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Evaporative cooling in a radio-frequency trap
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A theoretical investigation for implementing a scheme of forced evaporative cooling in radio-frequency �rf�
adiabatic potentials is presented. Supposing the atoms to be trapped in a combination of a dc magnetic field and
a rf field at frequency �1, the cooling procedure is facilitated using a second rf source at frequency �2. This
second rf field produces a controlled coupling between the spin states dressed by �1. The evaporation is then
possible in a pulsed or continuous mode. In the pulsed case, atoms with a given energy are transferred into
untrapped dressed states by abruptly switching off the �2 coupling. In the continuous case, it is possible for
energetic atoms to adiabatically follow the doubly dressed states and escape out of the trap. Our results also
show that when �1 and �2 are separated by at least the Rabi frequency associated with �1, additional
evaporation zones appear which can make this process more efficient.

DOI: 10.1103/PhysRevA.74.053413 PACS number�s�: 32.80.Pj, 39.25.�k

I. INTRODUCTION

In recent years, the investigation of quantum gases in low-
dimensional trapping geometries has significantly attracted
the attention of the physics research community. This grow-
ing interest is motivated, partially, by the current possibilities
that the extremely rapid progress in integrated atom optics
has opened for the manipulation of Bose-Einstein condensed
�BEC� atoms. This development allows the study of crucial
problems associated with the strong modifications that the
fundamental properties of these quantum systems experience
due to the reduced dimensionality. For instance, a one-
dimensional �1D� Bose gas in the Tonks-Girardeau regime
mimics a system of noninteracting spinless fermions �1–3�;
in 2D, the superfluidity emerges due to the vortex binding-
unbinding Berezinskii-Kosterlitz-Thouless phase transition
�4,5�, recently observed �6�.

For the study of the BEC low-dimensional physics, trap-
ping configurations of different nature and topology have
been proposed and used. For example, the 3D to 1D cross-
over was explored by Görlitz et al. �7� in an elongated Ioffe-
Pritchard type direct-current �dc� magnetic trap, the phase
defects of a BEC were investigated in a quasi-2D trap based
on a 1D optical lattice �8� and, in atom chip experiments, dc
current-carrying wires are usually employed to confine atoms
in highly anisotropic traps �9�. Although these trapping con-
figurations have demonstrated their relevance for studying
quantum gases in low dimensions, adiabatic potentials �10�,
resulting from a combination of dc and radio-frequency �rf�
magnetic fields, are also becoming a very attractive and
promising tool �11–16�.

The rf traps share the versatility and flexibility of the
above mentioned trapping schemes and, moreover, they are
relatively easy to implement and control. In the first imple-
mentation of these traps �11�, ultracold atoms were confined
in a 2D geometry. A rf adiabatic potential has also been used
as a beam splitter, allowing the demonstration of matter-
wave interference on an atom chip �12�. Ring-shaped traps,

and other more complex trapping geometries using adiabatic
potentials have also been considered �13–16�.

Given the topology of the rf trapping potential, and be-
cause of technical limitations in some cases, the loading of
the trap with Bose-Einstein condensed atoms, preserving the
quantum degeneracy, can be a challenging task. In this situ-
ation, it is of relevance to consider the possibility of evapo-
rative cooling of atoms directly in these low-dimensional rf
traps. This is the subject that will be addressed in this paper,
taking into account the interaction of the atoms with two
radio-frequency fields. When dealing with more than one rf
frequency, an analytical solution for the atomic spin dynam-
ics can be found by treating the individual successive inter-
actions of the rf fields with the atoms �17� or by considering
the two fields simultaneously, provided one of the fields is
rather weak �18�. We will study how a weak second radio-
frequency source can be used to perform an evaporation.

We will see that the forced evaporation of rf-trapped at-
oms can be accomplished in two ways. First, the spin evolu-
tion induced by this second rf source can be quenched by
switching off the field, i.e., by using a pulsed rf source. Sec-
ondly, we can allow an adiabatic following of doubly dressed
states which requires the second rf source to be continuous
rather than pulsed. This last scheme is similar to the standard
evaporative cooling method used in static magnetic traps
�19–21�.

This paper is organized as follows. In Sec. II we will
discuss the geometry of the system and the singly dressed
states of the rf trap. In Sec. III, the evolution of the system is
determined in three different ways: numerically, using a first
order Magnus series approximation, and by using a second
rotating wave approximation which leads to a double dress-
ing of the atoms by two rf fields. Section IV is devoted to the
application of the results of Sec. III to the study of evapora-
tive cooling in the rf trap. Finally, we give a summary and
conclusion in Sec. V.

II. ADIABATIC POTENTIAL CONFINEMENT

The underlying idea of the confinement of ultracold atoms
using rf adiabatic potentials is presented in detail in Refs.
�10,15�, Ref. �11� being a report on the experimental inves-*Electronic address: leonardo@galilee.univ-paris13.fr
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tigation of such a trapping scheme. For this reason, instead
of discussing how this trapping actually takes place in depth,
we will rather make use of the already known results that are
relevant in order to consider the problem of evaporative
cooling in these traps.

The treatment presented in this paper is valid for any
value of the spin F. However, for concreteness the numerical
results will be given for 87Rb in the Zeeman state m= +2 of
the 5S1/2, F=2 hyperfine ground state level. We will suppose
that the atoms are confined in a QUIC magnetic trap �22,23�
produced by a dc magnetic field Bdc�r�. The atomic clouds
trapped in this configuration are anisotropic �cigar-shaped
along x� and we will take the offset magnetic field produced
by the Ioffe coil �22� to be oriented along the x direction. In
the following, the axes in the lab frame will be labeled by
lower case letters xyz. The z axis is in the vertical direction
and y is the horizontal direction perpendicular to the cigar
axis. The axes in the local frame attached to the dc magnetic
field will be labeled by capital letters XYZ. Moreover, we
will assume that the direction of the dc magnetic field defines
the local Z quantization axis. The Larmor frequency of the
atomic spin precession in this dc field will be denoted
�0�r�=gF�BBdc�r� /�. Here, gF and �B are the Landé factor
and the Bohr magneton, respectively.

Now, we apply to this confined atomic system two rf
fields �produced by antennae�, both of them polarized along
y and of angular frequencies �1 and �2. The respective Rabi
frequencies �1 and �2 define the coupling along the X di-
rection. In principle the resulting rf coupling now depends on
position due to the spatially varying orientation of the dc
magnetic field. However, we will neglect this variation in the
rest of the paper. This approximation of uniform �1 and �2
does not invalidate the obtained results, as the spin dynamics
can be treated locally. In principle, the results can be gener-
alized by parametrically introducing the spatial dependence
of the coupling throughout the analysis. Having in mind that
the second rf field will be rather weaker than the first one, we
transform into the frame rotating at �1 and perform the ro-
tating wave approximation �RWA�. The Hamiltonian that de-
scribes the spin dynamics can thus be written as �see the
derivation in the Appendix�

H�r,t� = HA�r� + �2�FX cos��t� + FY sin��t�� , �1�

where FX�FY� is the atomic angular momentum in the X�Y�
direction, �=�2−�1, HA�r�=��r�F� is the adiabatic Hamil-
tonian associated with the rf confinement, and ��r�
����r�2+�1

2 defines the energy separation between the
adiabatic levels. In the absence of �2, the flip angle � and the
detuning ��r� are given by tan����−�1 /��r�, with �
� �0,	� and ��r�=�1−�0�r�, respectively. We have consid-
ered that the component FZ of the atomic angular momentum
is aligned with the local Z component of the dc magnetic
field vector. Strictly, these Rabi frequencies are not spatially
homogeneous as mentioned above. However, they can be
treated as such over the spatial extension of the atomic cloud
�11�.

Graphically, the spin evolution given by Eq. �1�, in the
case �2=0, is represented in Fig. 1. It can be seen in this

figure that the tilted angular momentum F� results from a
rotation of FZ around FY and is given by

F� = cos���FZ + sin���FX = RY���FZRY
†��� , �2�

where the rotation matrix RY���=exp�−i�FY /�� can be ex-
pressed in the basis �−2, . . . , +2� of the bare states.

In Fig. 2�a�, the energies of the bare states are plotted as a
function of the position z, where the energy variation is due
to the dc magnetic field Bdc�r�. This spatial dependence has
been calculated for a value x=xmin=6.9 mm corresponding
to the position where the QUIC magnetic field is minimal in
our experimental setup �11�. Moreover, we have taken y=0
and a Rabi frequency �1 /2	=400 kHz. The arrows shown
in that figure, in blue for �1 and in red for �2 �each fre-
quency stands to the right of its respective arrows�, indicate
the locations where the corresponding rf fields resonantly
couple the states in the laboratory frame. On the other hand,
the spatial z dependence of the adiabatic states internal ener-
gies is shown in Fig. 2�b� where the states are labeled, from
top to bottom: 	+2A
, 	+1A
, 	0A
, 	−1A
, and 	−2A
. We can
also see in this last figure the avoided level crossings at the
positions where �1 �taken equal to 2	
3.19 MHz in this

FIG. 1. �Color online� At a given location r, � and �1 define the
angle � by which FZ is rotated. The spin �black arrow� therefore
precesses around an axis given by F� �green arrow� at a frequency
�.

FIG. 2. �Color online� Spatial z dependence of the energy of the
uncoupled �a� and dressed �b� states for x=xmin and y=0. At the
avoided level crossings, the energy splitting between the levels is
�1. Gravity has been taken into account in both cases and �2

��1.
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example and from now on� resonantly couples the bare
states.

In order to consider only the confinement ��2=0� using
the adiabatic potentials shown in Fig. 2�b�, let’s suppose that
initially we have a m= +2 spin polarized ultracold atomic
sample. In this situation, the trapping potential corresponding
to the bare state 	+2
 can be adiabatically deformed into the
one associated with the dressed state 	+2A
. Such a transfor-
mation can be performed by changing the detuning ��r� from
red to blue at constant Rabi frequency �1 �10,11� or, by
increasing �1 at a constant red detuning �12�. Here, by adia-
batic deformation we mean that the angular precession fre-
quency ��r� of the spin in Fig. 1 must be much larger than

the rate at which the angle � changes �	�̇	���r��. Using the
loading schemes just mentioned, it is possible to obtain
highly anisotropic rf traps with trapping frequencies, in the
strongest confinement direction, ranging from several hun-
dreds of Hz up to a few kHz.

Having described the main properties of the adiabatic
confinement, let us now address the following issues. As-
suming intuitively the existence of the resonances repre-
sented by the arrows in Fig. 2�b�, we would like to know
precisely where they are located and how strong they are.
Another relevant point to be taken into account concerns the
effect of these resonances at the rf trap center when, numeri-
cally, �1 and �2 are close to each other. Moreover, it will be
interesting to find out the different parameter values for
which the second rf field induces transitions between the
adiabatic states, in the perturbative limit with �2��1, lead-
ing to a possible implementation of evaporative cooling in rf
traps.

III. DYNAMICS OF THE SYSTEM

In this section we will study the dynamics of the system
using three different methods. In the first case, the exact
numerical solution of the time-dependent Schrödinger equa-
tion �TDSE� will be found. Secondly, an approximated ana-
lytical treatment will be presented �Magnus approximation�
in order to interprete the exact results derived numerically.
Finally, we will present an analytic solution based on a sec-
ond rotating wave approximation which will be the basis of
the analysis presented in Sec. IV. Since the evolution of the
atomic external and internal degrees of freedom takes place
on very different time scales, here we will decouple the two
dynamics and consider only the time evolution of the internal
degrees of freedom.

A. Numerical solution

The evolution of the state vector 	�t�
 with the Hamil-
tonian �1� was solved numerically, in the interaction picture,
using a fourth order Runge-Kutta algorithm. In this case, the
state vector can be very efficiently propagated in time �24�
and we checked the accuracy by monitoring the normaliza-
tion of the state vector and varying the time step. The first
question we would like to address here is supposing that an
atom is initially in the trapped dressed state 	+2A
, what is
the probability P2A= 	�2A 	�r , t�
	2 of finding it in that same
state as time goes by? We will also be interested in how this

probability changes for an atom located in different places in
the trap. The preliminary answer to these questions is pre-
sented in Fig. 3, where the probability we are interested in is
plotted for three different values of �, the difference between
the radio frequencies �2 and �1.

In Fig. 3, and from now on, we use �1 as a frequency
unit, having in mind to keep it constant in a given experi-
mental situation. The value of �2 has been taken equal to
0.05�1, small enough in order to be in the perturbative limit,
as will be shown later. This value of �2 will be used in all
the following results unless a different one is explicitly
stated. In the left column of Fig. 3, the x and time depen-
dence of P2A are calculated at the points y=0 and zmin
�−0.19 mm, with this value of z corresponding to the loca-
tion of the left avoided level crossing in Fig. 2�b�. To obtain
the right column of Fig. 3, we use for x the value xmin
�6.9 mm, very close to the location where the QUIC trap
has its minimum in the x direction.

