First Insights into the Spitzer Wide-Area Infrared Extragalactic Legacy Survey (SWIRE) Galaxy Populations

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/28602/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
FIRST INSIGHTS INTO THE SPITZER WIDE-AREA INFRARED EXTRAGALACTIC LEGACY SURVEY (SWIRE) GALAXY POPULATIONS

CAROL LONSDALE,† 1 MARIA DEL CARMEN POLLETTA,‡ 2 JASON SURACE,† 3 DAVE SHIPLE,† 3 FAN FANG,† 4 C. KEVIN XU,† HARDING E. SMITH,‡ 5 BRIAN SIANA,‡ 5 MICHAEL ROWAN-ROBINSON,¶ 3 TOM BABBEIDGE,‡ 5 SEE OLIVER,¶ 4 FRANCESCA POZZI,¶ 6 PAYAM DAVOUDI,¶ 4 FRAZER OWEN,¶ 4 DEBORAH PADGETT,‡ 6 DAVE FRAYER,‡ 6 TOM JARRETT,‡ 6 FRANK MASCI,¶ 4 JOANNE O’LINGER,¶ 7 TIM CONROW,¶ 2 DUNCAN FARRAH,¶ 6 GLENN MORRISON,¶ 6 NICK GAUTIER,¶ 6 ALBERTO FRANCESCHINI,¶ 7 STEFANO BERTA,¶ 8 ISMAEL PEREZ-FOURNON,¶ 6 EVANTHIA HATZIMINAOGLOU,¶ 8 ALEANDRO AFONSO-LUIS,¶ 8 HERVE DOLE,¶ 10 GORDON STACEY,¶ 10 STEVE SIERJANT,† 11 MARGUERITE PIERRE,‡ 2 MATT GRIFFIN,11 AND RICK PUELTER†

Received 2004 April 5; accepted 2004 June 7

ABSTRACT

We characterize the Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE) galaxy populations in the SWIRE validation field within the Lockman Hole, based on the 3.6–24 μm Spitzer data and deep U, g′, r′, i′ optical imaging within an area ~1/3 deg² for ~16,000 Spitzer SWIRE sources. The entire SWIRE survey will discover over 2.3 million galaxies at 3.6 μm and almost 350,000 at 24 μm; ~70,000 of these will be five-band 3.6–24 μm detections. The colors cover a broad range, generally well represented by redshifted spectral energy distributions of known galaxy populations; however, significant samples of unusually blue objects in the [3.6]–[4.5] color are found, as well as many objects very red in the 3.6–24 μm mid-IR. Nine of these are investigated and are interpreted as star-forming systems, starbursts, and active galactic nuclei (AGNs) from z = 0.37 to 2.8, with luminosities from L_IR = 10^{10.3} to 10^{13.7} L_☉.

Subject headings: galaxies: evolution — infrared: galaxies

1. INTRODUCTION AND OBSERVATIONS

The Spitzer Wide-area Infrared Extragalactic Legacy Survey (SWIRE; Lonsdale et al. 2003), will map the evolution of spheroids, disks, starbursts, and active galactic nuclei (AGNs) to z > 2, within volumes large enough to sample the largest important size scales (Oliver et al. 2004). We present initial results from deep optical (U, g′, r′, i′) and Spitzer SWIRE (3.6–24 μm) imaging of 0.3 deg² in the SWIRE Survey validation field (VF) in the Lockman Hole, a field selected to have extremely low cirrus emission and a lack of bright radio sources. Deep K-band and VLA 20 cm imaging also exist, and this field will be imaged with Chandra ACIS-I to 70 ks depth in 2004 August. The full SWIRE survey will image ~49 deg² in all Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) bands in six fields. The area has been reduced from the strategy described by Lonsdale et al. (2003) in order to maintain two high-quality coverages of each field with the MIPS 70 μm array.14 The SWIRE validation field was imaged by Spitzer in 2003 December following the strategy described in Lonsdale et al. (2003), so it has a shallower MIPS depth than the main SWIRE survey. The full SWIRE Lockman field was imaged with the new strategy in 2004 April and May. The SWIRE VF is centered at 10h46m,+ 59°01′. The observations were executed on 2003 December 5 and 9. The Spitzer Program ID (PID) for these data is 142, and the data sets are identified as IRAC AOR key 0007770880, 0007771136, and MIPS AOR key 0007770368, 0007770624. Data processing began with the Spitzer Basic Calibrated Data (BCD) products, which are individual Spitzer images corrected for bias offsets and pixel-to-pixel gain variations (flat-fielding) and flux-calibrated in surface brightness units of MJy sr⁻¹. Additional individual IRAC image processing corrected latent images and electronic offset effects. For MIPS, scan-mirror-dependent flats were derived from the data and applied to the BCD images. The individual images, which have measurable spatial distortions, were reprojected onto a single common projection system on the sky, and then co-added through averaging with outlier rejection to remove cosmic-ray and other transient artifacts. A three-color 3.6, 4.5, 24 μm false-color image of part of the field is shown in Figure 1 (Plate 1).

