University of Sussex
Browse

File(s) not publicly available

Collision Free Mobility Adaptive (CFMA) MAC for Wireless sensor networks

journal contribution
posted on 2023-06-07, 22:22 authored by Bilal Muhammad Khan, Falah AliFalah Ali
In this paper we propose high throughput collision free, mobility adaptive and energy efficient medium access protocol (MAC) called Collision Free Mobility Adaptive (CFMA) for wireless sensor networks. CFMA ensures that transmissions incur no collisions, and allows nodes to undergo sleep mode whenever they are not transmitting or receiving. It uses delay allocation scheme based on traffic priority at each node and avoids allocating same backoff delay for more than one node unless they are in separate clusters. It also allows nodes to determine when they can switch to sleep mode during operation. CFMA for mobile nodes provides fast association between the mobile node and the cluster coordinator. The proposed MAC performs well in both static and mobile scenarios, which shows its significance over existing MAC protocols proposed for mobile applications. The performance of CFMA is evaluated through extensive simulation, analysis and comparison with other mobility aware MAC protocols. The results show that CFMA outperforms significantly the existing CSMA/CA, Sensor Mac (S-MAC), Mobile MAC (MOB-MAC), Adaptive Mobility MAC (AM-MAC), Mobility Sensor MAC (MS-MAC), Mobility aware Delay sensitive MAC (MD-MAC) and Dynamic Sensor MAC (DS-MAC) protocols including throughput, latency and energy consumption.

History

Publication status

  • Published

Journal

Telecommunication Systems

ISSN

1018-4864

Publisher

Springer Verlag

Issue

4

Volume

52

Page range

2459-2474

Department affiliated with

  • Engineering and Design Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC