de-
pend on the details of the in�ationary model [353–355].

For a recent overview of the present knowledge of
neutrino masses and mixing and what can be learned
about physics beyond the standard model from the vari-
ous proposed neutrino experiments, see [4] and references
therein.

4 Organizing principles for �avor physics

4.1 Grand uni�ed theories

Grand uni�cation is an attempt to unify all known inter-
actions but gravity in a single simple gauge group. It is
motivated in part by the arbitrariness of electromagnetic
charge in the standard model. One has charge quantiza-
tion in a purely non-Abelian theory, without anU(1) fac-
tor, as in Schwinger’s original idea [356] of a SU(2) the-
ory of electroweak interactions. The minimal gauge group
which uni�es weak and strong interactions,SU(5) [357],
automatically implies a quantizedU(1) piece too. While
Dirac needed a monopole to achieve charge quantization
[358], grand uni�cation in turn predicts the existence of
magnetic monopoles [359, 360]. Since it uni�es quarks and
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leptons [361], it also predicts another remarkable phenom-
enon: the decay of the proton. Here we are mostly interested
in GUT implications on the �avor structure of Yukawa ma-
trices.

4.1.1 SU(5): the minimal theory

The 24 gauge bosons reduce to the 12 ones of the SM plus
a SU(2) doublet, color triplet pair(X µ ,Yµ ) (vector lepto-
quarks), withY = 5/ 6 (charges+ 4/ 3, + 1/ 3) and their an-
tiparticles. The 15 fermions of a single family in the SM �t
in the 5F and 10F anomaly-free representations ofSU(5),
and the new super-weak interactions of leptoquarks with
fermions are (� , � and� are color indices):

L (X,Y ) =
g5�

2
X (Š4/ 3)�

µ

×
�
ē� µ dc

� + d̄� � µ ec Š � ��� uc� � µ u� 	

Š
g5�

2
Y(Š1/ 3)�

µ

×
�
�̄� µ dc

� + ū� � µ ec + � ��� uc� � µ d� 	

+ h.c., (4.1)

where all fermions above are explicitly left handed and
� c � C ¯� T .

The exchange of the heavy gauge bosons leads to the ef-
fective interactions suppressed by two powers of their mass
mX (mX 
 mY due toSU(2)L symmetry), which preserves
B Š L , but breaks bothB andL symmetries and leads to
(d = 6) proton decay [213, 362]. From � P � 6 × 1033 yr
[363], mX � 1015.5 GeV.

The Higgs sector consists of an adjoint 24H and a fun-
damental 5H , the �rst breaksSU(5) � SM, the latter com-
pletes the symmetry breaking á la Weinberg–Salam. Now,
5H = (T ,D) , whereT is a color triplet andD the usual
Higgs SU(2)L doublet of the SM and so the Yukawa inter-
actions in the matrix form

L Y = 10Fyu10F5H + 5Fyd10F5	
H (4.2)

give the quark and lepton mass matrices

mu = yu�D
 , md = mT
e = yd�D
 . (4.3)

Note the correlation between down quarks and charged
leptons [364], valid at the GUT scale, and impossible to
be true for all three generations. Actually, in the SM it is
wrong for all of them. It can be corrected by an extra Higgs,
45H [6], or higher dimensional non-renormalizable interac-
tion [7].

From (4.2), one gets also the interactions of the triplet,
which lead to proton decay and thus the tripletT must be

superheavy,mT � 1012 GeV. The enormous split between
mT andmD 
 mW can be achieved through the large scale
of the breaking ofSU(5),

�24H 
 = vX diag(2, 2, 2, Š3, Š3), (4.4)

with m2
X = m2

Y = 25
4 g2

5v2
X . This �ne-tuning is known as the

doublet–triplet problem. Whatever solution one may adopt,
the huge hierarchy can be preserved in perturbation theory
only by supersymmetry with low scale breaking of order
TeV.

The consistency of grand uni�cation requires that the
gauge couplings of the SM unify at a single scale, in a
tiny window 1015.5 � MGUT � 1018 GeV (lower limit from
proton decay, upper limit from perturbativity, i.e. to stay
below MPl). Here the minimal ordinarySU(5) theory de-
scribed above fails badly, while the version with low en-
ergy supersymmetry does great [365–368]. Actually, one
needed a heavy top quark [368], with mt 
 200 GeV in
order for the theory to work. The same is needed in order
to achieve a radiative symmetry breaking of the SM gauge
symmetry, where only the Higgs doublet becomes tachy-
onic [369, 370]. One can then de�ne the minimal supersym-
metricSU(5) GUT with the three families of fermions 10F
and 5F, and with 24H and 5H and 5H supermultiplets. It
predictsmd = mT

e at MGUT, which works well for the third
generation; the �rst two can be corrected by higher dimen-
sional operators. Although this theory typically has a very
fastd = 5 [150, 371–374] proton decay [375], the higher di-
mensional operators can easily make it in accord with exper-
iments [376–378]. The main problem are massless neutri-
nos, unless one breaks R-parity (whose approximate or ex-
act conservation must be assumed in supersymmetricSU(5),
contrary to some supersymmetricSO(10)). Other ways out
include adding singlets, right handed neutrinos (type I see-
saw [216–220]), or a 15H multiplet (type II see-saw [215,
221–223]). In both cases their Yukawa are not connected to
the charged sector, so it is much more appealing to go to
SO(10) theory, which uni�es all fermions (of a single fam-
ily) too, besides the interactions.

Before we move toSO(10), what about ordinary non-
supersymmetricSU(5)? In order to havem� �= 0 and to
achieve the uni�cation of gauge couplings one can add ei-
ther (a) 15H Higgs multiplet [379] or (b) 24F fermionic mul-
tiplet [380]. The latter one is particularly interesting, since it
leads to the mixing of the type I and type III see-saw [225,
226], with the remarkable prediction of a lightSU(2) fermi-
onic triplet below TeV andMGUT � 1016 GeV, which of-
fers hope both for the observable see-saw at LHC and de-
tectable proton decay in a future generation of experiments
now planned [381].

These fermionic tripletsTF would be produced in pairs
through a Drell–Yan process. The production cross section
for the sum of all three possible �nal states,T+

F TŠ
F , T+

F T0
F
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andTŠ
F T0

F , can be read from Fig. 42 of [382]: it is approxi-
mately 20 pb for 100 GeV triplet mass, and around 40 fb for
500 GeV triplets. The triplets then decay intoW or Z and
a light lepton through the same Yukawa couplings that enter
into the seesaw.

The clearest signature would be the three charged lepton
decay of the charged triplet, but it has only a 3% branching
ratio. A more promising situation is the decay into two jets
with SM gauge boson invariant mass plus a charged lepton:
this happens in approximately 23% of all decays. The signa-
tures in this case is two same charge leptons plus two pairs
of jets having theW or Z mass and peaks in the lepton-dijet
mass. From the above estimates the cross section for such
events is around 1 pb (2fb) for 100 (500) GeV triplet mass.
Such signatures were suggested originally inL –R symmet-
ric theories [383] but are quite generic of the seesaw mech-
anism.

4.1.2 SO(10): the minimal theory of matter and gauge
coupling uniÞcation

There are a number of features that makeSO(10) special:

– a family of fermions is uni�ed in a 16 dimensional spino-
rial representation; this in turn predicts the existence of
right handed neutrinos, making the implementation of the
see-saw mechanism almost automatic;

– L –R symmetry [361, 384–386] is a �nite gauge transfor-
mation in the form of charge conjugation. This is a conse-
quence of both left handed fermionsf L and its charged
conjugated counterparts(f c)L � Cf

T
R residing in the

same representation 16F;
– in the supersymmetric version, the matter parityM =

(Š1)3(BŠL) , equivalent to the R-parityR = M(Š1)2S, is
a gauge transformation [387–389], a part of the centreZ4
of SO(10). In the renormalizable version of the theory it
remains exact at all energies [390–392]. The lightest su-
persymmetric partner (LSP) is then stable and is a natural
candidate for the dark matter of the universe;

– its other maximal subgroup, besidesSU(5) × U(1), is
GPS = SU(2)L × SU(2)R × SU(4)C quark–lepton sym-
metry of Pati and Salam, which plays an important role in
relating quark and lepton masses and mixings;

– the uni�cation of gauge couplings can be achieved even
without supersymmetry (for a recent and complete work
and references therein, see [393, 394]).

Fermions belong to the spinor representation 16F (for
useful reviews on spinors andSO(2N) group theory in gen-
eral see [395–399]). From

16× 16= 10+ 120+ 126, (4.5)

the most general Yukawa sector in general contains 10H ,
120H and126H , respectively the fundamental vector repre-
sentation, the three-index antisymmetric representation and

the �ve-index antisymmetric and anti-self-dual representa-
tion. 126H is necessarily complex, supersymmetric or not;
10H and126H Yukawa matrices are symmetric in genera-
tion space, while the 120H one is antisymmetric.

The decomposition of the relevant representations under
GPS gives

16= (2, 1, 4) + (1, 2, 4̄),

10= (2, 2, 1) + (1, 1, 6),

120= (2, 2, 1) + (3, 1, 6) + (1, 3, 6) + (2, 2, 15) (4.6)

+ (1, 1, 10) + (1, 1, 10),

126= (3, 1, 10) + (1, 3, 10) + (2, 2, 15) + (1, 1, 6).

The see-saw mechanism, whether type I or II, requires
126: it contains both(1, 3, 10) whose VEV gives a mass to
� R (type I), and(3, 1, 10), which contains a color singlet,
B Š L = 2 �eld � L , that can give directly a small mass to
� L (type II). In SU(5) language this is seen from the decom-
position

126= 1 + 5+ 15+ 45+ 50. (4.7)

The 1 ofSU(5) belongs to the(1, 3, 10) of GPS and gives a
mass for� R, while 15 corresponds to the(3, 1, 10) and gives
the direct mass to� L .

126 can be a fundamental �eld, or a composite of two
16H �elds (for some realistic examples see for example
[400–402]), or can even be induced as a two-loop effective
representation built out of a 10H and two gauge 45 dimen-
sional representations [403–405].