Fluxes were extracted in 5′′8 apertures for IRAC (≈2–3 times the FWHM beam) and 12′′ for MIPS 24 μm, using SExtractor. Very few (<5%) of the detected objects are extended relative to the large Spitzer beams (>2′′ at the shortest wavelength), and even fewer on scales comparable to the

14 See http://www.ipac.caltech.edu/SWIRE for details.
SWIRE GALAXY POPULATIONS

TABLE 1

Spitzer Sensitivities and Detection Statistics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>λ_0 (\micron)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>5 σ limit, validation field (\muJy)</td>
<td></td>
</tr>
<tr>
<td>All detections, 0.3 deg2, VF</td>
<td>3.7</td>
</tr>
<tr>
<td>Galaxies (stars removed statistically)</td>
<td>14,630</td>
</tr>
<tr>
<td>5 σ limit, full survey (\muJy)</td>
<td>3.7</td>
</tr>
<tr>
<td>Predicted galaxies, 49 deg2 ($<10^4$)</td>
<td>2.39</td>
</tr>
<tr>
<td>Model, 49 deg2, Xu et al. (2003) S3+E2</td>
<td>6.36</td>
</tr>
<tr>
<td>Projected/Model</td>
<td>0.38</td>
</tr>
</tbody>
</table>

Sensitivities and Detection Statistics

Table 1 indicates that over the full SWIRE survey area of ~49 deg2, we will detect ~2.4 million galaxies at 3.6 \micron and ~120,000 in all four IRAC bands. At 24 \micron the detection rate for the full survey will be better than for the VF discussed here because MIPS integration time was doubled; therefore we estimate nearly 350,000 galaxies detected in this band, and about 70,000 of these in all four IRAC bands as well. At optical wavelengths we detect 27,911, 42,817, 39,308, and 30,230, stars plus galaxies at U, g, r, i, and i', respectively; 17,894 are detected in all four optical bands; 8626 in the combination r', 3.6 \micron, 4.5 \micron; and 325 are detected in all nine optical+\IR bands.

We have compared the IR detection statistics to predictions from the models of Xu et al. (2003), model S3+E2, in Table 1. Model S3 includes dusty objects (spirals, starbursts, and AGNs), and E2 contains passively evolving stellar systems, i.e., spheroids. The Xu et al. model overpredicts SWIRE IR galaxy numbers by a factor of ~2 in the IR bands. The number counts results will be addressed by J. Surace et al. (2004, in preparation) and J. Shupe et al. (2004, in preparation).

Figures 2 and 3 present color-color plots that characterize the sample in g' to 24 \micron color-color space. Only sources detected in all four bands shown in each figure are plotted; no limits are shown, for clarity. The figures show SED-redshift tracks of several galaxies with a broad range of intrinsic colors. These SEDs cover the range of colors exhibited by known objects throughout the U–24 \micron wavelength range and $0 < z < 2$. We do not expect many sources in the region of the figures occupied by rare objects like Arp 220 at low redshift, because our volume coverage at low-redshift space is small. A complete analysis of SWIRE galaxy colors relative to model predictions and SED tracks is beyond the scope of this paper, requiring thorough analysis of selection effects, photometric redshifts and K-corrections. Here we note a few basic results.

There is a very broad distribution of colors in these figures. Galaxies with little ongoing star formation will be relatively blue in the mid-\IR because of a lack of dust emission, and also quite red in $g'–r'$ because of domination by late-type stars,
and thus will be found toward the lower right of Figure 2, near the elliptical SED track (red curve). Indeed, there is a concentration of systems near this region. Moreover, the systems in the sample brightest in 3.6 μm (blue symbols) preferentially inhabit this region, indicating that these may be relatively nearby early-type systems. The stellar tracks also cross this region of Figure 2; using the stellar model described above we predict a maximum 0.13 star fraction in the 10 < $F_{3.6 \mu m}$ < 150 μJy flux range, and 0.09 for 7.3 < $F_{3.6 \mu m}$ < 10 μJy, focused strongly within ±0.2 mag of the stellar sequences. In Figure 3 the elliptical SED track lies off the figure to the bottom, as a result of a lack of 24 μm emission; objects in this lower right area are likely to be early-type spirals or unusually dusty spheroids.

Dusty systems will be more strongly detected at the longer wavelengths and therefore redder in the Spitzer [3.6]–[4.5] and [3.6]–[24] colors. There is a trend in both figures that these systems also tend to be the bluest in $g'-r'$, inhabiting the upper left of both figures. This is expected for systems that have both young complexes of dust-enshrouded star formation dominating the mid-IR and either (1) hot blue young stars visible in lower optical depth regions at optical wavelengths, or (2) a blue type 1 AGN visible in the optical, such as Mrk 231, which tracks into this area at $z > 2$ in Figure 3. It is notable that the most extreme systems (those toward the upper left of the figures), tend to be the fainter galaxies in the sample at 3.6 μm (red symbols). This could be interpreted as due to either preferentially more distant systems or lower luminosity systems; however, the complex selection and K-correction effects would need to be understood in order to investigate this further.

Some areas of the color-color diagrams are not well covered by the SED tracks. Of particular note are some unusually blue objects in [3.6]–[4.5], and mid-IR red sources at the upper left of Figure 3. Many additional extreme-colored objects with upper limits in one or more color are not shown in these figures. As an illustration of some of the most unusual objects populating the SWIRE sample, we have investigated a number of these sources with red [3.6]–[24] colors and unusually blue [3.6]–[4.5] colors, using the photometric redshift code Hyper-z (Bolzonella et al. 2000) to fit SEDs with a wide range of templates, redshifts, and A_V. We used our own library (M. Polletta et al. 2004, in preparation), the GRASIL library (Silva et al. 1998), and the Rowan-Robinson (2003) library. The Polletta et al. library contains around forty 1000 Å–20 cm templates for ellipticals, spirals, irregulars, starbursts, ultraluminous infrared galaxies (ULIRGs), and AGNs, derived from observed SEDs, including mid-IR Infrared Space Observatory (ISO) spectra and models following Berta et al. (2004). A more complete characterization and photometric redshift analysis of a larger SWIRE galaxy sample will be forthcoming (M. Rowan-Robinson et al. 2004, in preparation).

Investigating first the blue sources, we selected 603 sources with [3.6]–[4.5] < −0.3, significantly bluer than normal galaxies and stars, with S/N ≥ 10 in both bands. Fluxes were re-measured by hand for 193 of these objects with detections in a sufficient number of bands for SED analysis. We used the IPAC Skyview software to set background levels interactively, thus avoiding confusion with nearby sources and background contamination. In all, 67 sources were found to have valid colors. In about 8% of the remaining cases, the automated
pointlike throughout the optical and mid-IR, and are probably stars. None of the galaxy libraries contains any templates as blue as the remaining $[3.6] - [4.5] < -0.3$ sources at any redshift. Two objects in the literature have colors possibly as blue at $3-5 \mu m$: the peculiar QSO (HB89) 0049–29 at $z = 0.308$ (Andreani et al. 2003), and the Seyfert 2 ULIRG IRAS 00198–7826 at $z = 0.073$ (Farrah et al. 2003). [HB89] 0049–29 peaks strongly in the NIR; however, it is very red from there into the optical, unlike any of our sources. IRAS 00198–7826 is not observed at these wavelengths, but is predicted to be as blue as our sources (Farrah et al. 2003), which is explained by it being a ≥ 260 Myr starburst in which much of the gas and dust has been blown away by supernovae. This model for IRAS 00198–7826 can produce colors similar to those of our blue objects in the $[3.6]–[4.5]$ color, but it is too blue into the optical to match any of our sources at any redshift.

Another possible explanation for the blue $[3.6]–[4.5]$ colors is a strong $3.3 \mu m$ polycyclic aromatic hydrocarbon (PAH) feature in the $3.5 \mu m$ band at low redshift (<0.1), but it would have to be considerably higher equivalent width than any such feature found in any of our templates. Also possible is a strong $2.35 \mu m$ CO bandhead absorption moving into the $4.5 \mu m$ filter at redshift ~ 0.7, requiring a young stellar population of red supergiants that is not diluted strongly by an older stellar population with a weaker absorption (Rhoads 1997). This might perhaps indicate a dominant $\sim 10^7$ yr old starburst in a fairly low mass galaxy. Alternatively, such a high equivalent width may indicate low metallicity.

In Figure 4 and Table 2 we present representative best fits for five blue sources (lower five SEDs; first five table entries). The $24 \mu m$ data points were downweighted in these fits so that they would not throw off the fit in the $3–5 \mu m$ region, with which we are primarily concerned here; mid-IR SEDs can have a wide range of shapes depending on details of geometry and astrophysics, which cannot be encapsulated in small libraries. The fitted redshifts range from 0.68 to 0.94, and the corresponding infrared luminosities range from $\log L_{3–1000 \mu m} = 10.3$ to $11.3 L_\odot$; these are star-forming galaxies and starbursts at moderate redshifts with moderate luminosities. The blue $[3.6]–[4.5]$ region of the SED is only approximately fit, as anticipated, with deviations 0.8 to 2.2 σ high for the $3.6 \mu m$ points, and 4.3 to 7.9 σ low for the $4.5 \mu m$ data points (combined deviations of the $[3.6]–[4.5]$ color from the template are given in the last column of Table 2). We present

Table 2

<table>
<thead>
<tr>
<th>Name</th>
<th>R.A. (J2000)</th>
<th>Decl. (J2000)</th>
<th>z_{phot}</th>
<th>$L_{3–1000 \mu m}$ (L_\odot)</th>
<th>A_V (mag)</th>
<th>Template</th>
<th>Deviation σ, Blue Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWIRE_J104513.3+585933......</td>
<td>10 45 13.39</td>
<td>58 59 33.5</td>
<td>0.88</td>
<td>10.3</td>
<td>0.8</td>
<td>Sa</td>
<td>7.2</td>
</tr>
<tr>
<td>SWIRE_J104552.8+590600......</td>
<td>10 45 52.86</td>
<td>59 06 00.8</td>
<td>0.72</td>
<td>11.3</td>
<td>1.0</td>
<td>Sd pec</td>
<td>7.2</td>
</tr>
<tr>
<td>SWIRE_J104657.3+590902......</td>
<td>10 46 57.38</td>
<td>59 09 02.5</td>
<td>0.74</td>
<td>10.9</td>
<td>0.2</td>
<td>Sdm</td>
<td>4.6</td>
</tr>
<tr>
<td>SWIRE_J104743.7+591034......</td>
<td>10 47 43.75</td>
<td>59 10 34.6</td>
<td>0.68</td>
<td>10.8</td>
<td>0.5</td>
<td>Sbc H ii</td>
<td>8.4</td>
</tr>
<tr>
<td>SWIRE_J104436.8+591349......</td>
<td>10 44 36.84</td>
<td>59 13 49.2</td>
<td>0.94</td>
<td>11.2</td>
<td>1.3</td>
<td>Sc starburst</td>
<td>6.2</td>
</tr>
<tr>
<td>SWIRE_J104616.0+591424......</td>
<td>10 46 16.08</td>
<td>59 14 24.9</td>
<td>0.37</td>
<td>11.1</td>
<td>0.8</td>
<td>Im pec H ii</td>
<td>...</td>
</tr>
<tr>
<td>SWIRE_J104511.8+590121......</td>
<td>10 45 11.88</td>
<td>59 01 21.6</td>
<td>2.30</td>
<td>13.4</td>
<td>0.2</td>
<td>H ii</td>
<td>...</td>
</tr>
<tr>
<td>SWIRE_J104613.4+585941......</td>
<td>10 46 13.44</td>
<td>58 59 41.3</td>
<td>2.43</td>
<td>13.2</td>
<td>1.1</td>
<td>QSO</td>
<td>...</td>
</tr>
<tr>
<td>SWIRE_J104700.2+590107......</td>
<td>10 47 00.20</td>
<td>59 01 07.6</td>
<td>2.85</td>
<td>13.7</td>
<td>0.3</td>
<td>Syl</td>
<td>...</td>
</tr>
</tbody>
</table>

