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ABSTRACT

Direct observations provide constraints on the first two derivatives of the inflaton potential in
slow-roll models. We discuss how present-day observations, combined with the flow equations
in slow-roll parameter space, provide a non-trivial constraint on the third derivative of the in-
flaton potential. We find a lower bound on the third derivative of the inflaton potential V" /V >
—0.2. We also show that unless the third derivative of the inflaton potential is unreasonably
large, then one predicts the tensor-to-scalar ratio, r, to be bounded from below r > 3 x 1070,

Key words: early Universe.

1 INTRODUCTION

Inflation is now considered a natural and necessary part of the cos-
mological standard model, providing the initial conditions for cos-
mic microwave background radiation and large-scale structure for-
mation. Our knowledge of the fundamental physics responsible for
inflation is, however, very limited, and only recent observations of
the cosmic microwave background (Lee et al. 2001; Halverson et al.
2002; Netterfield et al. 2002) and large-scale structure (Croft et al.
2000; Saunders et al. 2000; Percival et al. 2001) have provided the
first glimpse of the underlying physics. This has been achieved (and
is still only possible) in slow-roll inflation (see Lyth & Riotto 1999
for a review on slow roll and a list of references).

For any given inflationary model one can find the power spectrum
of primordial curvature perturbations, P(k), which is a function of
the wavenumber k. This power spectrum can be Taylor-expanded
about some wavenumber ky and truncated after a few terms (Lidsey
et al. 1997)
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where the first term is a normalization constant, the second term is
the power-law approximation, with the case ng =1 corresponding
to a scale invariant (Harrison—Zel’dovich) spectrum and the third
term is the running of the spectral index.

Early data analyses (Kinney, Melchiorri & Riotto 2001; Wang,
Tegmark & Zaldarriaga 2002) have truncated this expansion after the
first two terms, hence assuming that the bend of the spectrum is zero,
Ok =dng/dInk|i—x, = 0. However, as shown in Copeland, Grivell
& Liddle (1998), Hannestad, Hansen & Villante (2001), this early
truncation gives too strong constraints on both scalar and tensor
indices, and the analysis must allow for a bend of the spectrum.
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In most slow-roll (SR) models 9y,; is expected to be very small,
since it is second order in small parameters (Kosowsky & Turner
1995), but there are very interesting models where this need not
be the case (Stewart 1997a,b; Kinney & Riotto 1998; Dodelson
& Stewart 2002), and 0y,, may assume values big enough to be
observable (see, e.g., Copeland et al. 1998; Covi & Lyth 1999). The
more general SR models are constrained through the expansion (1),
which can provide constraints on the first two derivatives of the
inflaton potential (Liddle & Turner 1994; Hannestad et al. 2002).

In SR it is straightforward to find the derivatives of the scalar and
tensor spectral indices (Liddle & Lyth 1992; Kosowsky & Turner
1995), dng/dInk and dnr/dInk, and these two provide the flow
equations in SR space (Hoffman & Turner 2001). We discuss be-
low how one can combine present-day observation with these flow
equations to obtain a non-trivial bound on the third derivative of
the inflaton potential, V"”/ V (or combinations such as V'V /V?),
under the assumption that V”/V (or V'V’ /V?) can be treated as
approximately constant.

2 SLOW-ROLL MODELS

2.1 The flow equations

Slow-roll models are traditionally defined through the three param-
eters €, ) and £2, which roughly correspond to the first, second and
third derivatives of the inflaton potential. We will use the notation
(Lyth & Riotto 1999)
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where M is the reduced Planck mass, M =2.4 x 10'® GeV, from
which one can express the SR parameters using the directly observ-
able quantities n, r and Oy,

282 = —dx — 24€% + 16en, 3)

2n =ng — 1 + 6¢, 4

2¢ = r = —nr, (5)
K

where r is the tensor-to-scalar ratio at the quadrupole. Equa-
tions (4) and (5) are truncated at order £2 and equation (3) at or-
der V'2V""/ V3, and are thus correct to leading order in slow-roll
expansion.

The factor « in equation (5) depends on the given cosmology
(Knox 1995; Turner & White 1996), in particular on the value of €2,
and 2, and in this paper we will use the value k = 5, corresponding
to 2, =0.65 and €2, =0.35.

As the inflaton rolls down the potential, the values of ng and nt
will change, and this variation is governed by the flow equations
(Liddle & Lyth 1992; Kosowsky & Turner 1995)

dns _ 47 _ 3r 2

N = 4K[(ns l)+2k]+2€, (6)
dnT_ r ) r 7
iN - x (ns — )+; , @)

where we have used d Ink = —dN, with N the number of Hubble
times (e-folds) until the end of inflation. Also this equation is correct
atleading order in slow roll, since one has d/dN = —(1 —€)d/dInk
(Liddle & Turner 1994). The connection between £2 and M3V /V
through € is given by equations (2), £2 = \/r/k M* V" / V . Certainly
one can find good inflationary models, which do not obey this slow-
roll description. This could appear, for example, because the deriva-
tion of the slow-roll equations is based on the assumption of a slowly
varying Hubble parameter, which for particular models could be
violated.

As N decreases, the inflaton rolls down its potential, and the ob-
servable parameters are determined when the relevant scales cross
outside the horizon, approximately 50-60 e-folds before the end of
inflation (Kolb & Turner 1990). Single field inflation will end, when
the SR conditions are violated (Kolb & Turner 1990; Hoffman &
Turner 2001)

3
r<6kx or |(ng—1)+ —r|<6. ®)
K

The area in (ng, r) space inside this boundary is denoted the SR
‘validity region’. The solid lines in Fig. 1 show this region, and also
examples of the flow of two models (dotted lines). An almost trivial
observation is that the region allowed by current observations, given
in (10)—(12), lies inside the SR validity region.

In order to close the set of equations, so that the flow equations
uniquely define the time evolution of ng and nt, we need to intro-
duce an additional constraint, and there are various possibilities. In
Hoffman & Turner (2001) the assumption was made that x” =0,
where x = V’/V. Another possibility would be to assume that ei-
ther V"”/V or £ can be treated as constants. Different choices
will lead to different fixed points and a different time evolution
of ng and nt, and general conclusions are therefore only credible
if such conclusions are reached for any choice of this additional
constraint.
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Figure 1. The SR validity region (solid line) flown back 50 e-folds (dashed
line, partially coinciding with one of the flow lines) together with two exam-
ples of flow lines (dotted lines) ending on the boundary of the SR validity
region. In this case we set £2 =0. This figure is available in colour in the
on-line version of the journal in Synergy.

2.2 Observational constraints

The COBE observations (Bunn, Liddle & White 1996) gave the first
constraint on the first derivative

V3/2
M3V’
and the present-day constraints on slow-roll parameters are im-
proved when combining cosmic microwave background (CMB) data
with data from the Lyman-o forest. The reason being that the error-
ellipses for CMB and Lyman-« are almost perpendicular (Hannestad
et al. 2002). The reason for using Lyman-« data (Croft et al. 2000)
instead of ‘standard’ large-scale structure (LSS) data (such as PSCz
Saunders et al. 2000 or 2dFGRS Percival et al. 2001) is, that the
Lyman-« data are obtained at high redshift, where small scales are
still linear. One should naturally bear in mind, that neither CMB
nor Lyo data include all the possible systematic errors. The bounds
obtained are (Hannestad et al. 2002) (all at 20')

~5x 1074, &)

0.8 <ng < 1.0, (10)
0<r<0.3, an
—0.05 < O1px < 0.02, (12)

where ng is the scalar spectral index, r is the tensor-to-scalar ra-
tio and 9y, =dng/dInk is the bend defined through equation (1).
These bounds directly provide constraints on the first and second
derivatives of the potential,

/

M

< 0.25, 13)

"

M?*|—| < 0.1, (14)

however, the third derivative is not directly constrained. Instead,
equations (10)—(12) limit only £ to be smaller than about |£?| <
0.036, when assuming independent errors on ng, r and dng/dInk,
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and in reality one could obtain a slightly stronger bound. To ob-
tain a bound on V" we must combine the observational constraints
(10)—(12) with the flow equations in SR parameter space, equa-
tions (6) and (7). This is because one has dng/dInk~ \/r (V" /V)
(—2M3/ /) +4r/k (nsg — 1 + % r/k), and since we do not have a
lower bound on r we cannot obtain any direct constrainton V"' / V.

3 DISCUSSION

We are going to consider the case, where slow-roll inflation is ended
because the slow-roll conditions are violated, equation (8). Another
possibility would be to allow for other fields coupled to the inflaton
field that could end inflation. The parameters observable with CMB
and LSS are determined approximately 50 e-folds before the end of
inflation, and we therefore run the SR-violating boundary back in
time 50 e-folds. This is done for various values of fixed £2 (or fixed
V" / V). Now we demand that the observable parameters should be
in agreement with equation (10), and if no point on the SR-violating
boundary lands inside the observed parameter-range, then we can
exclude this value of £2 (or V" / V).

Let us first consider the case where £ can be treated as a constant
during the 50 e-folds. If £2 = 0 one finds, that 50 e-folds before the
crossing of the SR-violating boundary one has

2x107° <r <0.5, (15)

when we demand that n; complies with equation (10). This can also
be seen in Fig. 2, where the thicker solid line is for £2 = 0. If £2 is
positive then r must be even smaller, since the region in Fig. 2 moves
to the right (larger ), and for £2 > 0.06 there are no more points in
agreement with observations. For negative &2 the acceptable values
of rare larger than 2 x 1073, and for £2 < — 0.06 there are no points
in agreement with observations. We hence conclude, that in the case
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Figure 2. Examples of the flown back SR validity boundary, 50 e-folds before
the end of inflation. The thicker solid black line shows the case for €2 = 0. For
the solid lines, 52 was kept constant, while the dashed lines are for models
where V" /V was kept constant. From left to right we show examples for
£2=—-10"2,—103and +5 x 103 aswellas V" /V = =5 x 1072, =102
and 45 x 1072, For small » = T/ S the models with constant £2 move nearly
parallel to the ng direction while those with constant V" /V are frozen and
remain close to the £2 =0 curve. This figure is available in colour in the
on-line version of the journal in Synergy.
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where £2 can be considered constant throughout the 50 e-folds and
inflation ends by violating the slow-roll conditions, one must have
|£2| < 0.06. We therefore find a constraint on 0y, similar to (12)
from the observational constraints on n; and the flow equations
alone. This bound on &2 can be converted into a bound on V"' /V
using the predicted r and the relation £2 = \/r/k M*V"'/ V. We find
M3V" ]V >—0.2.

If one instead considers the case where V' /V can be treated as a
constant during the 50 e-folds, then the conclusions are slightly dif-
ferent. Again, in the case with V//V =0 one finds 2 x 1075 < r <
0.5. When V" /V is negative then no points agree with observations
if V" /V < —0.05. Only for positive V" / V there will always be ac-
ceptable points, however, the allowed range for r will decrease, e.g.
for M3V"/V =1 one finds 1077 <r <1073,

As discussed above, the most credible results must agree inde-
pendently of the additional constraint (fixed £2 or fixed V" / V). We
have seen that one always finds a lower bound

"

- > 02 (16)

This is the first constraint found on the third derivative of the inflaton
potential, and is valid under the assumptions specified above. It is
important to note, that the approach adopted here differs from the
results of Liddle & Turner (1994), where it was pointed out that
an observation of 0j,; would provide knowledge concerning V.
The difference being that in our case we have only an observational
upper bound on r, and without the use of the flow equations, this
will leave V" completely unknown.

No strong predictions can be made on the magnitude of r, simply
because if V"/V is large then r is allowed to be smaller, however,
one would often expect M3V"/V to be smaller than both M2V"/V
and MV'/V, equations (13) and (14), in which case one predicts
r>3x107°.

The number of e-folds N depends on the detailed mechanism
of inflation such as the reheat temperature and the energy scale of
inflation, and can be somewhat different from 50 (see, e.g., Lyth
& Riotto 1999). If N =60 our direct bound on V" /V > —0.05
remains unchanged, however, the inferred bound from the case of
constant £2 is weakened by approximately a factor of 2. The lower
bound on r discussed above becomes » > 3 x 1077, Naturally, for a
lower value of N the bounds are correspondingly stronger.

4 CONCLUSION

COBE gave us the first clear information on the first derivative of the
inflaton potential, and the combination of CMB observations with
data from the Lyman-« forest has given us information on the first
two derivatives of the inflaton potential. Here we have combined
the present observations with the flow equations in slow-roll space,
and found a lower bound on the third derivative of the inflaton
potential V””/V > —0.2. We have also shown, that unless V"’/V is
unreasonably large, then one predicts the tensor-to-scalar ratio, r, to
be bounded from below 3 x 1076 < r.
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