University of Sussex
Browse

File(s) not publicly available

Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion

journal contribution
posted on 2023-06-08, 09:04 authored by Ben Warren, Gabriella Gibson, Ian J Russell
Sexual recognition through wing-beat frequency matching was first demonstrated in Toxorhynchites brevipalpis, where wing-beat frequencies of males and females are similar [1]. Here we show frequency matching in Culex quinquefasciatus, where the wing-beat frequencies of males and females differ considerably. The wing-beat frequencies converge not on the fundamental but on the nearest shared harmonic (usually female's third and male's second). Frequencies in this range are, however, too high to elicit phasic sensory-neural responses [2,3] from the Johnston's organ (JO) or to drive the mosquito's motor neurons. Potential cues for frequency matching are difference tones produced by nonlinear mixing of male and female flight tones in the vibrations of the mosquito's antennae. Receptor potentials and neural-motor activity were recorded in response to difference tones produced when a mosquito was stimulated simultaneously by two tones at frequencies outside the phasic response range of the JO but within range of the antennal vibrations. We demonstrate sexual recognition through matching of flight-tone harmonics in Culex mosquitoes and suggest that difference tones are used as an error signal for frequency matching beyond the frequency range of the JO's sensory-neural range. This is the first report of acoustic distortion being exploited as a sensory cue, rather than existing as an epiphenomenon.

History

Publication status

  • Published

Journal

Current Biology

ISSN

0960-9822

Issue

6

Volume

19

Page range

485-491

Pages

7.0

Department affiliated with

  • Biology and Environmental Science Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC