University of Sussex
Browse

File(s) not publicly available

Regulated vacuole fusion and fission in Schizosaccharomyces pombe : an osmotic response dependent on MAP kinases

journal contribution
posted on 2023-06-08, 09:47 authored by Neil Bone, Jonathan B A Miller, Takashi Toda, John Armstrong
Background: The budding yeast Saccharomyces cerevisiae uses tow mitogen-activated protein (MAP) kinase cascades, the Hog1p and the Mpk1p pathways, to signal responses to hypertonic and hypotonic stress, respectively. Mammalian cells and the fission yeast Schizosaccharomyces pombe have functional homologues of Hog1p - p38/RK/CSBP and Sty1 - which, unlike Hog1p, also mediate other responses. We have investigated the involvement of S. pombe MAP kinase pathways in signalling a newly described response to osmotic stress - that of vacuole fusion and fission. Results: When S. pombe is placed into water, its vacuoles rapidly fuse into larger structures enclosing a greater proportion of the cell's volume. Under some conditions, its vacuoles can slowly fragment in response to salt. Fission requires the Sty1 pathway an also Pmk1, the homologue of S. cerevisiae Mpk1p. Fusion requires Pmk1, Ypt7 - the homologue of a protein involved in S. cerevisiae vacuole fusion - and part of the Sty1 pathway, although Sty1 phosphorylation is unaffected by hypotonic conditions. Conclusions: Vacuole fusion and fission appear to be homeostatic mechanisms that restore the concentration of the cytosol. Vacuole fusion, like stimulated secretion in higher eukaryotes, is a rapid a specific process of membrane fusion in response to an external stimulus. The Sty1 pathway, in addition to its role in responding to hypertonic stress, is required at a basal level for the expression of factors required to respond to hypotonic stress - a mechanism that may allow the cell use a common pathway for different responses.

History

Publication status

  • Published

Journal

Current Biology

ISSN

09609822

Publisher

Current Biology

Issue

3

Volume

8

Page range

135-144

ISBN

0960-9822

Department affiliated with

  • Biochemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC