Erratum: Quantum propagation of neutral atoms in a magnetic quadrupole guide

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/30003/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
The quantum number \(l \) in the wave function \(\psi(\rho, \phi) \) is in fact not an eigenvalue of the orbital angular momentum \(L_z \) of the motion of the atom around the center of the guide, as we had mistakenly assumed without checking, but an eigenvalue of the operator \(L_z - s_z \), where \(s_z \) is the \(z \) component of the total internal angular momentum of the atom that couples to the magnetic field. For a magnetic quadrupole field of the form of Eq. (1.1), \(\mathbf{B} = (4B_0x/R, -4B_0y/R, 0) \) the operators \(L_z \) and \(s_z \) do not individually commute with the Hamiltonian

\[H = \mathbf{p}^2/(2m) + g \mu_B \mathbf{s} \cdot \mathbf{B}, \]

but the difference \(L_z - s_z \) commutes with \(H \) and is thus a conserved quantity, \([L_z - s_z, H] = 0 \). Calculation shows that the quantum number \(l \) in the wave function \(\psi(\rho, \phi) \) is the eigenvalue of \(L_z - s_z \), e.g., for spin 1/2

\[
(1) \quad \frac{1}{\sqrt{2}} F_+(\rho) e^{i(\phi/2 + \pi/2)} = \sqrt{\frac{\hbar}{2}} \left(\frac{\phi}{2} + \pi/2 \right) F_+(\rho) e^{i(\phi/2 + \pi/2)} - \sqrt{\frac{\hbar}{2}} \left(-F_-(\rho) e^{i(\phi/2 + \pi/2)} \right)
\]

and similarly for the spin 1 wave function in Eq. (4.5). Although \(L_z \) and \(s_z \) do not commute with \(H \), they commute with \(L_z - s_z \) and with each other, which means that any eigenstate of \(L_z - s_z \) must be a linear combination of simultaneous eigenstates of \(L_z \) and \(s_z \). Since the eigenvalues of \(L_z \) are always integer, it follows that the eigenvalue \(l \) of \(L_z - s_z \) must be half integer for half integer spin \(s \) and integer for integer spin \(s \). Only then does the wave function have the correct transformation properties under rotations. For spin 1/2 a rotation by 2 \(\pi \) around the \(z \) axis, for example, transforms the wave function of the above eigenstate into

\[
\frac{1}{\sqrt{2}} F_+(\rho) e^{i(\phi/2 + \pi)} D_{\text{mm}}^{1/2}(0,0,2 \pi) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + \frac{1}{\sqrt{2}} F_-(\rho) e^{i(\phi/2 - \pi)} D_{\text{mm}}^{1/2}(0,0,2 \pi) \left(\begin{array}{c} 0 \\ 1 \end{array} \right)
\]

Since the application of the spin rotation matrix \(D_{\text{mm}}^{1/2} \) causes the spinors to change sign, the \(\phi \) dependent prefactors must not change sign under \(\phi \to \phi + 2 \pi \). Thus \(l \) has to be half integer for spin 1/2, and not integer as was erroneously stated in Sec. III. It follows that \(l \) cannot be zero, which, as explained by Eq. (5.3), has the consequence that there are no exact bound states in the case of spin 1/2 and makes Sec. III A redundant. Solving Eqs. (3.11) for \(l = 1, 3/2, \ldots \) gives results that are qualitatively the same as those of Sec. III B. For \(l = 1/2 \) the energies and widths (\(e_i, B_i \)) of the first three resonances are (2.64, 0.34), (4.25, 0.34), and (5.62, 0.34), and for \(l = 3/2 \) they are (3.53, 0.11), (5.04, 0.15), and (6.34, 0.18), in units of \(\hbar^2 g / (2m) \). The similarity of the motion of spin 1/2 and of spin 1 atoms in the guide is underlined by the fact that Eqs. (3.7) for spin 1/2 and \(l = 1/2 \) are structurally the same as Eqs. (4.7a) and (4.7b) for spin 1 and \(l = 0 \) except for a replacement of \(G \) by \(2G \).

The energies and widths for \(s = 1/2 \) and the unphysical case of integer \(l \) have been reproduced by a complex scaling calculation by Potvliege and Zehnle [1]. These authors agree that \(l \) should in fact be taken half integer [2]. The applicability of their method is independent of whether integer or half integer values of \(l \) are being considered.

Nothing changes for spin 1 in Sec. IV.

There are also two misprints. Contrary to what is stated in the text of Sec. II, we have used \(G = 2g \mu_B B_0 / R \) throughout the paper. The last paragraph of Sec. VII discusses the first excitation energy for an \(l = 0 \) atom of \(^87 \text{Rb} \), and not \(l = 1 \) as originally stated.

We are indebted to Dr. John Stockton, Dr. Clifford Hicks, and Professor Hideo Mabuchi for pointing out to us that \(l \) is an eigenvalue of \(L_z - s_z \) and must be half integer for spin 1/2.