Normally the light Higgs is chosen to be the smallest
one, 10H . Since�10H 
 = � (2, 2, 1)
 is a SU(4)C singlet,
md = me follows immediately, independently of the num-
ber of 10H . Thus we must add either 120H or 126H or
both in order to correct the bad mass relations. Both of these
�elds contain(2, 2, 15), which VEV alone gives the relation
me = Š 3mT

d .
As 126H is needed anyway for the see-saw, it is natural

to take this �rst. The crucial point here is that in general
(2, 2, 1) and (2, 2, 15) mix through� (1, 3, 10)
 [222, 406]
and thus the light Higgs is a mixture of the two. In other
words,� (2, 2, 15)
 in 126H is in general non-vanishing (in
supersymmetry this is not automatic, but depends on the
Higgs super�elds needed to breakSO(10) at MGUT or on
the presence of higher dimensional operators).

If one considers all the operators allowed bySO(10) for
the Yukawa couplings, there are too many model parame-
ters, and so no prediction is really possible. One option
is to assume that the minimal number of parameters must
be employed. It has been shown that 4 (3 of them non-
renormalizable) operators are enough in models with 10 and
45 Higgs representations only [8]. Although this is an impor-
tant piece of information and it has been the starting point of
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a lot of model building, it is dif�cult to see a reason for some
operators (of different dimensions) to be present and other
not, without using some sort of �avor symmetry, so these
type of models will not be considered in this subsection. On
the other hand, a self consistent way of truncating the large
number ofSO(10) allowed operators without relying on ex-
tra symmetries is to consider only the renormalizable ones.
This is exactly what we shall assume.

In this case there are just two ways of giving mass to� R:
by a nonzero VEV of the Higgs126, or generate an effec-
tive non-renormalizable operator radiatively [403]. We shall
consider in turn both of them.

4.1.2.1 Elementary126H It is rather appealing that 10H

and126H may be suf�cient for all the fermion masses, with
only two sets of symmetric Yukawa coupling matrices. The
mass matrices atMGUT are

md = vd
10Y10 + vd

126Y126, (4.8)

mu = vu
10Y10 + vu

126Y126, (4.9)

me = vd
10Y10 Š 3vd

126Y126, (4.10)

m� = Š mD M Š1
R mD + m� L , (4.11)

where

mD = vu
10Y10 Š 3vu

126Y126, (4.12)

MR = vRY126, (4.13)

m� L = vL Y126. (4.14)

These relations are valid atMGUT, so it is there that their
validity must be tested. The analysis done so far used the
results of renormalization group running fromMZ to MGUT

from [407, 408].
The �rst attempts in �tting the mass matrices assumed the

domination of the type I seesaw. It was pioneered by treating
CP violation perturbatively in a non-supersymmetric frame-
work [406], and later improved with a more detailed treat-
ment of complex parameters and supersymmetric low en-
ergy effective theory [409–411]. Nevertheless, these �ts had
problems to reproduce correctly the PMNS matrix parame-
ters.

A new impetus to the whole program was given by the
observation that in case type II seesaw dominates (a way
to enforce it is to use a 54 dimensional Higgs representation
[412]) the neutrino mass, an interesting relation in these type
of models betweenb–� uni�cation and large atmospheric
mixing angle can be found [413–415]. The argument is very
simple and it can be traced to the relation [416]

m� � md Š me, (4.15)

which follows directly from (4.8), (4.10) and (4.14), if only
the second term (type II) in (4.11) is considered. Consid-
ering only the heaviest two generations as an example and
taking the usually good approximation of small second gen-
eration masses and small mixing angles, one �nds all the
elements of the right-hand side small except the 22 element,
which is proportional to the difference of two big numbers,
mb Š m� . Thus, a large neutrino atmospheric mixing angle
is linked to the smallness of this 22 matrix element, and so to
b–� uni�cation. Note that in these types of modelsb–� uni-
�cation is no more automatic due to the presence of the126,
which breaksSU(4)C. It is, however, quite a good prediction
of the RGE running in the case of low energy supersymme-
try.

The numerical �tting was able to reproduce also a large
solar mixing angle both in case of type II [417, 418] or
mixed seesaw [419], predicting also a quite large|Ue3| �
0.16 mixing element, close to the experimental upper bound.
The dif�culty in �tting the CKM CP-violating phase in the
�rst quadrant was overcome by new solutions found in [420,
421], maintaining the prediction of large|Ue3| � 0.1 matrix
element.

All these �ttings were done assuming no constraints com-
ing from the Higgs sector. Regarding it, it was found that
the minimal supersymmetric model [422–424] has only 26
model parameters [425], on top of the usual supersymmetry
breaking soft terms, as in the MSSM. When one considers
this minimal model, the VEVs in the mass formulae (4.8)–
(4.14) are not completely arbitrary, but are connected by the
restrictions of the Higgs sector. This has been �rst noticed in
[426–428] showing a possible clash with the positive results
of the unconstrained Yukawa sector studied in [420, 421].
The issue has been pursued in [429], showing that in the re-
gion of parameter space where the fermion mass �tting is
successful, there are necessarily intermediate scale thresh-
olds which spoil perturbativity of the RGE evolution of the
gauge couplings.

To de�nitely settle the issue, two further checks should
be done. (a) The
 2 analysis used in the �tting procedure
should be implemented atMZ , not atMGUT. The point is
in fact that while the errors atMZ are uncorrelated, they
become strongly correlated after running toMGUT, due to
the large Yukawa coupling of top and possibly also of bot-
tom, tau and neutrino. (b) Another issue is to consider also
the effect of the possible increased gauge couplings on the
Yukawas. Only after these two checks will be done, this min-
imal model could be ruled out.

A further important point is that in the case of VEVs
constrained by the Higgs sector one �nds from the charged
fermion masses that the model predicts large tan� 
 40,
as con�rmed by the last �ts in [429]. In this regime there
may be sizable corrections to the “down” fermion mass ma-
trices from the soft SUSY breaking parameters [430]; this
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brings into the game also the soft SUSY breaking sector,
lowering somewhat the predictivity but relaxing the dif�-
culty in �tting the experimental data. In this scenario pre-
dictions on masses would become predictions on the soft
sector.

Some topics have to be still mentioned in connection with
the above: the important calculation of the mass spectrum
and Clebsch–Gordan coef�cients inSO(10) [399, 431–439],
the doublet–triplet splitting problem [440, 441], the Higgs
doublet mass matrix [399, 433], the running of the gauge
couplings at two loops together with threshold corrections
[434], and the study of proton decay [435, 442, 443].

What if this model turns out to be wrong? There are other
models on the market. The easiest idea is to add a 120 di-
mensional Higgs, that may also appear as a natural choice,
being the last of the three allowed representations that cou-
ple with fermions. There are three different ways of doing
it considered in the literature: (a) take 120 as a small, non-
leading, contribution, i.e. a perturbation to the previous for-
mulae [444–446]; (b) consider 120 on an equal footing as
10 and126, but assume some extra discrete symmetry or real
parameters in the superpotential, breaking CP spontaneously
[447–450] (and suppressing in the �rst two references the
dangerousd = 5 proton decay modes); (c) assume small126
contributions to the charged fermion masses [451–454].

Another limit is to forget the 10H altogether, as has been
proposed for non-supersymmetric theories [455]. The two
generation study predicts a too small ratiomb/m � � 0.3, in-
stead of the value 0.6 that one gets by straight running. The
idea is that this could get large corrections due to Dirac neu-
trino Yukawas [456] and the effect of �nite second genera-
tion masses, as well as the inclusion of the �rst generation
and CP-violating phases. This is worth pursuing for it pro-
vides an alternative minimal version ofSO(10), and after all,
supersymmetry may not be there.

4.1.2.2 Radiative126H The original idea [403] is that
there is no126H representation in the theory, but the same
operator is generated by loop corrections. The representa-
tion that breaks the rank ofSO(10) is now 16H , which VEV
we callM� . Generically there is a contribution to the right-
handed neutrino mass at two loops:

MR �
�

�
4�

� 2 M 2
�

MGUT

MSUSY

MGUT
Y10, (4.16)

which is too small in low energy supersymmetry (low break-
ing scaleMSUSY) as well as non-supersymmetric theories
(MSUSY = MGUT, but low intermediate scaleM� required
by gauge coupling uni�cation). The only exception, pro-
posed in [404], could be split supersymmetry [457, 458].

In the absence of126H , the charged fermion masses must
be given by only 10H and 120H [404], together with radia-
tive corrections. The simplest analysis of the tree order two

generation case gives three interesting predictions-relations
[405, 459]: (1) almost exactb–� uni�cation; (2) large at-
mospheric mixing angle related to the small quark� bc mix-
ing angle; (3) somewhat degenerate neutrinos. For a serious
numerical analysis one needs to use the RGE for the case
of split supersymmetry, taking a very small tan� < 1 to get
an approximateb–� uni�cation [458]. One needs also some
�ne-tuning of the parameters to account for the small ra-
tio MSUSY/M GUT � 10Š(3Š4) required in realistic models
to have gluinos decay fast enough [460].

4.2 Higher dimensional approaches

Recently, in the context of theories with extra spatial di-
mensions, some new approaches toward the question of
SM fermion mass hierarchy and �avor structure have arisen
[461–468]. For instance, the SM fermion mass spectrum
can be generated naturally by permitting the quark/lepton
masses to evolve with a power-law dependence on the mass
scale [465, 466]. The most studied and probably most at-
tractive idea for generating a non-trivial �avor structure is
the displacement of various SM fermions along extra dimen-
sion(s). This approach is totally different from the one dis-
cussed in Sect.2, as it is purely geometrical and thus does
not rely on the existence of any novel symmetry in the short
distance theory. The displacement idea applies to the scenar-
ios with large �at [467] or small warped [468] extra dimen-
sion(s), as we develop in the following subsections.

4.2.1 Large extra dimensions

In order to address the gauge hierarchy problem, a sce-
nario with large �at extra dimensions has been proposed by
Arkani-Hamed, Dimopoulos and Dvali (ADD) [469–471],
based on a reduction of the fundamental gravity scale down
to the TeV scale. In this scenario, gravity propagates in the
bulk whereas SM �elds live on a 3-brane. One could as-
sume that this 3-brane has a certain thicknessL along an
extra dimension (as for example in [472]). Then SM �elds
would feel an extra dimension of sizeL , exactly as in a
universal extra dimension (UED) model [473] (where SM
�elds propagate in the bulk) with one extra dimension of
sizeL .12

In such a framework, the SM fermions can be localized
at different positions along this extra dimensionL . Then
the relative displacements of quark/lepton wave function
peaks produce suppression factors in the effective four-
dimensional Yukawa couplings. These suppression factors

12The constraint from electroweak precision measurements isRŠ1 �
2–5 TeV, the one from direct search at LEP collider isL Š1 � 5 TeV
and the expected LHC sensitivity is aboutL Š1 � 10 TeV.
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being determined by the overlaps of fermion wave func-
tions (getting smaller as the distance between wave func-
tion peaks increases), they can vary with the fermion �avors
and thus induce a mass hierarchy. This mechanism was �rst
suggested in [467] and its variations have been studied in
[474–484].

