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The recent WMAP3 results have placed measurements of the spectral index nS in an interesting
position. While parameter estimation techniques indicate that the Harrison–Zel’dovich spectrum nS � 1
is strongly excluded (in the absence of tensor perturbations), Bayesian model selection techniques reveal
that the case against nS � 1 is not yet conclusive. In this paper, we forecast the ability of the Planck
satellite mission to use Bayesian model selection to convincingly exclude (or favor) the Harrison–
Zel’dovich model.
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I. INTRODUCTION

One of the key goals of cosmology is to probe the nature
of the primordial perturbations, for instance to seek support
for the inflationary cosmology. The simplest models of
inflation predict adiabatic gaussian density perturbations
of approximately power-law form, characterized by the
spectral index nS, and in addition a spectrum of gravita-
tional wave perturbations (see Ref. [1] for an overview).

The ability of experiments, actual or proposed, to ex-
plore such questions is typically framed in terms of pa-
rameter estimation, for instance by forecasting the
expected uncertainty on nS given a particular assumed
fiducial model. However, it has been stressed in a number
of papers recently [2–5] that many of the key questions are
not ones of parameter estimation, but of model selection
[6–8]. Model selection problems are characterized by an
uncertainty in the choice of parameters to vary in a fit to
data, rather than of the values of a parameter set chosen by
hand. The discovery of any new physical effect in data is
indicated by the need to include new parameters, possible
examples being nonzero spatial curvature, time variation of
the dark energy density, or the existence of tensor pertur-
bations. Early cosmological applications of this technique
were given in Ref. [9].

Since many of the most important questions are ones of
model selection rather than parameter estimation, it fol-
lows that the capabilities of experiments should also be
quantified by model selection criteria rather than parameter
uncertainty forecasts alone. This is the viewpoint adopted
in recent papers by Trotta [3], whose Expected Posterior
Odds (ExPO) forecasting technique estimates the proba-
bility of new data requiring new parameters, and by
Mukherjee et al. [5] who use Bayes factor plots to compare
the ability of different experiments to decisively select
between models.

Mukherjee et al. [5] illustrated model selection forecast-
ing using dark energy surveys, looking at a two-parameter
dark energy model versus a cosmological constant model.
The same general approach is applicable in many other
contexts. In this paper, we carry out model selection fore-
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casting for the Planck satellite cosmic microwave back-
ground project, focussing on its ability to measure the
spectral index nS. This is particularly timely as the recent
release of the three-year WMAP data [10] has placed this
parameter in the zone around three-sigma where the appli-
cation of model selection techniques is at its most crucial
[3]. In a companion paper to this one, Parkinson et al. [11]
have shown that the case for nS � 1 is far from decisive at
present.

We assume throughout that there are no tensor perturba-
tions. While it would be interesting to explore models
including tensors, thus properly probing the inflationary
space, at present doing nS alone stretches our supercom-
puter resources to their limit. In this regard model selection
forecasting is much more challenging than analysis of real
data, as instead of having a single dataset to analyze, one
has to create and analyze simulated datasets for a range of
possible models and model parameters.

II. MODEL SELECTION FORECASTS FOR nS

A. Model selection forecasting

The philosophical underpinning of model selection fore-
casting was described in Mukherjee et al. [5] and we
summarize it only very briefly here. Given a particular
dataset, simulated or real, model selection is carried out
by evaluation of a model selection statistic for each model,
where the term model refers to a choice of parameters to be
varied plus a set of prior ranges for those parameters. The
usual statistic of choice is the Bayesian evidence E, also
known as the marginalized likelihood. The ratio of eviden-
ces between two models is known as the Bayes factor,
B10 � E�M1�=E�M0�, where M1 and M0 indicate the two
models under consideration. By plotting the Bayes factor
using datasets generated as a function of a parameter of
interest, one uncovers the regions of parameter space in
which a given experiment would be able to decisively
select between the two models, and also those regions
where the comparison would be inconclusive.

In short, the advantages of model selection over parame-
ter estimation forecasting are as follows [5].
-1 © 2006 The American Physical Society
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(i) E
xperiments motivated by model selection ques-
tions should be quantified by their ability to answer
such questions.
(ii) D
ata is simulated at each point in the parameter
space, rather than at only one or more fiducial
models. Indeed in parameter estimation plots
people commonly simulate data for the model
that they hope to rule out, rather than for the true
model that would allow that exclusion.
(iii) M
odel selection analyses can attribute positive sup-
port for a simpler model, rather than only showing
consistency.
(iv) G
aussian approximations to the likelihood are not
made, such as in parameter estimation forecasting
done using Fisher matrices.
1Trotta [3] also used Planck simulations, but did not disclose
how they were implemented.

2www.rssd.esa.int/
index.php?project=PLANCK&page=perf_top
In assessing the significance of a model comparison, a
useful guide is given by the Jeffreys’ scale [6]. Labelling as
M1 the model with the higher evidence, it rates lnB10 < 1
as ‘‘not worth more than a bare mention‘‘, 1< lnB10 < 2:5
as ‘‘substantial‘‘, 2:5< lnB10 < 5 ‘‘strong‘‘ to ‘‘very
strong‘‘ and 5< lnB10 as ‘‘decisive‘‘. Note that lnB10 �
5 corresponds to odds of 1 in about 150, and lnB10 � 2:5 to
odds of 1 in 13.

A model selection analysis of the Planck satellite’s
capabilities to constrain nS was previously given by
Trotta [3] using his ExPO technique. This seeks to estimate
the probability, based on current knowledge of parameters,
of the Planck mission being able to carry out a decisive
model comparison. Our aim is rather different; we seek to
delineate the parameter values the Universe would have to
have in order for a decisive model comparison to be made.
However we will end by additionally making an ExPO-
style forecast, though with a somewhat different imple-
mentation to Trotta’s.

Another related paper is Bridges et al. [12], who simu-
late data for a model with constant nS and compare the
evidences for a set of initial power spectrum models. They
do not however explore different values of the spectral
index.

It may seem strange that model selection approaches can
give results in apparent conflict with parameter estimation.
However, this is a well-known phenomenon called
Lindley’s paradox [3,13]; the idea that there is a universal
significance level such as 95% beyond which things be-
come interesting is inconsistent with Bayesian reasoning,
which shows that such a threshold should depend both on
the data properties and the prior parameter ranges. The
Lindley paradox usually manifests itself for results with
significance in the range two to four sigma [3], which as it
happens is exactly where WMAP3 has placed nS.

B. Simulating Planck data

In order to give a good estimate of Planck’s abilities, we
need accurate data simulations. Simulated Planck data was
123524
generated by Bridges et al. [12] for their model selection
analysis, but they simply assumed cosmic variance limited
temperature anisotropies out to ‘ � 2000.1 We adopt a
rather more sophisticated approach, as follows.

We simulate the temperature and polarization (TT, TE,
and EE) spectra. We choose not to include B-polarization
for simplicity; as we do not include tensors there are no
primordial B modes, and the shorter-scale B-modes
generated by gravitational lensing will not supply signifi-
cant constraining power on the specific models we are
considering.

We use three temperature channels, of specifications
similar to the HFI channels of frequency 100 GHz, 143
GHz, and 217 GHz. Following the current Planck docu-
mentation,2 the intensity sensitivities of these channels are
taken as 6.8 �K, 6.0 �K, and 13.1 �K, respectively,
corresponding to the values quoted for two complete sky
surveys. These are average sensitivities per pixel, where a
pixel is a square whose side is the FWHM extent of the
beam. The FWHM’s of these channels are given as 9.5
arcmin, 7.1 arcmin, and 5.0 arcmin, respectively. The
composite noise spectrum for the three temperature chan-
nels is obtained by inverse variance weighting the noise of
individual channels [14,15]. For polarization we take only
one channel, the 143 GHz channel, of FWHM 7.1 arcmin,
and sensitivity 11.5 �K.

The assumed Gaussianity of the spherical harmonic
coefficients of the temperature and polarization leads to a
likelihood function given by (see e.g. Ref. [16])

 � 2 logL � �2‘� 1�f2
sky�Tr�Ĉ‘C

�1
‘ � � logjC‘j� (1)

where

 C‘ �

0
B@
CTT‘ CTE‘ 0
CTE‘ CEE‘ 0

0 0 CBB‘

1
CA (2)

and Ĉ‘ is the corresponding matrix of estimators. Both C‘
and Ĉ‘ include instrumental noise variance. The fractional
sky covered is taken to be 0.8 for all ‘, and we use
simulated data out to an ‘max of 2000.

We simulate data for a range of values of nS. In defining
the fiducial models for which the data are simulated, the
other parameters are kept fixed, those parameters being the
cold dark matter density �cdm, the baryon density �B,
the optical depth �, the angular size of the sound horizon
at decoupling � and the power spectrum amplitude AS.
The specific values chosen were �bh2 � 0:024, �ch2 �
0:103, � � 1:047, � � 0:14 and AS � 2:3� 10�9 respec-
tively, where h is the Hubble parameter in the usual units
and is equal to 0:78 for these parameter choices. These
-2
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FIG. 1 (color online). The (negative of the) logarithm of the
Bayes factor, � lnB10, as a function of the fiducial value of nS,
where M0 is the HZ model and M1 is VARYn. The horizontal
lines indicate where the comparison becomes ‘‘strong‘‘ (dashed)
and ‘‘decisive‘‘ (solid) on the Jeffreys’ scale.
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values were motivated by the WMAP3 results [10]. All
parameters are varied in computing evidences.

C. Results

Having simulated Planck data for a given nS, we com-
pute the evidences of the two models, which we denote by
HZ and VARYn. The former is of course the Harrison–
Zel’dovich model with nS fixed to one. The latter is a
model with nS allowed to vary in fits to the data. In each
case, all the other parameters are allowed to vary, each with
the same prior range as used in Ref. [4]. This is repeated for
different values of fiducial nS.

As in Ref. [4], the prior range for nS is taken to be 0:8<
nS < 1:2, representing a reasonable range allowed by slow-
roll inflation models (see e.g. Ref. [1]). The end result does
have some prior dependence. If the prior is widened in
regions where the likelihood is negligible, then the evi-
dence just changes proportional to the prior volume, so for
instance a doubling of the prior range will only reduce the
ln(evidence) by ln2 � 0:69. This indicates that the prior
range is not very important for this parameter.

We use the CosmoNest algorithm described in
Refs. [4,11] to compute the evidences. This is based on
the nested sampling algorithm of Skilling [17], and is a fast
Monte Carlo (but not Markov chain) method for accurately
averaging the likelihood across the entire prior space. The
algorithm parameters used were N � 300 live points and
an enlargement factor of 1.8 for HZ and 1.9 for VARYn.
These enlargement factors are higher than those required
for the same models and similar target accuracy with say
WMAP data. This is because as the data improve the
likelihood contours in the high likelihood regions can
deviate from elliptical and become more banana shaped.
The tolerance parameter was set to 0.5 which gave answers
to good accuracy as indicated by the uncertainties ob-
tained. Four independent evidence evaluations were done
for each calculation, to obtain the mean and its standard
error.

Figure 1 shows our main result. At nS � 1, the HZ
model is strongly preferred with lnB10 � �3:6	 0:1. It
has a higher evidence since it can fit the data just as well as
VARYn and has one less parameter. Once nS is far enough
away from 1, the HZ fit becomes very poor and the Bayes
factor plummets. The speed with which this happens in-
dicates the strength of the experiment.

