The European Large Area ISO Survey - VIII. 90-µm final analysis and source counts

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/22855/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
The European Large Area ISO Survey – VIII. 90-µm final analysis and source counts

Ph. Héraudeau, 1,2⋆ S. Oliver, 3 C. del Burgo, 2,4 C. Kiss, 2,5 M. Stickel, 2 T. Mueller, 6 M. Rowan-Robinson, 7 A. Efstathiou, 8 C. Surace, 2,7,9 L. V. Tóth, 2,5 S. Serjeant, 10 D. M. Alexander, 11 A. Franceschini, 12 D. Lemke, 2 T. Morel, 13 I. Pérez-Fournon, 14 J.-L. Puget, 15 D. Rigopoulou, 16 B. Rocca-Volmerange 17 and A. Verma 16

1 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, the Netherlands
2 Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg, Germany
3 Astronomy Centre, University of Sussex, Falmer, Brighton BN1 9QJ
4 European Space & Technology Centre (ESTEC), Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, the Netherlands
5 Konkoly Observatory, PO Box 67, H-1525 Budapest, Hungary
6 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany
7 Astrophysics Group, Blackett Laboratory, Imperial College of Science Technology & Medicine, Prince Consort Road, London SW7 2BZ
8 Department of Computer Science and Engineering, Cyprus College, 6 Diogenous Street, PO Box 22006, 1516 Nicosia, Cyprus
9 Laboratoire d’Astrophysique de Marseille, Traverse du Siphon–Les trois Lacs, BP8, F13376 Marseille Cedex 12, France
10 Unit for Space Sciences & Astrophysics, School of Physical Sciences, University of Kent at Canterbury, Canterbury, Kent CT2 7NZ
11 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
12 Dipartimento di Astronomia, Università di Padova, Vicolo Osservatorio 5, I-35122 Padova, Italy
13 Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy
14 Instituto de Astrofísica de Canarias, C/Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain
15 Institut d’Astrophysique Spatiale, Bâtiment 121, Université Paris XI, 91405 Orsay Cedex, France
16 Department of Physics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH
17 Institut d’Astrophysique de Paris, 98bis Boulevard Arago, F 75014 Paris, France

Accepted 2004 July 23. Received 2004 July 20; in original form 2004 June 17

ABSTRACT

We present a re-analysis of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) 90-µm observations carried out with ISOPHOT, an instrument on board the ISO of the European Space Agency. With more than 12 deg², the ELAIS survey is the largest area covered by ISO in a single programme and is about one order of magnitude deeper than the IRAS 100-µm survey. The data analysis is presented and was mainly performed with the PHOT interactive analysis software but using the pairwise method of Stickel et al. for signal processing from edited raw data to signal per chopper plateau. The ELAIS 90-µm catalogue contains 237 reliable sources with fluxes larger than 70 mJy and is available in the electronic version of this article. Number counts are presented and show an excess above the no-evolution model prediction. This confirms the strong evolution detected at shorter (15 µm) and longer (170 µm) wavelengths in other ISO surveys. The ELAIS counts are in agreement with previous works at 90 µm and in particular with the deeper counts extracted from the Lockman hole observations. Comparison with recent evolutionary models show that the models of Franceschini et al. and Guiderdoni et al. (which includes a heavily extinguished population of galaxies) give the best fit to the data. Deeper observations are nevertheless required to discriminate better between the model predictions in the far-infrared, and are scheduled with the Spitzer Space Telescope, which has already started operating, and will also be performed by ASTRO-F.

Key words: surveys – galaxies: evolution – galaxies: formation – infrared: galaxies.

1 INTRODUCTION

Strong evolution has been detected in the infrared (IR) regime based on IRAS number counts at 12, 25, 60 and 100 µm (Hacking

※E-mail: P.Heraudeau@astro.rug.nl

© 2004 RAS
& Houck 1987; Hacking, Condon & Houck 1987; Hacking & Soifer 1991; Oliver, Rowan-Robinson & Saunders 1992; Bertin et al. 1997) which show an excess of galaxies compared with the no-evolution scenario. These findings were recently confirmed with much deeper surveys carried out with the ISOPHOT instrument on-board the Infrared Space Observatory (ISO) (Kessler et al. 1996) at 90 and 170 µm (Kawara et al. 1998; Puget et al. 1999; Efstathiou et al. 2000; Linden-Vørnle et al. 2000; Juvela, Mattila & Lemke 2000; Matsuhara et al. 2000; Dole et al. 2001). ISO also detected a substantial number of faint sources, consistent with strong evolution from 15-µm number counts (see e.g. Elbaz et al. 1999; Gruppioni et al. 2002). Differential counts obtained from several independent 15-µm ISO-CAM surveys show a remarkable upturn at $S_{15} \lesssim 3$ mJy and an excess of a factor of 10 at the faintest flux above the no-evolution predictions.

In addition to the excess of galaxies detected by ISO surveys from the mid-IR to the far-IR, the observational constraints set by the discovery of the cosmic IR background (CIB) [see Hauser & Dwek (2001) for a review, and references therein] together with deep sub-millimetre surveys (Hughes & Dunlop 1998; Barger et al. 1998; Eales et al. 2000; Scott et al. 2002; Webb et al. 2003) are dramatically increasing the development of new scenarios of galaxy formation and evolution (Pearson & Rowan-Robinson 1996; Guiderdoni et al. 1998; Devriendt & Guiderdoni 2000; Rowan-Robinson 2001; Franceschini et al. 2001; Takeuchi et al. 2001; Pearson 2002; Lagache, Dole & Puget 2003; Xu et al. 2003).

The ELAIS survey (for an overview see Oliver et al. 2000 Paper I) was the largest open time project conducted by ISO. This survey consists of more than 12 deg2 of the sky surveyed at 15 and 90 µm, nearly 6 deg2 at 6.7 µm and 1 deg2 at 175 µm (i.e. the FIRBACK survey, see Puget et al. 1999) in four high ecliptic latitude ($|\beta| > 40\degree$) regions with low IRAS 100-µm sky brightness (<1.5 MJy sr$^{-1}$). In this work, we present a 90-µm analysis and source counts limited to the four large areas, three in the northern hemisphere (N1, N2 and N3), and one in the southern hemisphere (S1). Preliminary results of the ELAIS survey at 90 µm based on the Quick Look analysis and the brightest sources were presented in Efstathiou et al. 2000 (hereafter referred to as Paper III).