Let us describe this mechanism more precisely. The
fermion localization can be achieved through either non-
perturbative effects in string/M theory or �eld-theoretical
methods. One �eld-theoretical possibility is to couple the
SM fermion �elds " i (xµ , x5) [i = 1, . . . , 3 being the fam-
ily index andµ = 1, . . . , 4 the usual coordinate indexes] to
�ve dimensional scalar �elds with VEV� i (x5) depending
on the extra dimension (parameterized byx5).13 Indeed, chi-
ral fermions are con�ned in solitonic backgrounds [485]. If
the scalar �eld pro�le behaves as a linear function of the
form � i (x5) = 2µ 2x5 Š mi around its zero-crossing point
x0

i = mi / 2µ 2, the zero-mode of �ve dimensional fermion
acquires a Gaussian wave function of typical widthµ Š1

and centered atx0
i along thex5 direction: " (0)

i (xµ , x5) =

AeŠµ 2(x5Šx0
i )2

� i (xµ ), � i (xµ ) being the four-dimensional
fermion �eld and A = (2µ 2/� ) 1/ 4 a normalization factor.
Then the four-dimensional Yukawa couplings between the
�ve dimensional SM Higgs bosonH and zero-mode fermi-
ons, obtained by integration onx5 over the wall widthL ,14

SYukawa=
$

d5x
�

L�H(x µ , x5)"̄ (0)
i (xµ , x5)" (0)

j (xµ , x5)

=
$

d4x Yij h(xµ ) ¯� i (xµ )� j (xµ ), (4.17)

are modulated by the following effective coupling constants,

Yij =
$

dx5 �A 2eŠµ 2(x5Šx0
i )2

eŠµ 2(x5Šx0
j )2

= �e Š µ2
2 (x0

i Šx0
j )2

. (4.18)

It can be considered as natural to have a �ve dimensional
Yukawa coupling constant equal to

�
L� , where the dimen-

sionless parameter� is universal (in �avor and nature of
fermions) and of order unity, so that the �avor structure
is mainly generated by the �eld localization effect through
the exponential suppression factor in (4.18). The remarkable
feature is that, due to this exponential factor, large hierar-
chies can be created among the physical fermion masses,
even for all fundamental parametersmi of order of the same
energy scaleµ .

13Although we concentrate here on the case with only one extra dimen-
sion, for simplicity, the mechanism can be directly extended to more
extra dimensions.
14Here, the factor

�
L compensates with the Higgs component

alongx5, since the Higgs boson is not localized.

This mechanism can effectively accommodate all the
data on quark and charged lepton masses and mixings [486–
488]. In case that right handed neutrinos are added to the SM
so that neutrinos acquire Dirac masses (as those originating
from Yukawa couplings (4.17)), neutrino oscillation experi-
ment results can also be reproduced [472]. The �ne-tuning,
arising there on relativex0

i parameters, turns out to be im-
proved when neutrinos get Majorana masses instead [489]
(see also [235, 490]).

4.2.2 Small extra dimensions

Another type of higher-dimensional scenario solving the
gauge hierarchy problem was suggested by Randall and
Sundrum (RS) [491, 492]. There, the unique extra dimen-
sion is warped and has a size of orderM Š1

Pl (MPl being the
reduced Planck mass:MPl = 2.44× 1018 GeV) leading to an
effective gravity scale around the TeV. In the initial version,
gravity propagates in the bulk and SM particles are all stuck
on the TeV-brane. An extension of the original RS model
was progressively proposed [493–497], motivated by its in-
teresting features with respect to the gauge coupling uni�-
cation [498–503] and dark matter problem [504, 505]. This
new set-up is characterized by the presence of SM �elds,
except the Higgs boson (to ensure that the gauge hierarchy
problem does not re-emerge), in the bulk.

In this RS scenario with bulk matter, a displacement
of SM fermions along the extra dimension is also possi-
ble [468]: the effect is that the effective four-dimensional
Yukawa couplings are affected by exponential suppression
factors, originating from the wave function overlaps be-
tween bulk fermions and Higgs boson (con�ned on our TeV-
brane). If the fermion localization depends on the �avor and
nature of fermions, then the whole structure in �avor space
can be generated by these wave function overlaps. In partic-
ular, if the top quark is located closer to the TeV-brane than
the up quark, then its overlap with the Higgs boson, and thus
its mass after electroweak symmetry breaking, is larger rela-
tively to the up quark (for identical �ve dimensional Yukawa
coupling constants).

More precisely, the fermions can acquire different local-
izations if each �eld" i (xµ , x5) is coupled to a distinct �ve
dimensional massmi :

%
d4x

%
dx5

�
G mi "̄ i " i , G being

the determinant of the RS metric. To modify the location
of fermions, the massesmi must have a non-trivial depen-
dence onx5, like mi = sign(x5)ci k, whereci are dimen-
sionless parameters and 1/k is the curvature radius of anti-
de Sitter space. Then the �elds decompose as," i (xµ , x5) =# �

n= 0 � (n)
i (xµ )f i

n(x5) [n labeling the tower of Kaluza–
Klein (KK) excitations], admitting the following solution
for the zero-mode wave function,f i

0(x5) = e(2Šci )k|x5|/N i
0,

whereN i
0 is a normalization factor.
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The Yukawa interactions with the Higgs bosonH read

SYukawa=
$

d5x
�

G
�
Y(5)

ij H "̄ + i " Šj + h.c.
	

=
$

d4x Mij ¯� (0)
Li � (0)

Rj + h.c. + · · · . (4.19)

The Y(5)
ij are the �ve dimensional Yukawa coupling con-

stants and the dots stand for KK mass terms. The fermion
mass matrix is obtained after integrating:

Mij =
$

dx5
�

GY(5)
ij Hf i

0(x5)f j
0 (x5). (4.20)

The Y(5)
ij can be chosen almost universal so that the quark/

lepton mass hierarchies are mainly governed by the over-
lap mechanism. Large fermion mass hierarchies can be pro-
duced for fundamental mass parametersmi all of order of
the unique scale of the theoryk � MPl.

With this mechanism, the quark masses and CKM mix-
ing angles can be effectively accommodated [506–508], as
well as the lepton masses and PMNS mixing angles in both
cases where neutrinos acquire Majorana masses (via either
dimension �ve operators [509] or the see-saw mechanism
[510]) and Dirac masses (see [511], and [512, 513] for order
unity Yukawa couplings leading to mass hierarchies essen-
tially generated by the geometrical mechanism).

4.2.3 Sources of FCNC in extra dimension scenarios

GIM-violating FCNC effects in extra dimension scenarios
may appear both from tree level and from loop effects.

At tree level FCNC processes can be induced by ex-
changes of KK excitations of neutral gauge bosons. The
neutral current action of the effective four-dimensional cou-
pling, between SM fermions� (0)

i (xµ ) and KK excitations

of any neutral gauge bosonA(n)
µ (xµ ), reads in the interac-

tion basis

SNC = gSM
L

$
d4x

��

n= 1

¯� (0)
Li � µ C(n)

Lij � (0)
Lj A(n)

µ + { L � R}.

(4.21)

Therefore, FCNC interactions can be induced by the non-
universality of the effective coupling constantsgSM

L/R × Ci(n)
0

between KK modes of the gauge �elds and the three SM
fermion families (which have different locations alongx5).

At the loop level, KK fermion excitations may invali-
date the GIM cancellation, as discussed e.g. in [511, 514]
for � ±

� � � ±
� � . Indeed, these excitations have KK masses

which are not negligible (and thus not quasi-degenerate in
family space) compared tomW± . The GIM mechanism is
also invalidated by the loop contributions of the KKW± (n)

modes which couple (KK level by level), e.g. to leptons in
the four-dimensional theory, via an effective mixing matrix
of type V eff

MNS = Ul†
L C(n)

L U�
L being non-unitary due to the

non-universality of

C(n)
L � diag

�
C1(n)

m ,C2(n)
m ,C3(n)

m
	
. (4.22)

In this diagonal matrix,Ci (n)
m quanti�es the wave func-

tion overlap along the extra dimension between theW± (n)

[n � 1] and exchanged (mth level KK) fermion f i
m(x5)

[i = { 1, 2, 3} being the generation index] (see below for
more details).

The GIM mechanism for leptons can be clearly restored
if the three coef�cientsCi(n)

m as well as the three KK fermion
massesmi(m)

KK are equal to each other, i.e. are universal with
respect toi = { 1, 2, 3} (KK level by level) [515]. Within the
quark sector, on the other hand, the top quark mass cannot
be totally neglected relatively to the KK up-type quark ex-
citation scales, leading to a mass shift of the KK top quark
mode from the rest of the KK up-type quark modes and re-
moving the degeneracy among three family masses of the up
quark excitations at �xed KK level (with regard tomW± (n) ).
Moreover, this means that the Yukawa interaction with the
Higgs boson induces a substantial mixing of the top quark
KK tower members among themselves [481, 516].

For example, the data onb � s� (receiving a contribu-
tion from the exchange of aW± (n) [n = 0, 1, . . . ] gauge �eld
and an up quark, or its KK excitations, at one loop-level) can
be accommodated in the RS model withm(W± (1)) 
 1 TeV,
as shown in [515] using numerical methods for the diagonal-
ization of a large dimensional mass matrix and taking into
account the top quark mass effects described previously.

4.2.4 Mass bounds on KaluzaÐKlein excitations

In this subsection we develop constraints on the KK gauge
boson masses derived from the tree level FCNC effect de-
scribed above. Our purpose is to determine whether these
constraints still allow the KK gauge bosons to be suf�ciently
light to imply potentially visible signatures at LHC.