We see that if the true value lies in the range 0:989<
nS < 1:011, Bayesian model selection will favor the HZ
model, and within the narrower range 0:994< nS < 1:006
it will give strong support to that model, though Planck on
its own is not powerful enough to be able to decisively
favor HZ over VARYn even if HZ is the true case. Only
once nS < 0:986 or nS > 1:014 can Planck offer strong
evidence against HZ, rapidly becoming decisive as the
fiducial value moves away from unity beyond 0.983 or
1.017.
123524
We can contrast these model selection results with those
indicated by parameter estimation. Using the same simu-
lated data, we compute the marginalized likelihood of nS

about nS � 1. This gives a 68% range of 0:995< nS <
1:004 and a 95% range of 0:991< nS < 1:008, in good
agreement with estimates obtained by other authors includ-
ing the Planck Blue Book. We see this is an explicit
example of Lindley’s paradox; there are values of nS lying
outside the 95% confidence region, for which model se-
lection would nevertheless favor the HZ model.

We end by estimating how likely it is that Planck will be
able to make a decisive selection between our two models,
based on current understanding of the spectral index. We
use a variant of Trotta’s ExPO approach [3], but with one
important distinction; that we use the current model selec-
tion position as input, whereas Trotta used the observed
likelihood in the VARYn model alone. For simplicity we
consider only the marginalized likelihood for nS as the
starting point rather than marginalizing the model selection
outcome over all parameters, but we expect that to make
little difference in this case.

According to Parkinson et al. [11], following WMAP3
the balance of probability between HZ and VARYn is 12%
to 88% (with some dependence on the choice of data
compilation). This makes the important assumption that
the models were thought equally likely before the data
came along; anyone who thinks otherwise can readily
recompute according to their own prejudice. In essence,
one can think of the probability distribution for nS as being
a weighted superposition of the likelihood in the VARYn
model plus a delta-function at nS � 1. Trotta omits the
delta-function term in his ExPO forecasts.

For the 12% probability that nS is actually one, Planck
will clearly not find evidence to the contrary, but as we
have seen would in that case provide strong evidence for
-3



PAHUD, LIDDLE, MUKHERJEE, AND PARKINSON PHYSICAL REVIEW D 73, 123524 (2006)
the HZ case. For the remaining probability, we use the
marginalized distribution for nS as computed in Ref. [11].
We find that 7% of the posterior lies in the region nS >
0:983 where even Planck cannot make a decisive verdict.
We can therefore conclude that if nS is not one, then Planck
is expected to provide a decisive verdict against HZ, which
WMAP3 has not achieved, but with a small chance it will
not.

Trotta [3] came to the same verdict that Planck is very
likely to rule out nS � 1, but using WMAP1 data. However
we would not have come to that conclusion using our
modification of his approach, as with WMAP1 the model
selection verdict put somewhat more than half the proba-
bility in the HZ case [4], and also a significant part of the
nS � 1 probability into the indecisive region. Accordingly,
at that point we would have said that the most likely out-
come of Planck (under the assumption of equal model prior
probabilities) was strong support for nS � 1. However, as
is always the danger with probabilities, WMAP3 has over-
turned that conclusion.

III. CONCLUSIONS

We have carried out a model selection forecast for the
Planck satellite, focussing on the scalar spectral index.
123524
Such analyses complement the usual parameter error fore-
casts, and are particularly directed to the question of when
one can robustly identify the need for new fit parameters.
In particular, we have delineated the values of nS for which
strong or decisive model comparisons can be carried out.
Ruling out nS � 1 is found to be significantly harder than
parameter error forecasts suggest.

The recent WMAP3 data have left nS poised in an
interesting position, where model selection analyses do
support parameter estimation conclusions but not yet at a
decisive level. Our results show that if nS really is different
from one, then Planck is very likely to be able to confirm
that, but if the HZ case is the true one then even Planck will
not be decisive.
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