The paper is organized as follows: in Section 2 we describe the observations and the data reduction based on the analysis of the distribution of consecutive readouts of the detector instead of using the whole ramp. After the source extraction (Section 3), we search in vain for Solar system objects to remove them from the source list and as some could be useful for calibration purposes. In Section 4, we estimate the completeness of the survey, source flux and position accuracies and the Eddington bias correction from Monte Carlo simulations of artificial sources on the final maps. The final catalogue of sources is presented in Section 5. We compare the ISOPHOT calibration for all standard stars observed at 90 µm with model predictions and for the sources detected in the survey with IRAS values (Section 6). Temperatures from colour ratios between 90 and 170 µm for sources also detected in the FIRBACK survey are computed in Section 7. After computing the structure noise (Section 8) in the ELAIS fields we present number counts (Section 9) which are compared with other works at 90 µm and to evolutionary models before the summary and discussion of our results in Section 10.

2 OBSERVATIONS AND DATA PROCESSING

2.1 Observations

The 90-µm ELAIS data consist of 13–20 P22 staring raster maps performed with the 3 × 3 array detector C100 of the ISOPHOT instrument (Lemke et al. 1996; for an overview see the ISOPHOT Handbook by Laureijs et al. 2003) on board ISO. The pixel size on the sky of the C100 detector is 43.5 × 43.5 arcsec2 and the distance between the pixel centres is 46 arcsec. The ISOPHOT filter-band C90 with a reference wavelength of 90 µm and a width of 51 µm was used. At this wavelength, the full width at half maximum (FWHM) of the beam profile is 50 arcsec. Each raster map covers typically 20 × 20 arcmin2. Table A1 in Paper I provides full details of the observations. The N1, N2, N3 and S1 fields cover 2.74, 2.98, 2.16 and 4.15 deg2 on the sky, respectively, i.e. 12.03 deg2 in total. The exposure time was 20 s but a number of subfields (representing about 17 per cent of the whole survey area) were re-observed with 12-s exposures (see fig. 14 in Paper I for the survey coverage).

2.2 Signal processing

The data were first processed with the PHOT interactive analysis (PIA) software (Gabriel et al. 1997) v. 9.1 using the OLPI0 calibration files modified by the inclusion of the new dark signal correction (del Burgo, Héraudeau & Abraham 2003a; del Burgo et al. 2003b).

The data reduction from ERD (edited raw data) to SCP (signal per chopper plateau) was performed using the pairwise method of Stickel et al. (2003) which was also used by Juvela et al. (2000).

The signal derived from the distribution of the difference between consecutive readouts is used instead of making linear fits to the whole ramps. After rejecting the first 10 per cent of the data stream which may be affected by transient, the unweighted myriad technique (Kalluri & Arce 1998) was used as a robust estimator of the pairwise distribution for each raster position. The distribution was assumed to be Cauchy (a type of α-stable distribution like Gaussians but with a heavier-tailed distribution) to take into account the presence of glitches in the tail of the distribution.

2.3 Calibration

Each raster was preceded and followed by an FCS (faint calibration source) measurement. However, the calibration of the on-sky measurements was made using the second FCS only, performed immediately after the raster and with a power chosen to reproduce the intensity of the sky-background of the measurement. The second FCS generally shows a smaller transient behaviour than the first one, providing a more accurate measurement. For each field, the relative uncertainty coming from the FCS calibration was computed as the mean absolute deviation of the average sky-background of all rasters, which is 7 per cent.

2.4 Flat-fielding and mapping

Differences of up to 20 per cent in the overall levels of the data streams of the detector pixels were noticed after the flux calibration. This behaviour most likely results from pixel-to-pixel sensitivity differences, which moreover appeared to be time dependent.

To correct for this, the pixel data streams were slightly smoothed and filtered to remove sources. At each raster point the mean of the filtered pixel values was computed. The sequence of ratios of the mean and the individual pixel value at each raster point was fitted with a robust polynomial to give the smooth correction function for each pixel. If remaining time trends were still noticeable after correcting the individual pixels to the common mean (by multiplication), the procedure was repeated but the filtered data values from all detector pixels were simultaneously fitted with a robust low-order polynomial. This removes any time trend still present after rescaling the pixel data streams to the common mean.
This combined method is highly effective in removing pixel-to-pixel sensitivity differences and time trends in the data streams.

The whole field map was built from the Jy pixel\(^{-1}\) values for each field using the drizzle mapping method under IRAF (Tody 1993) with a pixel size of 30 arcsec and the default shrink factor (0.65). The drizzle method (Fruchter & Hook 1997, 2002) allows one to consider the exact size of pixels and gaps between them (see Section 2.1).

3 SOURCE DETECTION

The source detection was performed using the SExtractor software v. 2.2.2 (Bertin & Arnouts 1996) on the final maps. The sky-background was computed in a grid of 15 × 15 pixel\(^2\) (i.e. 7.5 × 7.5 arcmin\(^2\)) and SExtractor was run with a detection threshold of 1.8σ and a minimum number of pixel equal to 2. The flux in a circular aperture (FLUX\(_{\text{APER}}\)) of 6 pixels (i.e. 180 arcsec) diameter was used.

3.1 Search for Solar system objects in the ELAIS fields

Although the ELAIS fields are at high ecliptic latitude (for low zodiacal background), there could still be objects from the Solar system inside the fields. The search for these targets had two purposes: (1) cleaning of the ELAIS source list from moving Solar system targets; and (2) finding additional targets which might be later on used for independent flux calibration purposes (Müller & Lagerros 1998; Müller, Hotzel & Stickel 2002; Müller & Lagerros 2002). As the raster maps were observed at different periods during the ISO mission, we used the exact date and time at which they were obtained to search the data bases of the Minor Planet Centre.\(^1\) For our search we included more than 150 000 asteroids with reliable orbital elements (numbered asteroids and unnumbered, multi-apparition objects), more than 200 comets and the planets and their satellites. A search radius which was slightly larger than the actual ELAIS fields was used to account for the geocentric to ISO-centric parallax errors (the position calculations were done in the geocentric frame). A geocentric to ISO-centric parallax of 10 arcmin covers all asteroids beyond 0.15 au from Earth, i.e. more than 99 per cent of all known asteroids, but we allowed for parallaxes of up to 30 arcmin to also account for possible ephemeris uncertainties and asteroid movements during the observations. This means that the 2-deg search radius for each ELAIS field included a very large safety margin.

One asteroid and one comet were selected to be possibly seen in one of the ELAIS rasters. We computed their movements during the observation: 12 arcsec and 1.5 arcmin. The ISO parallax correction was less than 1 arcmin in both cases. The two objects were finally found to be outside the ELAIS field when we repeated the ephemeris calculation with a more sophisticated N-body tool in the ISO-centric frame. From our analysis we concluded that there are no known Solar system sources in the ELAIS 90-μm data.

4 COMPLETENESS, SOURCE FLUX

UNCERTAINTY AND POSITION ACCURACY

To estimate several quantities such as completeness, flux and positional uncertainties we adopt a similar approach to Dole et al. (2001) for FIRBACK based on the addition of artificial sources to the data. Artificial sources were added at random positions on the final map of each field using the 90-μm theoretical footprint scaled by a certain factor to simulate sources with a known flux.

In practice, to keep only the noise on the images, objects detected by SExtractor were first removed from the images for the simulations (subtracting the image obtained with the SExtractor option CHECKIMAGE_TYPE=OBJECTS). The source position can fall anywhere on a pixel and the pixelized footprint was computed in a square of 5 × 5 pixels providing a spatial extension of 2.5 × 2.5 arcmin\(^2\) for each source and representing 96 per cent of the total flux contained in the theoretical footprint. Simulations of 15 artificial sources and the extraction with SExtractor using the same parameters as for the survey sources were repeated 300 times for each field giving a total of 4500 simulated sources at each flux level equal to 50, 60, 70, 80, 90, 100, 125, 150, 200, 300, 400, 500, 750 and 1000 mJy.

4.1 Positional accuracy

The positional accuracy can be estimated from the statistical analysis of the distances between recovered sources and the exact position of

\(^1\) http://cfa-www.harvard.edu/cfa/ps/mpc.html
The absolute pointing error of ISO represents only a small additional uncertainty as it was better than a few arcsecs all along the mission (Kessler 2000).

4.2 Flux uncertainties

Histograms of the recovered to input flux of simulated sources are shown in Fig. 2 for N2 at 100, 200 and 500 mJy. At each flux level, the distribution was fitted with a Gaussian whose σ gives an estimate of the photometric accuracy. Fig. 3(b) gives the variation of σ as function of flux level derived from simulated sources detected with SExtractor with a signal-to-noise ratio ≥ 3. The uncertainty on the recovered flux is typically 30 per cent at 100 mJy and decreases to less than 10 per cent above 400 mJy.

4.3 Completeness

The completeness of the survey is computed as the ratio of the number of recovered sources with signal-to-noise ratio above 3 to the total number of simulated sources and is shown in Fig. 3(a) for N2. The completeness is almost 100 per cent down to 150 mJy and decreases to 77 per cent at 100 mJy.

4.4 Eddington bias

Noise on the images is responsible for an excess in the number counts as it will create an overestimate of fluxes. This effect, know as Eddington bias (Eddington 1913), is similar to Malmquist bias, which refers to fluctuation in intrinsic rather than measured quantities (see e.g. Teerikorpi 1998).

The proper determination of the bias plays an important role in the estimation of source flux, the computation of number counts and therefore the determination of the strength of the evolution seen in the counts as the correction dramatically increases towards the faint end of the sample.

One can estimate the Eddington bias analytically assuming a certain power law and adding an appropriate flux dispersion like in, for example, Murdoch, Crawford & Jauncey (1973) for an underlying Euclidean slope, Oliver et al. (1995) and Dole et al. (2001) who all assumed Gaussian noise. One can also use a Monte Carlo approach like Bertin et al. (1997).

A more realistic estimate of the bias can be obtained from simulations performed on the maps themselves to estimate the correction. A mean correction of the Eddington bias was computed for the four fields and is presented in Fig. 4 as a polynomial fit to the centres.
The correction for the Eddington bias as function of flux (in logarithmic scale) for the ELAIS survey computed as the centre of the Gaussian fit to the distribution of measured to input source flux (see Section 4.2). The mean correction (diamonds) is the average of the values for the four ELAIS fields (plus signs). The solid line is the result of a polynomial fit of degree 4. Error bars are the standard deviations at each flux level.

of the Gaussian fits to the distributions of measured to input flux (Section 4.2 and Fig. 2). The bias is less than 34 and 13 per cent above 70 and 100 mJy, respectively. The correction for the Eddington bias was directly performed on the source flux (while the usual way is to correct the number counts assuming a certain power law; see references above). This provides corrected source catalogues and does not need any assumption on the distribution of source flux to apply the correction to the number counts.

5 ELAIS 90-μm FINAL CATALOGUE

To check the reliability of the sources detected with SExtractor, the classification presented in Paper III was used to check the reliability of the detected sources. Five persons eyeballed all the detections above 1.5σ of the sky-background detected along the data streams of individual pixels. Only sources with detections classified at least twice as probable sources within a circle of 150-arcsec radius, a signal-to-noise ratio ≥3 and a flux ≥70 mJy (i.e. above the 3σ noise level computed in Section 8) were retained for the final source list. The selection based on the eyeball classification ensures that there are no or few fake sources in our sample.

The final ELAIS 90-μm source list contains 237 sources while the 163 most reliable sources detected in the preliminary analysis were presented in Paper I with flux uncertainties estimated to be 40 per cent. The comparison of source flux from the final and preliminary analysis is presented in Rowan-Robinson et al. (2004) for ISOPHOT and ISOCAM and shows a good agreement.

Table 1 gives right ascension, declination, flux and flux uncertainty (in mJy). The full version of this table is available in electronic format at http://www.blackwellpublishing.com/products/journals/suppmat/mnr/9259/mnfr9259sm.htm.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ELAISP90_J002905-432356</td>
<td>00 29</td>
<td>05.4</td>
<td>-43</td>
<td>23</td>
</tr>
<tr>
<td>ELAISP90_J002915-430303</td>
<td>00 29</td>
<td>15.2</td>
<td>-43</td>
<td>03</td>
</tr>
<tr>
<td>ELAISP90_J002934-431137</td>
<td>00 29</td>
<td>34.1</td>
<td>-43</td>
<td>11</td>
</tr>
<tr>
<td>ELAISP90_J003000-442243</td>
<td>00 30</td>
<td>00.0</td>
<td>-43</td>
<td>22</td>
</tr>
<tr>
<td>ELAISP90_J003019-424153</td>
<td>00 30</td>
<td>19.7</td>
<td>-43</td>
<td>41</td>
</tr>
<tr>
<td>ELAISP90_J003023-423703</td>
<td>00 30</td>
<td>24.0</td>
<td>-43</td>
<td>37</td>
</tr>
<tr>
<td>ELAISP90_J003024-433108</td>
<td>00 30</td>
<td>24.9</td>
<td>-43</td>
<td>31</td>
</tr>
<tr>
<td>ELAISP90_J003032-424600</td>
<td>00 30</td>
<td>32.9</td>
<td>-42</td>
<td>46</td>
</tr>
<tr>
<td>ELAISP90_J003057-441621</td>
<td>00 30</td>
<td>57.8</td>
<td>-44</td>
<td>16</td>
</tr>
<tr>
<td>ELAISP90_J003059-440413</td>
<td>00 30</td>
<td>59.9</td>
<td>-44</td>
<td>04</td>
</tr>
<tr>
<td>ELAISP90_J003100-435830</td>
<td>00 31</td>
<td>00.7</td>
<td>-43</td>
<td>58</td>
</tr>
<tr>
<td>ELAISP90_J003105-425642</td>
<td>00 31</td>
<td>05.6</td>
<td>-43</td>
<td>56</td>
</tr>
<tr>
<td>ELAISP90_J003114-431100</td>
<td>00 31</td>
<td>14.2</td>
<td>-43</td>
<td>11</td>
</tr>
<tr>
<td>ELAISP90_J003124-433313</td>
<td>00 31</td>
<td>24.5</td>
<td>-43</td>
<td>33</td>
</tr>
<tr>
<td>ELAISP90_J003133-424456</td>
<td>00 31</td>
<td>33.9</td>
<td>-42</td>
<td>44</td>
</tr>
<tr>
<td>ELAISP90_J003135-433302</td>
<td>00 31</td>
<td>35.0</td>
<td>-43</td>
<td>33</td>
</tr>
<tr>
<td>ELAISP90_J003152-440929</td>
<td>00 31</td>
<td>52.6</td>
<td>-44</td>
<td>09</td>
</tr>
<tr>
<td>ELAISP90_J003218-432521</td>
<td>00 32</td>
<td>18.0</td>
<td>-43</td>
<td>25</td>
</tr>
<tr>
<td>ELAISP90_J003244-432321</td>
<td>00 32</td>
<td>44.4</td>
<td>-42</td>
<td>33</td>
</tr>
<tr>
<td>ELAISP90_J003249-432953</td>
<td>00 32</td>
<td>49.6</td>
<td>-43</td>
<td>29</td>
</tr>
<tr>
<td>ELAISP90_J003253-424607</td>
<td>00 32</td>
<td>53.9</td>
<td>-42</td>
<td>46</td>
</tr>
<tr>
<td>ELAISP90_J003300-425210</td>
<td>00 33</td>
<td>00.7</td>
<td>-42</td>
<td>52</td>
</tr>
<tr>
<td>ELAISP90_J003312-423425</td>
<td>00 33</td>
<td>13.0</td>
<td>-42</td>
<td>34</td>
</tr>
<tr>
<td>ELAISP90_J003316-432104</td>
<td>00 33</td>
<td>16.2</td>
<td>-43</td>
<td>21</td>
</tr>
<tr>
<td>ELAISP90_J003318-440828</td>
<td>00 33</td>
<td>18.1</td>
<td>-44</td>
<td>08</td>
</tr>
<tr>
<td>ELAISP90_J003321-432700</td>
<td>00 33</td>
<td>21.9</td>
<td>-43</td>
<td>27</td>
</tr>
<tr>
<td>ELAISP90_J003349-441903</td>
<td>00 33</td>
<td>49.3</td>
<td>-44</td>
<td>19</td>
</tr>
<tr>
<td>ELAISP90_J003359-441108</td>
<td>00 33</td>
<td>59.5</td>
<td>-44</td>
<td>11</td>
</tr>
<tr>
<td>ELAISP90_J003415-423205</td>
<td>00 34</td>
<td>15.2</td>
<td>-42</td>
<td>32</td>
</tr>
</tbody>
</table>

© 2004 RAS, MNRAS 354, 924–934
6 CALIBRATION COMPARISONS

To check the quality of the calibration at the low surface brightness level of the ELAIS fields, we compare the ISOPHOT calibration with theoretical predictions for standard stars (Section 6.1), and with IRAS (Section 6.2) flux estimates.

6.1 Standard stars

To better determine the ELAIS calibration (as well as the general ISOPHOT calibration) three stars (HR 6132, 6464 and 5981) close to the ELAIS fields were observed in mini-raster mode (a 3 x 3 raster with the star positioned at the centre of a different pixel in each pointing). The faintest of the stars (HR 5981) was observed twice on the same ISO orbit.

To increase the sample of measurements and thus the reliability of the comparison, all other standard stars observed in mini-raster mode at 90 μm were retrieved from the ISOPHOT archive. The comparison with two model predictions was performed. Hazemerssley et al. (1998) models were constructed by fitting near-IR observations performed with the Infrared Telescope Facility (IRTF). Cohen et al. (1999) constructed empirical stellar spectra in the near- and mid-IR based on observations taken from the ground, the Kuiper Airborn Observatory and the IRAS Low Resolution Spectrometer. Both predictions were extrapolated to longer wavelengths as ν^2.

Table 2 shows the list of stars and the characteristics of the ISOPHOT measurements as well as model predictions. The predicted stellar fluxes lie in the range between 60 mJy and 10 Jy at 90 μm. Uncertainties on the models estimates are typically 3 and 5 per cent for Hazemerssley et al. (1998) and Cohen et al. (1999), respectively.

The integration time per pointing in these mini-rasters (from 40 s to 72 s) is longer than that used for the bulk of the ELAIS survey to obtain an accurate determination of fluxes to establish the ISOPHOT calibration.

The observations of calibration stars were processed in the same way as the survey rasters. The application of a method based on celestial standards ultimately depends on the accuracy with which the background can be estimated and on the accuracy of the fluxes of the sources used as calibrators. However, in the case of the small rasters maps performed on standard stars, SExtractor fails to compute a reliable sky (and therefore star flux) estimate.

The best way to extract both star and sky-background estimates for point sources observed in mini-raster mode was found to be to use the individual pixel values at each raster position weighted by the point-spread function fractions derived for the ISOPHOT C100 (Laureijis 1999, Moor, in preparation). The fraction of the point-spread function falling on a C100 pixel situated at a distance d from the point source centre $[f_{\text{psf}}(d)]$ has been determined for each filter at a number of typical distances. The method assumes the source is point like (the f_{psf} factors have to be modified if the source is extended) and centred on the detector pixels which is the case for standard stars. ISOPHOT values were colour-corrected according to the spectral type of these stars.

Results of the comparison are given in Table 2 as the ratio between measured (based on the FCS) and theoretical fluxes. When two model predictions were available, we used their weighted mean to compute the ratio. The measurement of a star (HR 7451) with a very low predicted flux (7.5 mJy) was excluded from the comparison. The two measurements of the brightness star (HR 5340) are in very good agreement.

ISOPHOT fluxes are on average higher than the predicted ones and the weighted mean ratio is 1.06 ± 0.02. It is unclear whether this discrepancy is coming from the differences in the observing setup used for standard stars and the ELAIS survey. The difference between the FCS calibration and the model prediction for stars will be shown in Figs 8–10.

6.2 Comparison with IRAS sources

While the ELAIS fields were chosen to avoid strong 12-μm IR sources, there are a number of IRAS 100-μm sources detected in the survey. All common sources have low (the flux is an upper limit) or intermediate IRAS quality flags (Moshir, Kopman & Conrow 1992). Fig. 5 shows the comparison with the Faint Source Catalogue (FSC) which is known to be more accurate than the Point Source Catalogue at faint level. Only sources with quality flags equal to 2 (intermediate accuracy) were selected for the comparison and this represents 21 IRAS sources.

Table 2. The list of standard stars used to check the FCS calibration with theoretical values. Columns are the target dedicated time (TDT) number of measurement, name of measurement, exposure time, size of the mini-rasters in steps of 46 arcsec, model predictions from Cohen et al. (1998) (F_{MC}) and Hazemerssley et al. (1998) (F_{PH}) and ISOPHOT measurements (F_{PH}) and their respective uncertainties ($\epsilon_{\text{MC}}, \epsilon_{\text{PH}}$ and ϵ_{PH}) are indicated. ‘Ratio’ is the ratio of measured to predicted fluxes. When two model predictions were available, we used their weighted mean to compute the ratio. Errors on the ratio are given in ϵ_{Ratio}. The weighted mean ratio is 1.06 ± 0.02.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>TDT number</th>
<th>Name</th>
<th>Exposure (s)</th>
<th>Size</th>
<th>F_{MC} (Jy)</th>
<th>ϵ_{MC} (Jy)</th>
<th>F_{PH} (Jy)</th>
<th>ϵ_{PH} (Jy)</th>
<th>ϵ_{PH} (Jy)</th>
<th>Ratio</th>
<th>ϵ_{Ratio} per cent</th>
</tr>
</thead>
<tbody>
<tr>
<td>008602417</td>
<td>HR 5340</td>
<td>37.00</td>
<td>5 x 3</td>
<td>9.303</td>
<td>0.528</td>
<td>9.029</td>
<td>0.300</td>
<td>9.54</td>
<td>0.34</td>
<td>1.05</td>
<td>0.05</td>
</tr>
<tr>
<td>10503417</td>
<td>HR 6705</td>
<td>72.00</td>
<td>5 x 3</td>
<td>2.012</td>
<td>0.115</td>
<td>1.904</td>
<td>0.066</td>
<td>2.02</td>
<td>0.14</td>
<td>1.05</td>
<td>0.08</td>
</tr>
<tr>
<td>27502117</td>
<td>HR 5340</td>
<td>72.00</td>
<td>5 x 3</td>
<td>9.303</td>
<td>0.528</td>
<td>9.029</td>
<td>0.300</td>
<td>9.52</td>
<td>0.23</td>
<td>1.05</td>
<td>0.04</td>
</tr>
<tr>
<td>29301005</td>
<td>HR 7310</td>
<td>72.00</td>
<td>5 x 3</td>
<td>0.258</td>
<td>0.015</td>
<td>0.268</td>
<td>0.009</td>
<td>0.33</td>
<td>0.02</td>
<td>1.24</td>
<td>0.08</td>
</tr>
<tr>
<td>39103002</td>
<td>HR 8775</td>
<td>72.00</td>
<td>5 x 3</td>
<td>4.957</td>
<td>0.282</td>
<td>5.096</td>
<td>0.184</td>
<td>5.49</td>
<td>0.15</td>
<td>1.09</td>
<td>0.04</td>
</tr>
<tr>
<td>65701318</td>
<td>HR 1654</td>
<td>72.00</td>
<td>3 x 5</td>
<td>0.713</td>
<td>0.042</td>
<td>–</td>
<td>–</td>
<td>0.74</td>
<td>0.02</td>
<td>1.04</td>
<td>0.07</td>
</tr>
<tr>
<td>72701418</td>
<td>HR 7980</td>
<td>72.00</td>
<td>3 x 5</td>
<td>0.517</td>
<td>0.031</td>
<td>–</td>
<td>–</td>
<td>0.48</td>
<td>0.02</td>
<td>0.93</td>
<td>0.07</td>
</tr>
<tr>
<td>77200361</td>
<td>HR 5981</td>
<td>40.00</td>
<td>3 x 3</td>
<td>–</td>
<td>–</td>
<td>0.063</td>
<td>0.002</td>
<td>0.07</td>
<td>0.02</td>
<td>1.11</td>
<td>0.32</td>
</tr>
<tr>
<td>77200364</td>
<td>HR 5981</td>
<td>40.00</td>
<td>3 x 3</td>
<td>–</td>
<td>–</td>
<td>0.063</td>
<td>0.002</td>
<td>0.07</td>
<td>0.01</td>
<td>1.11</td>
<td>0.16</td>
</tr>
<tr>
<td>78300465</td>
<td>HR 6464</td>
<td>40.00</td>
<td>3 x 3</td>
<td>–</td>
<td>–</td>
<td>0.120</td>
<td>0.004</td>
<td>0.13</td>
<td>0.02</td>
<td>1.08</td>
<td>0.17</td>
</tr>
<tr>
<td>78300677</td>
<td>HR 6132</td>
<td>40.00</td>
<td>3 x 3</td>
<td>–</td>
<td>–</td>
<td>0.288</td>
<td>0.001</td>
<td>0.32</td>
<td>0.03</td>
<td>1.11</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Colour-correction factors were computed from the IRAS fourband spectral energy distribution and IRAS and ISOPHOT filter profiles.

The mean ratio of ISOPHOT to IRAS flux is 0.76 with a standard deviation of 0.17 and shows a discrepancy with the model prediction comparison (Section 6.1).

However it should be noted that there is a tendency for the IRAS FSC to overestimate fluxes near the FSC threshold at 60 and 100 µm (Moshir et al 1992). As all the IRAS sources in Fig. 5 have S(100) < 3 Jy (and most have S(100) < 1 Jy), this would be sufficient to explain the discrepancy noted above.

7 CORRELATION WITH FIRBACK

We looked for FIRBACK identifications (Dole et al. 2001) of our 90-µm source sample within a circle of 188-arcsec radius [i.e. \(\sqrt{2} \times (43.5 + 89.4) \) where 43.5 and 89.4 are the pixel size of the C100 and C200 detectors, respectively], also including the complementary FIRBACK source catalogue which provides sources with fluxes down to 135 mJy. If several sources were selected, the closest identification was used. In the common area of the two surveys, 53 out of 102 and 21 out of 55 FIRBACK sources were identified at 90 µm in the N1 and N2 fields, respectively.

AS ISOPHOT fluxes refer to a spectrum with \(\nu \ F(\nu) \) constant, the colour temperature \(T_c \) were computed correcting the 90- and 170-µm fluxes in the two bandpasses for a modified blackbody function with an emissivity index \(\beta = 2 \).

The resulting distribution of colour temperatures (Fig. 6) is centred around \(T_c = 19 K \) with most of sources lying in the range 15–25 K. These values are in favour of the presence of a cold component in low-redshift galaxies (Rowan-Robinson et al. 2004 derived a median redshift of 0.15 for the 90-µm sample) which was first detected in the ISO Serendipity Survey (Stickel et al. 1998, 2000, 2001). Dunne & Eales (2001) also recently measured a cold component (20–21 K) in their sample of 17 galaxies combining IRAS and SCUBA observations at 450 µm. This is consistent with the analysis of CORE/DIRBE data for the MW Galaxy (Sodroski et al. 1994).

A more detailed analysis with spectral energy distribution fitting of the ELAIS sources from the optical to the far-IR (FIR) domain is presented in Rowan-Robinson et al. (2004).

8 SOURCE CONFUSION ESTIMATES

Estimates of the confusion noise relies on the direct measurement of structure noise, \(N_{str} \). The structure noise is calculated via the so-called structure function \(S \), which measures the average brightness fluctuations for a specific measurement configuration (see e.g. Herbstmeier et al. 1998):

\[
S_{i}(\theta) = \left(\frac{1}{K} \sum_{k=1}^{K} B(x + \theta_{i}) \right)_{x},
\]

where \(B(x) \) is the measured sky brightness at the position \(x \), \(\theta_{i} \) is the separation between the target and reference positions, \(K \) is the number of reference positions, \(\theta_{i} \) are the vectors to the reference positions relative to the target. The average is taken over the whole map. The actual values of \(\theta_{i} \) are determined by the geometry of the measurement configuration. The structure noise is calculated from the structure function

\[
N_{str} = \sqrt{S_{\Omega}},
\]

where \(\Omega \) is the effective solid angle of the aperture. The structure noise contains the contribution of the sky brightness fluctuations (confusion noise, \(N_{conf} \)) and that of the average instrument noise, \(N_{inst} \). As shown by Kiss et al. (2001), the relation between these quantities can be well approximated by the following formula for ISOPHOT measurements:

\[
N_{str}^2 = N_{conf}^2 + 2N_{inst}^2.
\]

We derived the distribution of structure noise for individual pixel pairs (without averaging in space in equation 1) for the ELAIS fields N1, N2, N3 and S1. The results of the ELAIS N1 field are presented in Fig. 7 (the N2, N3 and S1 fields have a similar distribution).

As seen in this figure, the distribution of \(N_{str} \) is Gaussian-like, with an extended tail toward high structure noise values. In brighter
cirrus regions the distribution of cirrus fluctuations can be well separated from the fluctuation of the CFIRB and the contribution of the instrument noise. In those fields the fluctuation distribution can be well described by a Gaussian one (Kiss et al. 2003). In the following we assume that this distribution can also be applied for the fluctuations in the faint ELAIS fields. Fig. 7 can be used to estimate the source confusion limits of the ELAIS fields. We fitted a Gaussian to the lower noise regime ($N_{\text{str}} < 20 \text{ mJy}$) of the N_{str} distribution of the N1, N2, N3 and S1 fields, which resulted in a σ of 14.8, 12.8, 13.4, and 17.1 mJy, respectively. With the point-spread function fraction coefficient of $f_{\text{psf}} = 0.61$ for a C100 camera pixel at 90 μm the 3σ source confusion limit is ~ 70 mJy. Moreover, it is worth mentioning that the cosmic FIR background has, an expected, a fluctuation power of ~ 7 mJy at this wavelength for the C100 camera detector pixels (Kiss et al. 2001), which contributes to the final width of the N_{str} distribution. Eliminating this value from the width of the Gaussians, the remaining contributions of the cirrus fluctuations and the instrument noise would be ~ 60 mJy at 3σ.

9 SOURCE COUNTS

9.1 ELAIS counts

Integral and normalized differential source counts are given in Tables 3 and 4 for 185 sources brighter than 95 mJy (above this flux, the uncompleteness and Eddington bias corrections are lower than 25 and 15 per cent, respectively). Uncertainties in the counts represent the contribution of Poisson errors and the Eddington bias correction. The possibility that some sources could be Solar system bodies was rejected in Section 3. Moreover as stated in Paper III, given that there are no bright 12- μm sources in the ELAIS fields (to avoid saturating ISOCAM) we do not expect any 'photospheric' stars to be detected at 90 μm as these would have a 90- μm flux ≤ 10 mJy. Finally, the 3σ limit of the cirrus and instrumental noise was estimated in Section 8 to be ~ 60 mJy, Therefore it is very likely that all the selected sources above 95 mJy are extragalactic.

Fig. 8 shows ELAIS integral counts (filled circles) at 90 μm for ELAIS (filled circles). Error bars are Poisson error plus the uncertainties on the Eddington bias. Flux uncertainties are 7 per cent resulting from the use of the FCS for the calibration purposes (Section 2.3). Correction factors of 1/1.06 and 1/0.76 derived from the comparison of the FCS calibration with standard stars model predictions and with IRAS respectively are shown as -0.03 dex and +0.12 dex error bars at ($-1.3, -2.0$). Source counts from Juvela et al. (2000, asterisks), the preliminary analysis of ELAIS (Paper I, open circles), Linden-Vørnle et al. (2000, squares), Matsuhara et al. (2000, triangle) and (diamonds Rodighiero et al. (2003, diamonds) are shown for comparison. IRAS counts (crosses) are shown for galaxies in the PSCz catalogue. The dashed line is the no-evolution model from Franceschini et al. (2001).

Table 3. Integral number counts in the ELAIS survey. S is the flux in mJy; N is the number of sources per deg2 with flux larger than S; the upper and lower uncertainties in the counts which come from Poisson error and the correction of the Eddington bias are indicated. N_S is the number of sources with flux larger than S.

<table>
<thead>
<tr>
<th>S (mJy)</th>
<th>$N(S>S)$ deg$^{-2}$</th>
<th>N_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>$17.02 \pm 4.50/4.30$</td>
<td>185</td>
</tr>
<tr>
<td>177</td>
<td>$7.93 \pm 1.19/1.83$</td>
<td>90</td>
</tr>
<tr>
<td>330</td>
<td>$2.70 \pm 0.74/0.74$</td>
<td>30</td>
</tr>
<tr>
<td>614</td>
<td>$0.77 \pm 0.39/0.39$</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 4. Normalized differential number counts. Columns are: flux range for each bin in mJy; the bin centre; $dN/dS \times S^{2.5}$ are the number counts per bin normalized to the Euclidian law in deg$^{-2}$ Jy$^{1.5}$ (the bin centre in linear scale was used for the normalization); the upper and lower uncertainties in the counts which come from Poisson error and the correction of the Eddington bias are indicated. N_S is the number of sources per bin.

<table>
<thead>
<tr>
<th>flux bin (mJy)</th>
<th>bin centre (mJy)</th>
<th>$dN/dS \times S^{2.5}$ deg$^{-2}$ Jy$^{1.5}$</th>
<th>N_S</th>
</tr>
</thead>
<tbody>
<tr>
<td>95–176</td>
<td>135</td>
<td>$0.74 \pm 0.20/0.22$</td>
<td>95</td>
</tr>
<tr>
<td>176–329</td>
<td>253</td>
<td>$1.11 \pm 0.24/0.24$</td>
<td>60</td>
</tr>
<tr>
<td>329–613</td>
<td>471</td>
<td>$1.04 \pm 0.27/0.27$</td>
<td>21</td>
</tr>
<tr>
<td>613–1142</td>
<td>877</td>
<td>$0.85 \pm 0.32/0.32$</td>
<td>7</td>
</tr>
</tbody>
</table>
than 2 Jy as it becomes incomplete at fainter levels (see Paper III for
details). The dashed line is the no-evolution model from Frances-
chini et al. (2001). Correction factors of 1/1.06 and 1/0.76 derived
from the comparison of the FCS calibration with standard stars
model predictions (Section 6.1) and with IRAS (Section 6.2) are also
shown.

Our results extend IRAS counts by more than one order of magni-
tude. They are in very good agreement with the preliminary analysis
of ELAIS and confirm the departure from the Euclidian slope found
in Paper I. Integral counts in the range 0.095−1 Jy are well fitted
with a straight line of the form

\[\log_{10}(N) = (-1.68 \pm 0.09) \times \log_{10}(S(\text{Jy})) - (0.43 \pm 0.07). \]

(4)

9.2 Comparison with evolutionary models

Recent observations in the FIR and submillimetre regimes have
considerably improved evolutionary models in the past 5 yr. In the
following, we briefly describe the main characteristics of evolution-
ary models by Guiderdoni et al. (1998), Rowan-Robinson (2001),
and compare the predictions to differential number counts measured
in the ELAIS survey in Figs 9 and 10.

(i) Guiderdoni et al. (1998) have designed a family of semi-
analytic evolutionary scenarios within the context of hierarchical
growth of structures according to the cold dark matter model, with
prescriptions for dissipative and non-dissipative collapses, star for-
200 mJy within the error bars. At

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]

The prediction of the Rowan-Robinson model for the cosmo-
logical model with \(\Omega_0 = 0.3 \) and \(\Lambda = 0.7 \) is compared with the
observed counts in Fig. 9. The model is in good agreement with the
observations down to fluxes of \(\sim 200\, \text{mJy} \) within the error bars. At
fainter fluxes it gives a slightly too high number of sources.

(ii) The models of Rowan-Robinson (2001) include four spec-
tral components: IR cirrus; an M82-like starburst; an Arp 220-like
starburst; and an active galactic nucleus (AGN) dust torus. The pro-
portion of each spectral type are chosen for consistency with the
predicted counts and background measurement derived from
IRAS

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]

The prediction of the Rowan-Robinson model for the cosmo-
logical model with \(\Omega_0 = 0.3 \) and \(\Lambda = 0.7 \) is compared with the
observed counts in Fig. 9. The model is in good agreement with the
observations down to fluxes of \(\sim 200\, \text{mJy} \) within the error bars. At
fainter fluxes it gives a slightly too high number of sources.

Model E includes an additional population of heavily ex-
tingished galaxies (ULIGs) and is qualified as the best fit by
Guiderdoni et al. (1998) as it nicely reproduces the cosmic optical
background and the CIB.

If model A is systematically below the measured counts, the
addition of a ULIGs population shifts the predictions upwards and
model E is in excellent agreement with the observations as suggested
in Paper III based on the brightest sources.

(ii) The models of Rowan-Robinson (2001) include four spec-
tral components: IR cirrus; an M82-like starburst; an Arp 220-like
starburst; and an active galactic nucleus (AGN) dust torus. The pro-
portion of each spectral type are chosen for consistency with IRAS

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]

The prediction of the Rowan-Robinson model for the cosmo-
logical model with \(\Omega_0 = 0.3 \) and \(\Lambda = 0.7 \) is compared with the
observed counts in Fig. 9. The model is in good agreement with the
observations down to fluxes of \(\sim 200\, \text{mJy} \) within the error bars. At
fainter fluxes it gives a slightly too high number of sources.

(iii) The model of Pearson & Rowan-Robinson (1996) consists of
non-evolving spiral and elliptical components mixed with an evolv-
ing population of starburst galaxies, AGNs and a hyperluminous
galaxy component. The model is in agreement with the source counts
at 60 \(\mu \text{m} \) and the faint radio counts at 1.4 GHz and provides a good
estimate of the CIB observed with COBE at 500 \(\mu \text{m} \).

More recently, Pearson (2001) used the framework of the
Pearson and Rowan-Robinson galaxy evolution model and con-
strains the evolution in the galaxy population with the observed
counts and background measurement derived from ISO and SCUBA
observations. Pearson found that a strong evolution in both density
and luminosity of the ULIG population can account for the source
counts from 15 \(\mu \text{m} \) to the submillimetre region, as well as explain
the peak in CIB at \(\sim 140\, \mu\text{m} \).

The prediction for this model is also shown in Fig. 10. The model
provides a good fit to the ELAIS observations although it seems to
become too high at fluxes fainter than \(\sim 100\, \text{mJy} \) compared to the
Lockman Hole counts of Rodighiero et al. 2003.

(iv) The model of Franceschini et al. (2001) assumes that the
extragalactic population is composed of three components with dif-
ferent evolution properties: (1) a non-evolving population of spirals;

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]

The prediction of the Rowan-Robinson model for the cosmo-
logical model with \(\Omega_0 = 0.3 \) and \(\Lambda = 0.7 \) is compared with the
observed counts in Fig. 9. The model is in good agreement with the
observations down to fluxes of \(\sim 200\, \text{mJy} \) within the error bars. At
fainter fluxes it gives a slightly too high number of sources.

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]

The prediction of the Rowan-Robinson model for the cosmo-
logical model with \(\Omega_0 = 0.3 \) and \(\Lambda = 0.7 \) is compared with the
observed counts in Fig. 9. The model is in good agreement with the
observations down to fluxes of \(\sim 200\, \text{mJy} \) within the error bars. At
fainter fluxes it gives a slightly too high number of sources.

The model of Pearson & Rowan-Robinson (1996) consists of
non-evolving spiral and elliptical components mixed with an evolv-
ing population of starburst galaxies, AGNs and a hyperluminous
galaxy component. The model is in agreement with the source counts
at 60 \(\mu \text{m} \) and the faint radio counts at 1.4 GHz and provides a good
estimate of the CIB observed with COBE at 500 \(\mu \text{m} \).

More recently, Pearson (2001) used the framework of the
Pearson and Rowan-Robinson galaxy evolution model and con-
strains the evolution in the galaxy population with the observed
counts and background measurement derived from ISO and SCUBA
observations. Pearson found that a strong evolution in both density
and luminosity of the ULIG population can account for the source
counts from 15 \(\mu \text{m} \) to the submillimetre region, as well as explain
the peak in CIB at \(\sim 140\, \mu\text{m} \).

The prediction for this model is also shown in Fig. 10. The model
provides a good fit to the ELAIS observations although it seems to
become too high at fluxes fainter than \(\sim 100\, \text{mJy} \) compared to the
Lockman Hole counts of Rodighiero et al. 2003.

(iv) The model of Franceschini et al. (2001) assumes that the
extragalactic population is composed of three components with dif-
derent evolution properties: (1) a non-evolving population of spirals;

\[\log_{10}\left[\frac{S(90)\, \text{Jy}}{\mu\text{m}} \right] = 0.7. \]
(2) a population of strongly evolving starburst galaxies and type II AGNs; and (3) a population of type I AGNs which does not contribute significantly to the counts. This model was optimized to reproduce the mid-IR counts and redshift distribution. In particular, the two components of the fast evolving population were required to reproduce the shape of the 15-µm counts.

The model of Franceschini is plotted in Fig. 10 and gives a good estimate of the observed counts. The increase in number counts seen at fluxes fainter than ∼100 mJy is probably the FIR counterpart of the upturn detected in the mid-IR (Elbaz et al. 1999; Serjeant et al. 2000; Chary & Elbaz 2001; Mazzei et al. 2001). The ELAIS 90-µm data do not allow us to test if this predicted feature is real or not but Rodighiero et al. (2003) have shown it is compatible within the error bars with the faint counts in the ‘Lockman Hole’.

(v) Lagache et al. (2003) have developed a phenomenological model which fits all the existing counts and redshift distributions from the mid-IR to the submillimetre range together with the intensity and fluctuation of the CIB. Their model is based on the evolution of galaxy luminosity function with redshift for a population of starburts and normal galaxies.

The model of Lagache et al. 2003 (shown in Fig. 10) is compatible with ELAIS counts (although slightly higher) around 1 Jy and with a larger discrepancy at fainter level (S < 200 mJy) where the model continues to increase while the observed counts decrease.

10 SUMMARY AND DISCUSSION

We have used a new method to reduce ISOPHOT measurements in the four main areas of the ELAIS survey at 90 µm. With a total area of more than 12 deg², the ELAIS survey represents the largest area covered in a single programme with ISO.

The relative uncertainty in flux coming from the FCS calibration estimated from the sky-background level differences of all rasters is 7 per cent.

On the one hand, the comparison of measured fluxes with models for standard stars shows a strong correlation with a mean ratio of ISOPHOT to model values of 1.06 ± 0.02. On the other hand, the comparison with the IRAS/FSC catalogue for IRAS sources detected in the survey gives a mean ratio of ISOPHOT to IRAS values equal to 0.76 ± 0.17.

Simulations of artificial sources on the final maps spanning a wide range of flux were used to estimate flux and positional uncertainties, completeness and the Eddington bias corrections. The completeness of the survey is about 80 per cent at 100 mJy.

We present a source list of 237 reliable sources with fluxes larger than 70 mJy, signal-to-noise ratio ≥ 3 for the four large ELAIS fields. The full version of the catalogue is available at http://www.blackwellpublishing.com/products/journals/suppmat/mnr/mnr8259/mnr8259sm.htm.

Sources detected at 90 and 170 µm in the FIRBACK survey (Dole et al. 2001) have an average colour temperature of $T_C = 19$ K with all sources lying in the range 13–25 K in agreement with Stickel et al. (2001) in the ISO Serendipity Survey (Stickel et al. 1998). The ELAIS counts extend the IRAS counts by more than one order of magnitude in flux and show significant departure from the no-evolution model as detected in other ISO surveys from the mid-to the far-IR.

There is, in general, a good agreement between ELAIS and other 90-µm source counts and in particular with the deeper counts measured in the Lockman Hole (Rodighiero et al. 2003). Differential number counts measured in the ELAIS regions at 90 µm are compared to recent evolutionary models. Among few models which were compared to our counts, the model of Franceschini et al. (2001) and the model E of Guiderdoni et al. (1998) give the best agreement with the observations.

However, the latter model is a factor of ~2.5 below the counts measured at 170 µm in two of the ELAIS regions (Dole et al. 2001) related to the present paper. On the other hand, Matsuhara et al. (2000) found that the model E prediction of Guiderdoni et al. (1998) is in close agreement with the 170-µm number counts in the small area of the ‘Lockman Hole’ (see also Kawara et al. 1998) but their 90-µm integral counts are significantly above the model.

The nature and redshift distributions of the ELAIS galaxies can test the various models and their hypothesis, for example, distinguishing the different galaxy populations on which these models are built. This will also help to clarify the origin of the differences seen in the number counts of the various ISO surveys at different wavelengths.

The 90-µm luminosity function is presented in Serjeant et al. (2004) and Rowan-Robinson et al. (2004) present results based on the ELAIS final-band merged catalogue combining the ISO and ground-based observations in the ELAIS fields.

ACKNOWLEDGMENTS

We thank the referee Yasunori Sato for detailed comments and suggestions which helped us improve the manuscript. It is a pleasure to acknowledge Peter Abraham and Ulrich Klaas for very useful discussions about ISOPHOT calibration and data analysis. We also thank Guillaume Lagache and Michael Linden-Vørnle for making their results available to us in electronic version. We are grateful to Emmanuel Bertin for valuable advice on the use of SExtractor.

PhH acknowledges support from the EU TMR Network ‘SISCO’ (HPRN-CT-2002-00316). CdB acknowledges support from the EU TMR Network ‘POE’ (HPRN-CT-2000-001380). ELAIS was supported by EU TMR Network FMRX-CT96-00068 and PPARC grant No. GR/K98728. This paper is based on observations with ISO, an European Space Agency (ESA) project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands and the UK) and with participation of ISAS and NASA. The ISOPHOT data were processed using PIA, a joint development by the ESA Astrophysics Division and the ISOPHOT consortium led by MPI für Astronomie, Heidelberg. Contributing Institutes are DIAS, RAL, AIP, MIPK and MPIA. The development and operation of ISOPHOT were supported by MPIA and funds from Deutsches Zentrum für Luft- und Raumfahrt (DLR, formerly DARA). The ISOPHOT Data Centre at MPIA is supported by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) with funds of Bundesministerium für Bildung und Forschung, grant No. 50 QI 9801 3.

REFERENCES

Laureijs R. J., 1999, Point spread function fractions related to the ISOPHOT C100 and C200 arrays, http://www.iso.vilspa.esa.es/users/expl_jlib/PHT_list.html

This paper has been typeset from a TeX/µTeX file prepared by the author.