4.2.4.1 Large extra dimensionsLet us consider the gener-
ic framework of a �at extra dimension, with a large sizeL ,
along which gravity as well as gauge bosons propagate. The
SM fermions are located at different points of the �fth di-
mension, so that their mass hierarchy can be interpreted in
term of the geometrical mechanism described in details in
Sect.4.2.1. In such a framework the exchange of the KK
excitations of the gluon can bring important contributions
to the K 0–K̄ 0 mixing (�F = 2) at tree level. Indeed, the
KK gluon can couple thed quark with thes quark, if these
light down-quarks are displaced along the extra dimension.
The obtained KK contribution to the mass splitting�m K in
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the kaon system depends on the KK gluon coupling between
the s andd quarks (which is �xed by quark locations) and
mainly on the mass of the �rst KK gluonM (1)

KK . Assuming
that thes, d quark locations are such that thems, md mass
values are reproduced, the obtained�m K and also|� K | are
smaller than the associated experimental values for, respec-
tively,

M (1)
KK � 25 TeV, and M (1)

KK � 300 TeV, (4.23)

as found by the authors of [517]. The same bound coming
from theD0 meson system is weaker.

In the lepton sector the experimental upper limit on the
branching ratioB(µ � eee) imposes typically the con-
straint [517]

M (1)
KK � 30 TeV, (4.24)

since the exchange of the KK excitations of the electroweak
neutral gauge bosons contributes to the decayµ � eee.

To conclude, we stress that if the extra dimensions treat
families in a non-universal way (which could explain the
fermion mass hierarchy), the indirect bounds from FCNC
physics like the ones in (4.23)–(4.24) force the mass of the
KK gauge bosons to be far from the collider reach. As a
matter of fact, the LHC will be able to probe the KK excita-
tions of gauge bosons only up to 6–7 TeV [518–521] in the
present context.

4.2.4.2 Small extra dimensionsIn the context of the RS
model with SM �elds in the bulk, described in Sect.4.2.2,
the exchange of KK excitations of neutral gauge bosons (like
e.g. the �rstZ 0 excitation:Z (1)) also contributes to FCNC
processes at tree level [468, 507, 522–526] since these KK
states possess FC couplings if the different families of fermi-
ons are displaced along the warped extra dimension. There
exist some con�gurations of fermion locations, pointed out
in [513], which simultaneously reproduce all quark/lepton
masses and mixing angles via the wave function effects
and lead to amplitudes of FCNC reactions [l� � l� l� l� ,
Z 0 � l� l� , P0Š P̄0 mixing of a generic mesonP, µ –econ-
version,K 0 � l� l� andK + � � + �� ] compatible with the
corresponding experimental constraints even for light neu-
tral KK gauge bosons:

M (1)
KK � 1 TeV. (4.25)

The explanation of this result is the following. If the SM
fermions with different locations are localized typically
close to the Planck-brane, they have quasi-universal cou-
plings Ci(n)

0 [cf. (4.21)] with the KK gauge bosons which
have a wave function almost constant along the �fth dimen-
sion near the Planck-brane. Therefore, small FC couplings
are generated in the physical basis for these fermions lead-
ing to the weak bound (4.25). The fermions from the third

family, associated to heavy �avors, cannot be localized ex-
tremely close to the Planck-brane since their wave function
overlap with the Higgs boson [con�ned on the TeV-brane]
must be large in order to generate high effective Yukawa
couplings. Nevertheless, this is compensated by the fact that
phenomenological FCNC constraints are usually less severe
in the third generation sector.

As a result, the order of lower limits onM (1)
KK com-

ing from the considerations on both fermion mass data and
FCNC processes can be as low as TeV. From the purely the-
oretical point of view, the favored order of magnitude for
M (1)

KK is O(1) TeV which corresponds to a satisfactory solu-
tion for the gauge hierarchy problem. From the model build-
ing point of view one has to rely on an appropriate extension
of the RS model insuring that, for light KK masses, the devi-
ations of the electroweak precision observables do not con-
�ict with the experimental results. The existing RS exten-
sions, like the scenarios with brane-localized kinetic terms
for fermions [527] and gauge bosons [528] (see [529, 530]
for the localized gauge boson kinetic terms and [531] for the
fermion ones), or the scenarios with an extended gauge sym-
metry (see [532–534] for different fermion charges under
this broken symmetry), allowM (1)

KK to be as low as� 3 TeV.
In such a case, one can expect a direct detection of the KK
excited gauge bosons at LHC.

4.3 Minimal �avor violation in the lepton sector

4.3.1 Motivations and basic idea

Within the SM the dynamics of �avor-changing transitions
is controlled by the structure of fermion mass matrices. In
the quark sector, up and down quarks have mass eigen-
values which are up to 105 times smaller than the elec-
troweak scale, and mass matrices which are approximately
aligned. This results in the effective CKM and GIM suppres-
sions of charged and neutral �avor violating interactions, re-
spectively. Forcing this connection between the low energy
fermion mass matrices and the �avor-changing couplings to
be valid also beyond the SM, leads to new-physics scenarios
with a high level of predictivity (in the �avor sector) and a
natural suppression of �avor-changing transitions. The latter
achievement is a key ingredient to maintain a good agree-
ment with experiments in models where �avored degrees of
freedom are expected around the TeV scale.

This is precisely the idea behind the minimal �avor vi-
olation principle [535–537]. It is a fairly general hypothe-
sis that can be implemented in strongly-interacting theories
[535], low energy supersymmetry [536, 537], multi-Higgs
[537, 538] and GUT [539] models. In a model indepen-
dent formulation, the MFV construction consists in iden-
tifying the �avor symmetry and symmetry breaking struc-
ture of the SM and enforce it in a more general effec-
tive theory (written in terms of SM �elds and valid above
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the electroweak scale). In the quark sector this procedure
is unambiguous: the largest group of �avor changing �eld
transformations commuting with the gauge group isGq =
SU(3)QL × SU(3)uR × SU(3)dR , and this group is broken
only by the Yukawa couplings. The invariance of the SM La-
grangian underGq can be formally recovered elevating the
Yukawa matrices to spurion �elds with appropriate transfor-
mation properties underGq. The hypothesis of MFV states
that these are the only spurions breakingGq also beyond
the SM. Within the effective theory formulation, this im-
plies that all the higher dimensional operators constructed
from SM and Yukawa �elds must be (formally) invariant
underGq. The consequences of this hypothesis in the quark
sector have been extensively analyzed in the literature (see
e.g. Refs. [540, 541]). Without entering into the details, we
can state that the MFV hypothesis provides a plausible ex-
planation of why no new-physics effects have been observed
so far in the quark sector.

Apart from arguments based on the analogy with quarks,
and despite the scarce experimental information, the de�ni-
tion of a minimal lepton �avor violation (MLFV) principle
[542] is demanded by a severe �ne-tuning problem in LFV
decays of charged leptons. Within a generic effective theory
approach, the radiative decaysli � lj � proceed through the
following gauge-invariant operator

� RL
ij

� 2
LFV

H †ēi
R� �� L j

L F�� , (4.26)

where � RL
ij are the generic �avor-changing couplings and

� LFV denotes the cut-off of the effective theory. In the ab-
sence of a speci�c �avor structure, it is natural to expect
� RL

ij = O(1). In this case the experimental limit forµ � e�

implies � LFV > 105 TeV, in clear tension with the expec-
tation of new degrees of freedom close to the TeV scale in
order to stabilize the Higgs sector of the SM.

The implementation of a MFV principle in the lepton
sector is not as simple as in the quark sector. The problem
is that the neutrino mass matrix itself cannot be accommo-
dated within the renormalizable part of the SM Lagrangian.
The most natural way to describe neutrino masses, explain-
ing their strong suppression, is to assume they are Majorana
mass terms suppressed by the heavy scale of lepton num-
ber violation (LNV). In other words, neutrino masses are
described by a non-renormalizable interaction of the type
equation (3.4) suppressed by the scale� LNV � v = |� H 
| .
This implies that we have to face a two scale problem (pre-
sumably with the hierarchy� LNV � � LFV) and that we
need some additional hypothesis to identify the irreducible
�avor-symmetry breaking structures. As we shall illustrate
in the following, we can choose whether to extend or not
the �eld content of the SM. The construction of the effec-
tive theory based on one of these realizations of the MLFV

hypothesis can be viewed as a general tool to exploit the ob-
servable consequences of a speci�c (minimalistic) hypothe-
sis about the irreducible sources of lepton-�avor symmetry
breaking.

4.3.2 MLFV with minimal Þeld content

The lepton �eld content is the SM one: three left handed
doubletsL i

L and three right handed charged lepton singlets
ei

R. The �avor symmetry group isGl = SU(3)L L × SU(3)eR

and we assume the following �avor symmetry breaking La-
grangian

L Sym.Br. = Š Yij
e ēi

R
�
H †L j

L

	

Š
1

2� LNV
� ij

�
�
L̄ ci

L � 2H
	�

H T � 2L j
L

	
+ h.c.

� Š vYij
e ēi

Rej
L Š

v2

2� LNV
� ij

� �̄ ci
L � j

L + h.c. (4.27)

Here the two irreducible sources of LFV are the coef�cient
of dimension �ve LNV operator (� ij

� ) and the charged lepton
Yukawa coupling (Ye), transforming respectively as(6, 1)
and(3̄, 3) underGl . An explicit realization of this scenario is
provided by the so-called triplet see-saw mechanism (or see-
saw of type II). This approach has the advantage of being
highly predictive, but it differs in an essential way from the
MFV hypothesis in the quark sector since one of the basic
spurion originates from a non-renormalizable coupling.

Having identi�ed the irreducible sources of �avor sym-
metry breaking and their transformation properties, we can
classify the non-renormalizable operators suppressed by in-
verse powers of� LFV which contribute to �avor violating
processes. These operators must be invariant combinations
of SM �elds and the spurionsYe and� � . The complete list of
the leading operators contributing to LFV decays of charged
leptons is given in Refs. [542, 543]. The case of the radia-
tive decaysli � lj � is particularly simple since there are
only two dimension six operators (operators with a structure
as in (3.4), with F�� replaced by the stress tensors of the
U(1)Y andSU(2)L gauge groups, respectively). The MLFV
hypothesis forces the �avor-changing couplings of these op-
erators to be a spurion combination transforming as(3̄, 3)
underGl :

�
� RL

min
	
ij �

�
Ye� †

� � �
	
ij + · · · (4.28)

where the dots denote terms with higher powers ofYe or � � .
Up to the overall normalization, this combination can be
completely determined in terms of the neutrino mass eigen-
values and the PMNS matrix. In the basis whereYe is diag-
onal we can write,
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�
Ye� †

� � �
	
i �=j =

mli

v

�
� 2

LNV

v4 UPMNSm2
� U†

PMNS

�

i �=j

�
mli

v
� 2

LNV

v4

�
(UPMNS)i 2(UPMNS)	

j 2�m 2
sol

± (UPMNS)i 3(UPMNS)	
j 3�m 2

atm


, (4.29)

where�m 2
atm and �m 2

sol denote the squared mass differ-
ences deduced from atmospheric- and solar-neutrino data,
and+ / Š correspond to normal/inverted hierarchy, respec-
tively. The overall factor� 2

LNV /v 2 implies that the absolute
normalization of LFV rates suffers of a large uncertainty.
Nonetheless, a few interesting conclusions can still be drawn
[542].