$H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.27$, $\Omega_\Lambda = 0.73$.

SELECTED SOURCES WITH UNUSUALLY BLUE [3.6]–[4.5] OR RED [3.6]–[24] COLORS
these fits as illustrative and not unique; fits at substantially different redshifts are possible with different combinations of templates and A_V values. If this phenomenon is confirmed as a real and substantial population with unusually blue 3–5 μm SEDs, ideal fits will require modified template modeling outside the current libraries. We note that the fitted redshifts for all of these objects are consistent with the hypothesis of a dominant population of red supergiants with strong CO absorption at 2.35 μm redshifted into the 4.5 μm band. It will be most interesting to discover whether Spitzer finds similarly blue colors in any regions within nearby galaxies, where the stellar populations and interstellar medium can be investigated in some detail.

We have also selected all sources redder than $3.6 - [24] = 7.5$ mag for investigation (see Fig. 3), requiring a detection at $S/N > 5$ at 24 μm. Of 63 sources with $3.6 - [24] > 7.5$ mag, 42 were found to have valid colors this red on rederivation of their fluxes by hand. The remainder are about evenly divided between sources for which more than one 3.6 μm source likely contributes to the larger beam 24 μm emission (a commonly expected situation due to the large difference in beam profiles), and spuriously low 3.6 μm flux densities caused by latents or electronic offsets due to nearby bright stars. This latter category of anomalies at 3.6 μm represents a 10/16075 = 0.06% anomaly rate among the whole catalog, and 17% among the selected red sources. As for the unusually blue $[3.6 - [4.5]$ sources, a high anomaly rate among color outliers is not unanticipated.

The best-fit redshifts for four representative red sources (Fig. 4, upper four SEDs; Table 2, last 4 entries) range from 0.37 to 2.85, with a luminosity range of $\log L_{3-1000 \mu m} = 11.1$ to 13.7 L_\odot. It is very difficult to obtain unique fits for some objects of this type owing to the flatness of the SEDs and the limited number of data points, and these fits should be regarded as illustrative only, pending a thorough analysis of the possible range of templates, redshifts, and luminosities that can fit each of these sources. These objects appear to be starbursts, ULIRGs, and AGNs with a wider redshift and luminosity range than the blue sources in Figure 4, including some $z > 2$ objects with luminosities in the hyperluminous object (HyLIRG) range. SWIRE is expected to be particularly sensitive to high-redshift IR-luminous AGNs, which are expected to be bright in the very sensitive 24 μm band because of warm circumnuclear dust. The high-redshift volume density of HyLIRGs will be important for models for the early formation of massive systems in the universe. Spitzer IRS spectroscopy may prove essential for determining redshifts and excitations for the reddest, optically faintest systems.

Support for this work, part of the Spitzer Space Telescope Legacy Science Program, was provided by NASA through an award issued by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407.

REFERENCES

Andreani, P., Cristiani, S., Grazian, A., La Franca, F., & Goldschmidt, P. 2003, AJ, 125, 444
Fig. 1.—Three-color image of ~0.03 deg2 of the SWIRE Lockman validation field, centered at 10h47m32.67, 59°07′16.73, showing 3.6 μm (blue), 4.5 μm (green), and 24 μm (red).