– The LFV decay rates are proportional to� 4
LNV /� 4

LFV and
could be detected only in presence of a large hierarchy
between these two scales. In particular,B(µ � e� ) >
10Š13 only if � LNV > 109� LFV.

– Ratios of similar LFV decay rates, such asB(µ �
e� )/B(� � µ� ) , are free from the normalization am-
biguity and can be predicted in terms of neutrino masses
and PMNS angles: violations of these predictions would
unambiguously signal the presence of additional sources
of lepton-�avor symmetry breaking. One of these predic-
tion is the 10Š2–10Š3 enhancement ofB(� � µ� ) ver-
susB(µ � e� ) shown in Fig.3. Given the present and
near-future experimental prospects on these modes, this
modest enhancement implies that theµ � e� search is
much more promising within this framework.

– Ratios of LFV transitions among the same two fami-
lies (such asµ � e� versusµ � 3e or � � µ� vs
� � 3µ and� � µeē) are determined by known phase
space factors and ratios of various Wilson coef�cients.
As data will become available on different lepton �avor
violating processes, if the �avor patter is consistent with
the MLFV hypothesis, from these ratios it will be pos-

Fig. 3 Bli � lj � � 	 (l i � lj � )/	 (l i � lj � i �̄ j ) for µ � e� and
� � µ� as a function of sin� 13 in the MLFV framework with minimal
�eld content [542]. The normalization of the vertical axis corresponds
to � LNV /� LFV = 1010. Theshadingis due to different values of the
phase� and the normal/inverted spectrum

sible to disentangle the contributions of different opera-
tors.

– A de�nite prediction of the MLFV hypothesis is that
the rates for decays involving light hadrons (� 0 � µe,
KL � µe, � � µ� 0, . . .) are exceedingly small.

4.3.3 MLFV with extended Þeld content

In this scenario we assume three heavy right handed Ma-
jorana neutrinos in addition to the SM �elds. As a conse-
quence, the maximal �avor group becomesGl × SU(3)� R .
In order to minimize the number of free parameters (or to
maximize the predictivity of the model), we assume that the
Majorana mass term for the right handed neutrinos is pro-
portional to the identity matrix in �avor space:(MR)ij =
MR × � ij . This mass term breaksSU(3)� R to O(3)� R and is
assumed to be the only source of LNV (MR � � LNV ).

Once the �eld content of model is extended, there are
in principle many alternative options to de�ne the irre-
ducible sources of lepton �avor symmetry breaking (see e.g.
Ref. [544] for an extensive discussion). However, this spe-
ci�c choice has two important advantages: it is predictive
and closely resemble the MFV hypothesis in the quark sec-
tor. The � R are the counterpart of right handed up quarks
and, similarly to the quark sector, the symmetry breaking
sources are two Yukawa couplings of (3.40). An explicit
example of MLFV with extended �eld content is the min-
imal supersymmetric standard model with degenerate right
handed neutrinos.

The classi�cation of the higher dimensional operators in
the effective theory proceeds as in the minimal �eld con-
tent case. The only difference is that the basic spurions are
now Y� andYe, transforming as(3̄, 1, 3) and(3̄, 3, 1) under
Gl × O(3)� R , respectively. The determination of the spurion
structures in terms of observable quantities is more involved
than in the minimal �eld content case. In general, invert-
ing the see-saw relation allows us to expressY� in terms of
neutrino masses, PMNS angles and an arbitrary complex-
orthogonal matrixR of (3.45) [232]. Exploiting theO(3)� R

symmetry of the MLFV Lagrangian, the real orthogonal part
of R can be rotated away. We are then left with a Hermitian-
orthogonal matrixH [545] which can be parameterized in
terms of three real parameters (� i ) which control the amount
of CP violation in the right handed sector:

Y� =
M 1/ 2

R

v
H(� i )m

1/ 2
diagU

†
PMNS. (4.30)

With this parameterization forY� the �avor changing cou-
pling relevant toli � lj � decays reads

� RL
ext � Ye

�
Y†

� Y�
	

�
me

v

�
MR

v2 UPMNSm1/ 2
diagH

2m1/ 2
diagU

†
PMNS

�
. (4.31)
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In the CP-conserving limitH � I and the phenomenolog-
ical predictions turns out to be quite similar to the minimal
�eld content scenario [542]. In particular, all the general ob-
servations listed in the previous section remain valid. In the
general case, i.e. forH �= I , the predictivity of the model
is substantially weakened. However, in principle some in-
formation about the matrixH can be extracted by study-
ing baryogenesis through leptogenesis in the MLFV frame-
work [546].

4.3.4 Leptogenesis

On general grounds, we expect that the tree-level degener-
acy of heavy neutrinos is lifted by radiative corrections. This
allows the generation of a lepton asymmetry in the interfer-
ence between tree-level and one loop decays of right handed
neutrinos. Following the standard leptogenesis scenario, we
assume that this lepton asymmetry is later communicated
to the baryon sector through sphaleron effects and that sat-
urates the observed value of the baryon asymmetry of the
universe.

The most general form of the� R mass splittings allowed
within the MLFV framework has the following form:

�M R

MR
= c�

�
Y� Y†

� +
�
Y� Y†

�
	 T 


+ c(1)
��

�
Y� Y†

� Y� Y†
� +

�
Y� Y†

� Y� Y†
�

	 T 


+ c(2)
��

�
Y� Y†

�
�
Y� Y†

�
	 T 


+ c(3)
��

��
Y� Y†

�
	 T Y� Y†

�



+ c�l
�
Y� Y†

e YeY†
� +

�
Y� Y†

e YeY†
�

	 T 

+ · · · .

Even without specifying the value of theci , this form allows
us to derive a few general conclusions [546].

– The term proportional toc� does not generate a CPV
asymmetry, but sets the scale for the mass splittings: these
are of the order of magnitude of the decay widths, realiz-
ing in a natural way the condition of resonant leptogene-
sis.

– The right amount of leptogenesis can be generated even
with Ye = 0, if all the � i are non-vanishing. However,
sinceY� �

�
MR, for low values ofMR (� 1012 GeV) the

asymmetry generated by thec�l term dominates. In this
case� B is typically too small to match the observed value
and has a �at dependence onMR. At MR � 1012 GeV
the quadratic termsc(i)

�� dominate, determining an approx-
imate linear growth of� B with MR. These two regimes
are illustrated in Fig.4.

As demonstrated in Ref. [546], baryogenesis through lep-
togenesis is viable in MLFV models. In particular, assum-
ing a loop hierarchy between theci (as expected in a per-
turbative scenario) and neglecting �avor-dependent effects
in the Boltzmann equations (one-�avor approximation of
Ref. [547]), the right size of� B is naturally reached for
MR � 1012 GeV. As discussed in Ref. [301] (see also [303]),
this lower bound can be weakened by the inclusion of �avor-
dependent effects in the Boltzmann equations and/or by the
tan� -enhancement ofYe occurring in two-Higgs doublet
models.

From the phenomenological point of view, an important
difference with respect to the CP-conserving case is the fact
that non-vanishing� i change the predictions of the LFV de-
cays, typically producing an enhancement of theB(µ �
e� )/B(� � µ� ) ratio or the both decays separately [545].
For MR � 1012 GeV their effect is moderate and the CP-
conserving predictions are recovered. The other important
information following from the leptogenesis analysis is the

Fig. 4 Baryon asymmetry (� B )
as a function of the right handed
neutrino mass scale (MR) for
c�l = 0 (dots) andc�l �= 0
(crosses) in the MLFV
framework with extended �eld
content [546]
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fact that the largeMR regime is favored. Assuming� LFV to
be close to the TeV scale, theMR regime favored by lepto-
genesis favors aµ � e� rate within the reach of the MEG
experiment [548].

4.3.5 GUT implementation

Once we accept the idea that �avor dynamics obeys a MFV
principle, both in the quark and in the lepton sector, it is in-
teresting to ask if and how this is compatible with a grand
uni�ed theory (GUT), where quarks and leptons sit in the
same representations of a uni�ed gauge group. This ques-
tion has recently been addressed in [539], considering the
exemplifying case ofSU(5)gauge.

Within SU(5)gauge, the down-type singlet quarks (dc
iR )

and the lepton doublets (L iL ) belong to the5̄ representa-
tion; the quark doublet (QiL ), the up-type (uc

iR ) and lepton
singlets (ec

iR ) belong to the10representation, and �nally the
right handed neutrinos (� iR ) are singlet. In this framework
the largest group of �avor transformation commuting with
the gauge group isGGUT = SU(3)5̄ × SU(3)10 × SU(3)1,
which is smaller than the direct product of the quark and
lepton groups discussed before (Gq × Gl ). We should there-
fore expect some violations of the MFV+ MLFV predictions
either in the quark or in the lepton sector or in both.

A phenomenologically acceptable description of the low
energy fermion mass matrices requires the introduction of
at least four irreducible sources ofGGUT breaking. From
this point of view the situation is apparently similar to the
non-uni�ed case: the fourGGUT spurions can be put in one-
to-one correspondence with the low energy spurionsYu, Yd,
Ye, andY� . However, the smaller �avor group does not al-
low the diagonalization ofYd andYe (which transform in the
same way underGGUT) in the same basis. As a result, two
additional mixing matrices can appear in the expressions for
�avor changing rates:C = V T

eR
VdL and G = V T

eL
VdR . The

hierarchical texture of the new mixing matrices is known
since they reduce to the identity matrix in the limitYT

e = Yd.
Taking into account this fact, and analyzing the structure
of the allowed higher-dimensional operators, a number of
reasonably �rm phenomenological consequences can be de-
duced [539]:

– There is a well de�ned limit in which the standard MFV
scenario for the quark sector is fully recovered:MR �
1012 GeV and small tan� (in a two-Higgs doublet case).
For MR � 1012 GeV and small tan� , deviations from
the standard MFV pattern can be expected in rareK de-
cays but not inB physics. Ignoring �ne-tuned scenarios,
MR � 1012 GeV is excluded by the present constraints
on quark FCNC transitions. Independently from the value
of MR, deviations from the standard MFV pattern can ap-
pear both inK and inB physics for tan� � mt /m b.

– Contrary to the non-GUT MFV framework, the rate for
µ � e� (and other LFV decays) cannot be arbitrarily
suppressed by lowering the average massMR of the
heavy� R. This fact can easily be understood by looking
at the �avor structure of the relevant effective couplings,
which now assume the following form:

� RL
GUT = c1YeY†

� Y� + c2YuY†
u Ye + c3YuY†

u YT
d + · · · .

(4.32)

In addition to the terms involvingY� �
�

MR already
present in the non-uni�ed case, the GUT group al-
lows also MR-independent terms involving the quark
Yukawa couplings. The latter become competitive for
MR � 1012 GeV and their contribution is such that for
� LFV � 10 TeV theµ � e� rate is above 10Š13 (i.e.
within the reach of MEG [548]).

– Improved experimental information on� � µ� and� �
e� would be a powerful tool in discriminating the rel-
ative size of the standard MFV contributions versus the
characteristic GUT-MFV contributions due to the differ-
ent hierarchy pattern among� � µ , � � e, andµ � e
transitions.

5 Phenomenology of theories beyond the standard
model

5.1 Flavor violation in non-SUSY models directly testable
at LHC

5.1.1 Multi-Higgs doublet models

The arbitrariness of quark masses, mixing and CP violation
in the standard model stems from the fact that gauge invari-
ance does not constrain the �avor structure of Yukawa inter-
actions. In the SM neutrinos are strictly massless. No neu-
trino Dirac mass term can be introduced, due to the absence
of right handed neutrinos and no Majorana mass terms can
be generated, due to exactB Š L conservation. Since neu-
trinos are massless, there is no leptonic mixing in the SM,
which in turn leads to separate lepton �avor conservation.
Therefore, the recent observation of neutrino oscillations is
evidence for physics beyond the SM. Fermion masses, mix-
ing and CP violation are closely related to each other and
also to the Higgs sector of the theory.

It has been shown that gauge theories with fermions,
but without scalar �elds, do not break CP symmetry [549].
A scalar (Higgs) doublet is used in the SM to break both
the gauge symmetry and generate gauge boson masses as
well as fermion masses through Yukawa interactions. This
is known as the Higgs mechanism, which was proposed by
several authors [550–553]. It predicts the existence of one
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neutral scalar Higgs particle—the Higgs boson. In the SM
where a single Higgs doublet is introduced, it is not possi-
ble to have spontaneous CP violation since any phase in the
vacuum expectation value can be eliminated by rephasing
the Higgs �eld. Furthermore, in the SM it is also not possi-
ble to violate CP explicitly in the Higgs sector since gauge
invariance together with renormalizability restrict the Higgs
potential to have only quadratic and quartic terms and her-
miticity constrains both of these to be real. Thus, CP viola-
tion in the SM requires the introduction of complex Yukawa
couplings.

The scenario of spontaneous CP and T violation has the
nice feature of putting the breakdown of discrete symmetries
on the same footing as the breaking of the gauge symmetry,
which is also spontaneous in order to preserve renormaliz-
ability. A simple extension of the Higgs sector that may give
rise to spontaneous CP violation requires the presence of at
least two Higgs doublets, and was introduced by Lee [554].

If one introduces two Higgs doublets, it is possible to
have either explicit or spontaneous CP breaking. Explicit CP
violation in the Higgs sector arises due to the fact that in this
case there are gauge invariant terms in the Lagrangian which
can have complex coef�cients. Note however that the pres-
ence of complex coef�cients does not always lead to explicit
CP breaking.

Extensions of the SM with extra Higgs doublets are very
natural since they keep the� parameter at tree level equal to
one [555]. In multi-Higgs systems there are in general, addi-
tional sources of CP violation in the Higgs sector [556]. The
most general renormalizable polynomial consistent with the
SU(2) × U(1) × SU(3)c model withnd Higgs doublets,� i ,
may be written as

L � = Yab� †
a� b + Zabcd

�
� †

a� b
	�

� †
c � d

	
, (5.1)

where repeated indices are summed. Hermiticity ofL � im-
plies:

Y	
ab = Yba; Z 	

abcd = Zbadc. (5.2)

Furthermore, by construction it is obvious that:

Zabcd = Zcdab. (5.3)

In models with more than one Higgs doublet, one has the
freedom to make Higgs-basis transformations (HBT) that do
not change the physical content of the model, but do change
both the quadratic and the quartic coef�cients. Coef�cients
that are complex in one Higgs basis may become real in an-
other basis. Furthermore, a given model may have complex
quartic coef�cients in one Higgs basis, while they may all
become real in another basis, with only the quadratic coef-
�cients now complex, thus indicating that in that particular

model CP is only softly broken. Such Higgs-basis transfor-
mations leave the Higgs kinetic energy term invariant and
are of the form:

� a
HBT
Š� � �

a = Vai � i , � †
a

HBT
Š� (� �)†

a = V 	
ai (�

�)†
i , (5.4)

whereV is annd × nd unitary matrix acting in the space of
Higgs doublets. In [557] conditions for a given Higgs po-
tential to violate CP at the Lagrangian level, expressed in
terms of CP-odd Higgs-basis invariants, were derived. These
conditions are expressed in terms of couplings of the un-
broken Lagrangian, therefore they are relevant even at high
energies, where theSU(2) × U(1) symmetry is restored.
This feature renders them potentially useful for the study of
baryogenesis. The derivation of these conditions follows the
general method proposed in [558] and already mentioned in
previous sections. The method consists of imposing invari-
ance of the Lagrangian under the most general CP transfor-
mation of the Higgs doublets, which is a combination of a
simple CP transformation for each Higgs �eld with a Higgs-
basis transformation:

� a
CP

Š� Wai � 	
i ; � †

a
CP

Š� W	
ai �

T
i . (5.5)

Here W is an nd × nd unitary matrix operating in Higgs
doublets space.

A set of necessary and suf�cient conditions for CP in-
variance in the case of two Higgs doublets have been de-
rived [557]:

I 1 � Tr[Y ZY &Z Š &Z Z Y Y] = 0,

I 2 � Tr[Y Z2 �Z Š �Z Z 2 Y] = 0,
(5.6)

where all matrices inside the parenthesis are 2× 2 matri-
ces. In the general case these arend × nd matrices, and are
de�ned by:

(Z Y)ij � Zijmn Ymn; &Zij � Zijmm ;

(Z 2)ij � ZipnmZmnpj ; �Zij � Zimmj
(5.7)

CP-odd HBT invariants are also useful [557] to �nd out
whether, in a given model, there is hard or soft CP breaking.
One may also construct CP-odd weak basis invariants, in-
volving vi � � 0|� 0

i |0
 , i.e., after spontaneous gauge symme-
try breaking has occurred [559, 560]. Further discussions on
Higgs-basis independent methods for the two-Higgs-doublet
model can be found in [561–564].

So far, we have considered CP violation at the La-
grangian level in models with multi-Higgs doublets, i.e., ex-
plicit CP violation. It is also possible to derive criteria [565]
to verify whether CP and T in a given model are sponta-
neously broken. Under T the Higgs �elds� j transform as

T � j TŠ1 = Ujk � k, (5.8)
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whereU is a unitary matrix which may mix the scalar dou-
blets. If no extra symmetries beyondSU(2) × U(1) are
present in the Lagrangian,U reduces to a diagonal ma-
trix possibly with phases. Invariance of the vacuum under
T leads to the following condition:

�0|� 0
j |0
 = U	

jk �0|� 0
k |0
 	 . (5.9)

Therefore, a set of vacua lead to spontaneous T, CP viola-
tion if there is no unitary matrixU satisfying (5.8) and (5.9)
simultaneously.

Most of the previous discussion dealt with the general
case ofn-Higgs doublets. We analyze now the case of two
Higgs doublets, where the most general gauge invariant
Higgs potential can be explicitly written as

VH2 = m1� †
1� 1 + pei� � †

1� 2 + peŠi� � †
2� 1 + m2� †

2� 2

+ a1
�
� †

1� 1
	 2 + a2

�
� †

2� 2
	 2 + b

�
� †

1� 1
	�

� †
2� 2

	

+ b�� � †
1� 2

	�
� †

2� 1
	

+ c1ei� 1
�
� †

1� 1
	�

� †
2� 1

	

+ c1eŠi� 1
�
� †

1� 1
	�

� †
1� 2

	
+ c2ei� 2

�
� †

2� 2
	�

� †
2� 1

	

+ c2 eŠi� 2
�
� †

2� 2
	�

� †
1� 2

	
+ dei� �

� †
1� 2

	 2

+ deŠi� �
� †

2� 1
	 2, (5.10)

wheremi , p, ai , b, b�, ci , andd are real and all phases are
explicitly displayed. It is clear that this potential contains an
excess of parameters. With the appropriate choice of Higgs
basis some of these may be eliminated, without loss of gen-
erality, leaving eleven independent parameters [569–571].
The Higgs sector contains �ve spinless particles: three neu-
tral and a pair of charged ones, usually denoted byh,H (CP
even),A (CP odd) (or if CP is violatedh1,2,3) andH ± .

In general, models with two Higgs doublets have tree
level Higgs-mediated �avor changing neutral currents
(FCNC). This is a problem in view of the present strin-
gent experimental limits on FCNC. In order to solve this
problem the concept of natural �avor conservation (NFC)
was introduced by imposing extra symmetries on the La-
grangian. These symmetries constrain the Yukawa couplings
of the neutral scalars in such a way that the resulting neu-
tral currents are diagonal. Glashow and Weinberg [566] and
Paschos [567] have shown that the only way to achieve NFC
is to ensure that only one Higgs doublet gives mass to quarks
of a given charge.

In the case of two Higgs doublets the simplest solution to
avoid FCNC is to require invariance of the Lagrangian under
the following transformation of theZ2 type:

� 1 Š� � 1, � 2 Š� Š � 2,
(5.11)

dR Š� dR, uR Š� Š uR,

wheredR (uR) denote the right handed down (up) quarks;
all other �elds remain unchanged.

It is clear from (5.10) that this symmetry eliminates ex-
plicit CP violation in the Higgs sector, since the only term of
the Higgs potential with a phase that survives is the one with
coef�cient d, moreover a HBT of the form� 1 Š� ei�/ 2� 1,
� 2 Š� � 2, eliminates the phase from the Higgs potential.
Furthermore, it can be shown that this symmetry also elimi-
nates the possibility of having spontaneous CP violation.

In conclusion, models with two Higgs doublets and ex-
act NFC cannot give rise to spontaneous CP violation. Ex-
plicit CP violation in this case requires complex Yukawa
couplings leading to the Kobayashi–Maskawa mechanism
with no additional source of CP violation through neutral
scalar Higgs boson exchange. An interesting alternative sce-
nario in the case of two Higgs doublets was considered in
[568] with no NFC. Here CP violating Higgs FCNC are nat-
urally suppressed through a permutation symmetry which is
softly broken, still allowing for spontaneous CP violation.

Three Higgs doublet models have been considered in an
attempt to introduce CP violation in an extension of the SM
with NFC [566] in the Higgs sector. It was shown that in-
deed, in such models it is possible to violate CP in the Higgs
sector either at the Lagrangian level [572] or spontaneously
[573–575].

It is also possible to generate spontaneous CP violation
with only one additional Higgs singlet [576], but in this case
at least one isosinglet vectorial quark is required in order to
generate a non-trivial phase at low energies in the Cabibbo–
Kobayashi–Maskawa matrix. Such models may provide a
solution to the strong CP problem of the type proposed by
Nelson [577, 578] and Barr [579] as well as a common ori-
gin to all CP violations [580, 581] including the generation
of the observed baryon asymmetry of the Universe. The fact
that the SM cannot provide the observed baryon asymmetry
[582–587], provides yet another reason to study an enlarged
Higgs sector.

A lot of work has been done by many authors on possible
extensions of the Higgs sector and their implications both
for the hadronic and the leptonic sectors at the existing and
future colliders, see e.g. [588]. Among the simplest multi-
Higgs models are the two Higgs Doublet Models (2HDM)
which have been analyzed in detail in many different real-
izations. The need to avoid potentially dangerous tree level
Higgs FCNC has led to the consideration of different vari-
ants of this model with a certain discreteZ2 symmetry im-
posed.

In the Type-I 2HDM theZ2 discrete symmetry imposed
on the Lagrangian is such that only one of the Higgs dou-
blets couples to quarks and leptons. A very well known
fermiophobic Higgs boson may arise in such model [589–
591]. Another example is the Inert Doublet Model, with an
unbroken discreteZ2 symmetry which forbids one Higgs
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doublet to couple to fermions and to get a non-zero VEV
[592, 593]. Physical particles related to such doublets are
called “inert” particles, the lightest is stable and contributes
to the Dark Matter density. In [594], the naturalness problem
has been addressed in the framework of an Inert Doublet
Model with a heavy (SM-like) Higgs boson. In this con-
text Dark Matter may be composed of neutral inert Higgs
bosons. Predictions are given for multilepton events with
missing transverse energy at the LHC, and for the direct de-
tection of dark matter.

The Type-II 2HDM allows one of the Higgs doublet to
couple only to the right-handed up quarks while the other
Higgs doublet can only couple to right handed down-type
quarks and charged leptons. This is achieved by the intro-
duction of an appropriateZ2 symmetry, analogous to the
one in (5.12). The Higgs sector of the MSSM model can be
viewed as a particular realization of Type-II models but with
additional constraints required by supersymmetry. Various
scenarios are possible for these models—with and without
decoupling of heavy Higgs particles [570, 571, 595].

Type-III 2HDM are models where, unlike in models of
Type-I and II, NFC is not imposed on the Yukawa interac-
tions. This class of models has in general scalar mediated
FCNC at tree level. Various schemes have been proposed
to suppress these currents, including the ad-hoc assumption
that FCNC couplings are approximately given by the geo-
metric mean of the Yukawa couplings of the two generations
[596]. A very interesting alternative [597] is to have an exact
symmetry of the Lagrangian which constrains FCNC cou-
plings to be related in an exact way to the elements of the
CKM matrix in such a way that FCNC are non-vanishing
but naturally suppressed by the smallness of CKM mixing.
Another example of Type III 2HDM is the Top Two Higgs
Doublet Model which was �rst proposed in [598], and re-
cently analyzed in detail in [599]. In this framework a dis-
crete symmetry is imposed allowing only the top quark to
have Yukawa couplings to one of the doublets while all other
quarks and leptons have Yukawa couplings to the other dou-
blet.

Lepton �avor violation is a feature common to many
possible extensions of the SM. It can occur both through
charged and neutral currents. The possibility of having lep-
ton �avor violation in extensions of the SM, has been con-
sidered long before the discovery of neutrino masses [600,
601]. For example, in the case of multi-Higgs doublet mod-
els, it has been pointed out that even for massless neutrinos
lepton �avor can be violated [602, 603]. In the context of
the minimal extension of the SM, necessary to accommo-
date neutrino masses, where only right handed neutrinos are
included LFV effects are extremely small. It is well known
that the effects of LFV can be large in supersymmetry.

CLEO submitted recently a paper [604] where the ratio of
the tauonic and muonic branching fractions is examined for

the three# (1S,2S,3S)states. Agreement with expectations
from lepton universality is found. The conclusion is that lep-
ton universality is respected within the current experimental
accuracy which is roughly 10%. However there is tendency
for the tauonic branching fraction to turn out systematically
larger than the muonic at a few per cent level.

5.1.2 Low scale singlet neutrino scenarios

In the pre-LHC era neutrino oscillations have provided some
of the most robust evidence for physics beyond the SM.
There are many open questions in this �eld; why is the ab-
solute mass scale for the neutrinos so small with respect to
the other SM particles? what is this mass scale? why is the
pattern of mixing so different from the quark sector? If na-
ture has chosen the singlet seesaw scenario [216–220] as an
answer to those questions we face the prospect of never be-
ing able to produce the heavy neutrinos at a collider. Never-
theless, several extensions of this minimal see-saw scenario
contain heavy neutrinos at or around the TeV scale, these
include models based around the groupE6 [605, 606] and
also inSO(10) models [403].

Furthermore, even within the usual see-saw scenario, the
observed nearly maximal mixing pattern of the light neutri-
nos requires further explanation. Flavor symmetries are of-
ten invoked as possible reasons for the almost tri-bi-maximal
structure of the PMNS mixing matrix [607]. It is also possi-
ble that the small magnitude of the light neutrino masses is
due to an approximate symmetry, allowing the right handed
neutrinos to be as light asO(200 GeV) [337].

TeV scale right handed neutrinos can also arise in radia-
tive mechanisms of neutrino mass generation. Generically,
in these models a tree-level neutrino mass is forbidden or
suppressed by a symmetry but small neutrino masses may
arise through loops sensitive to symmetry breaking effects
[225, 608]. Indeed, several supersymmetric realizations of
radiative mechanisms contain TeV scale right handed neu-
trinos linked to the scale of supersymmetry breaking [609,
610].

5.1.2.1 Heavy neutrinos accessible to the LHCA low,
electroweak-scale mass is not suf�cient to imply that heavy
neutrinos could be produced and detected at the LHC. They
must have a large enough coupling (mixing) with other SM
�elds so that experiments will be able to distinguish their
production and decay from SM background processes. In
this review we concentrate on the case where heavy neu-
trino production and decay occurs through mixing with SM
�elds only. Quantitatively, we can consider a generalization
of the Langacker–London parameters, ll � , de�ned as

 ll � = � ll � Š
3�

i = 1

Bli B	
l � i =

(3+ nR)�

i = 4

Bli B	
l � i , (5.12)
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wherel, l � = e,µ, � andBli is the full 3× (3 + nR) neu-
trino mixing matrix taking into account all (3 light andnR

heavy) neutrinos. The 3× 3 matrixBli wherei = 1, . . . , 3 is
a good approximation to the usual PMNS matrix and ll � es-
sentially measures the deviation from unitarity of the PMNS
matrix.

The  ll � are constrained by precision electroweak data
[611] and the following upper limits have been set at 90%
C.L.

 ee � 0.012,  µµ � 0.0096,  � � � 0.016.

(5.13)

In addition, the off-diagonal elements of ll � are con-
strained by limits on lepton �avor violating processes such
as �, µ � e� and �, µ � eeeand µ � e conversion in
nuclei [514, 612]. These limits are rather model dependent
but for MR � MW andmD � MW (wheremD is the Dirac
component of the neutrino mass matrix), the present upper
bounds are [182]

| eµ| � 0.0001, | e� | � 0.02, | µ� | � 0.02.

(5.14)

It has been pointed out that a heavy Majorana neutrino
(N ) may be produced via a DY type of mechanism at hadron
colliders [608, 613–617], pp � W+	 � � + N , whereN �
� + WŠ , leading to lepton number violation by 2. Most of the
previous studies were concentrated on theeemode, which
would result in a too week signal to be appreciable due to the
recent very stringent bound|VeN|2/m N < 5× 10Š8 GeVŠ1,
from the absence of the neutrinoless double beta decay. It
has been recently proposed to search for the unique and
clean signal,µ ± µ ± + 2 jets at the LHC [617]. It was con-
cluded that a search at the LHC with an integrated luminos-
ity of 100 fbŠ1 can be sensitive to a mass range ofmN � 10–
400 GeV at a 2� level, and up to 250 GeV at a 5� level. If
this type of signal could be established, it would be even
feasible to consider the search for CP violation in the heavy
Majorana sector [618].

A recent analysis [619] studied more background proc-
esses including some fast detector simulations. In particu-
lar, the authors claimed a large background due to the faked
leptonsbb̄ � µ + µ + . The search sensitivity is thus reduced
to 175 GeV at a 5� level. However, the background esti-
mate for processes such asbb̄+ n-jet has large uncertainties
due to QCD perturbative calculations and kinematical ac-
ceptance. More studies remain to be done for a de�nitive
conclusion.

5.1.2.2 Low scale model with successful baryogenesisAs
a more detailed example satisfying the constraints of (5.14)
we consider a model potentially accessible to colliders,

whereMR 
 250 GeV which has been shown to success-
fully explain the baryon asymmetry of the Universe [337].

Leptogenesis has been discussed in Sect.3.3.1. Low scale
leptogenesis scenario would be possible with nearly degen-
erate heavy neutrinos, where self-energy effects on the lep-
tonic asymmetries become relevant [293, 294]. In this case
the CP asymmetry in the heavy neutrino decays can be
resonantly enhanced [332], to the extent that the observed
baryon asymmetry can be explained with heavy neutrinos as
light as the electroweak scale [335, 337].

We shall consider a model with right handed neutrinos
which transform under anSO(3) �avor symmetry. Ignoring
effects from the neutrino Yukawa couplings this symmetry
is assumed to be exact at some high scale, e.g. the GUT
scaleMGUT. This restricts the form of the heavy Majorana
neutrino mass matrix atMGUT

MR = 1mN + �M S, (5.15)

where�M S = 0 at MGUT. This form has also been consid-
ered in a class of “minimal �avor violating” models of the
lepton sector [542] and naturally provides nearly degenerate
heavy neutrinos compatible with resonant leptogenesis.

All other �elds are singlets under thisSO(3) �avor sym-
metry and so the neutrino Yukawa couplings will break
SO(3) explicitly. We can still choose heavy neutrino Yukawa
couplingsY� so that a subgroup of theSO(3) × U(1)L e ×
U(1)L µ × U(1)L � �avor symmetry present without the neu-
trino Yukawa couplings remains unbroken. In this case
a particular �avor direction can be singled out leaving
SO(2) 
 U(1) unbroken. This residualU(1) symmetry acts
to prevent the light Majorana neutrinos from acquiring a
mass. The form of the neutrino Yukawa couplings can be
written

Y�T =

�

�
0 aeŠi�/ 4 aei�/ 4

0 beŠi�/ 4 bei�/ 4

0 ceŠi�/ 4 cei�/ 4

�

� + �Y � . (5.16)

The residualU(1) symmetry is broken both by smallSO(3)
breaking effects in the heavy Majorana mass matrix,�M S,
and by small effects parameterized by�Y � in the Yukawa
couplings. Although we shall not consider the speci�c origin
of these effects,�M S could arise through renormalization
group running for example.

In [337], a speci�c model was considered wheremN =
250 GeV and which successfully explained the baryon
asymmetry of the Universe. One of eithera, b or c was con-
strained to be small to allow a single lepton �avor asymme-
try (and subsequently a baryon asymmetry) to be generated
atT � 250 GeV. The other two parameters could be as large
asO(10Š2). This scenario has the features necessary for a
model to be visible at the LHC; heavy neutrinos with masses
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aroundO(1 TeV) and suf�cient mixing between these neu-
trinos and the light neutrinos to allow them to be produced
from a vector boson. Speci�cally

 ee=
|a|2v2

m2
N

,  µµ =
|b|2v2

m2
N

,  � � =
|c|2v2

m2
N

,

(5.17)

wherev = 246 GeV is the vacuum expectation value of the
Higgs �eld.

It should be noted that in this model the heavy neutrinos
produced at the LHC would be linked indirectly with the
mechanism providing light neutrinos with small masses. The
light neutrinos acquire masses directly through the mecha-
nism responsible for breaking the �avor symmetries. How-
ever, studying the properties of the heavy neutrinos acces-
sible to the LHC would allow us to better understand the
underlying symmetry protecting light neutrinos from large
masses and may give us insight into the observed pattern of
large mixing. In addition, further knowledge of heavy neu-
trinos seen at the LHC, for example small couplings with
one or more lepton �avors or large, resonantly enhanced
CP violation, would provide us with further information on
possible explanations for the baryon asymmetry of the Uni-
verse.

5.1.3 Lepton ßavor violation from the mirror leptons in
little Higgs models

Little Higgs models [620–624] offer an alternative route to
the solution of the little hierarchy problem. One of the most
attractive models of this class is the littlest Higgs model
[625] with T-parity (LHT) [626–628], where the discrete
symmetry forbids tree-level corrections to electroweak ob-
servables, thus weakening the electroweak precision con-
straints [629]. Under this new symmetry the particles have
distinct transformation properties, that is, they are either
T-even or T-odd. The model is based on a two-stage sponta-
neous symmetry breaking occurring at the scalef and the
electroweak scalev. Here the scalef is taken to be larger
than about 500 GeV, which allows to expand expressions in
the small parameterv/f . The additionally introduced gauge
bosons, fermions and scalars are suf�ciently light to be dis-
covered at LHC and there is a dark matter candidate [630].
Moreover, the �avor structure of the LHT model is richer
than the one of the SM, mainly due to the presence of three
doublets of mirror quarks and three doublets of mirror lep-
tons and their weak interactions with the ordinary quarks
and leptons, as discussed in [631–633].

Now, it is well known that in the SM the FCNC processes
in the lepton sector, like� i � � j � andµ � eee, are very
strongly suppressed due to tiny neutrino masses. In particu-
lar, the branching ratio forµ � e� in the SM amounts to at

most 10Š54, to be compared with the present experimental
upper bound, 1.2 × 10Š11 [180], and with the one that will
be available within the next two years,� 10Š13 [634, 635].
Results close to the SM predictions are expected within the
LH model without T-parity, where the lepton sector is iden-
tical to the one of the SM and the additionalO(v2/f 2) cor-
rections have only minor impact on this result. Similarly the
new effects on(g Š 2)µ turn out to be small [636, 637].

A very different situation is to be expected in the LHT
model, where the presence of new �avor violating interac-
tions and of mirror leptons with masses of order 1 TeV can
change the SM expectations by up to 45 orders of magni-
tude, bringing the relevant branching ratios for lepton �a-
vor violating (LFV) processes close to the bounds available
presently or in the near future.

5.1.3.1 The model A detailed description of the LHT
model can be found in [638], where also a complete set
of Feynman rules has been derived. Here we just want to
state brie�y the ingredients needed for the analysis of LFV
decays.

The T-odd gauge boson sector consists of three heavy
“partners” of the SM gauge bosons

W±
H , Z H , AH , (5.18)

with masses given to lowest order inv/f by

MWH = gf, M ZH = gf, M AH =
g�f
�

5
. (5.19)

The T-even fermion sector contains, in addition to the
SM fermions, the heavy top partnerT+ . On the other hand,
the T-odd fermion sector [631] consists of three generations
of mirror quarks and leptons with vectorial couplings under
SU(2)L × U(1)Y, that are denoted by
�

ui
H

di
H

�

,

�
� i

H

� i
H

�

(i = 1, 2, 3). (5.20)

To �rst order inv/f the masses of up- and down-type mirror
fermions are equal. Naturally, their masses are of orderf .
In the analysis of LFV decays, except forKL,S � µe,
KL,S � � 0µe, Bd,s � � i � j and� � ��, ��, �� �, only mir-
ror leptons are relevant.

As discussed in detail in [632], one of the important
ingredients of the mirror sector is the existence of four
CKM-like unitary mixing matrices, two for mirror quarks
(VHu,VHd) and two for mirror leptons(VH� ,VH� ), that are
related via

V †
HuVHd = VCKM, V †

H� VH� = V †
PMNS. (5.21)

An explicit parameterization ofVHd and VH� in terms
of three mixing angles and three complex (non-Majorana)
phases can be found in [633].
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The mirror mixing matrices parameterize �avor violating
interactions between SM fermions and mirror fermions that
are mediated by the heavy gauge bosonsW±

H , ZH andAH .
The matrix notation indicates which of the light fermions of
a given electric charge participates in the interaction.

In the course of the analysis of charged LFV decays it
is useful to introduce the following quantities (i = 1, 2, 3)
[639]:


 (µe)
i = V 	 ie

H � V iµ
H � , 
 (�e)

i = V 	 ie
H � V i�

H � ,


 (�µ)
i = V 	 iµ

H � V i�
H � ,

(5.22)

that governµ � e, � � e and � � µ transitions, re-
spectively. Analogous quantities in the mirror quark sector
(i = 1, 2, 3) [638, 641],

� (K)
i = V 	 is

Hd V id
Hd, � (d)

i = V 	 ib
Hd V id

Hd,

� (s)
i = V 	 ib

Hd V is
Hd,

(5.23)

are needed for the analysis of the decaysKL,S � µe,
KL,S � � 0µe andBd,s � � i � j .

As an example, the branching ratio for theµ � e� decay
contains the
 (µe)

i factors introduced in (5.22) via the short
distance function [639]

D̄ �µe
odd =

1
4

v2

f 2

�

i

�

 (µe)

i

�
D �

0(yi ) Š
7
6

E�
0(yi )

Š
1
10

E�
0(y �

i )
��

, (5.24)

whereyi = (m�
H i /M WH )2, y �

i = ayi with a = 5/ tan2 � W,
and explicit expressions for the functionsD�

0,E �
0 can be

found in [642].
The new parameters of the LHT model, relevant for the

study of LFV decays, are

f, m �
H 1, m�

H 2, m�
H 3, � �

12, � �
13, � �

23,

� �
12, � �

13, � �
23

(5.25)

and the ones in the mirror quark sector that can be probed by
FCNC processes inK andB meson systems, as discussed in
detail in [638, 641]. Once the new heavy gauge bosons and
mirror fermions will be discovered and their masses mea-
sured at the LHC, the only free parameters of the LHT model
will be the mixing angles� �

ij and the complex phases� �
ij of

the matrixVH� , that can be determined with the help of LFV
processes. Analogous comments apply to the determination
of VHd parameters in the quark sector (see [638, 641] for
details onK andB physics in the LHT model).

5.1.3.2 Results LFV processes in the LHT model have for
the �rst time been discussed in [643], where the decays

� i � � j � have been considered. Further, the new contri-
butions to(g Š 2)µ in the LHT model have been calcu-
lated by these authors. In [639, 640] the analysis of LFV
in the LHT model has been considerably extended, and in-
cludes the decays� i � � j � , µ � eee, the six three body
leptonic decays� Š � � Š

i � +
j � Š

k , the semileptonic decays

� � ��, ��, �� � and the decaysKL,S � µe, KL,S � � 0µe
andBd,s � � i � j that are �avor v