In Fig. 3 the three values of � have been chosen to illus-
trate some key characteristics of the spin dynamics. As the
energy separation between the adiabatic levels at the avoided
level crossings is exactly �1, we observe resonant behavior
at the rf trap bottom for �2=�1+�1, i.e., when �=�1 �see
Figs. 3�c� and 3�d��. Similarly, for ���1 we have a red-
detuned interaction everywhere �Figs. 3�a� and 3�b��. In this
case we observe weak modulations of P2A that are essentially

FIG. 3. �Color online� Probability for an atom to remain in the
initial rf trapped state 	+2A
. The values of � are, respectively,
0.875�1 in �a� and �b�, �1 in �c� and �d�, and 1.25�1 in �e� and �f�.
The rf trap frequency �1 /2	 is set to 3.19 MHz. The x-t �z-t�
dependence of P2A is calculated at zmin=−0.19 mm �xmin

=6.9 mm�. In �f� the labels OR and IR indicate the locations of the
outer and inner resonances, respectively.
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determined by a beating between the � and ��r� frequency
components. For ���1 �Fig. 3�e� and 3�f�� we have a blue-
detuned interaction around the minima xmin and zmin. Away
from the center a resonance occurs, as expected, at approxi-
mately the location in the trap where �2 resonantly couples
the bare states �see Fig. 2�a��. This is the outer resonance
labeled OR in Fig. 3�f�. However, there is another feature we
would like to stress. Namely, the presence of the inner reso-
nance IR clearly seen in the z dependence of P2A in Fig. 3�f�.
Note that the avoided level crossing �rf trap center� is at zmin.
Looking back to Fig. 2�a� and having in mind that �2��1,
the existence of this second resonance IR in Fig. 3�f� at z
�zmin may be counterintuitive, at least in the undressed pic-
ture. As we will see, its relative strength is fully determined
by the rotation angle �. Note that because of the loose con-
finement in the x direction �11�, the dynamics in the y-z
plane does not change much from one location to another in
the x axis. However, this dynamics is very sensitive to
changes in z �or y� and therefore, the results for the x depen-
dence of the probability P2A in Figs. 3�a�, 3�c�, and 3�e� can
be significantly different when another z location is consid-
ered.

B. Interpreting the numerical results using a first order
Magnus series approximation

Searching for the understanding of the physical picture
behind the numerical results presented in Fig. 3, let us con-
sider the first order Magnus series approximation �25,26� to
the solution of the TDSE. This approximation is basically the
formal solution of the TDSE neglecting the two-time com-
mutators of the Hamiltonian. This Hamiltonian is given in
the interaction picture by

H��t� = exp�i�tF�/��H�t�exp�− i�tF�/�� . �3�

In Eq. �3�, we have dropped the r dependence in � and F�

for the sake of notational simplification. Noting Fig. 1 and
introducing F��=RY���FXRY

†���=cos���FX−sin���FZ �see
Fig. 6�, which is the angular momentum vector perpendicular
to F� and FY, we find

H��t� = �2�sin���cos��t�F�

+ �sin��t�sin��t� + cos���cos��t�cos��t��F��

+ �sin��t�cos��t� − cos���cos��t�sin��t��FY� .

�4�

In this case, the time evolution of a given initial dressed
spin state 	�0�
 is represented by the rotation

	�t�
 = exp�− i��t� · F/��	�0�
 , �5�

where the scalar product ��t� ·F stands for ���t�F�

+����t�F��+�Y�t�FY, where ���t�, ����t�, and �Y�t� are a
measure of the projections of the spin 	�t�
 precession axis
onto the axes F�, F��, and FY, respectively �for simplicity
we will just call them projections�. Taking into account Eq.
�4�, the definition of the exponential argument in Eq. �5� is

��t� · F = 
0

t

dt�H��t�� , �6�

leading to the following expressions for the projections:

���t� =
�2

�
sin���sin��t� , �7�

����t� = �2�cos2��/2�
sin��� − ��t�

� − �

− sin2��/2�
sin��� + ��t�

� + �
� , �8�

�Y�t� = 2�2�cos2��/2�
sin2��� − ��t/2�

� − �

+ sin2��/2�
sin2��� + ��t/2�

� + �
� . �9�

By inspecting Eqs. �7�–�9�, we can see the time-dependent
terms resulting from a beating between frequency compo-
nents at � and ��r�. These beats are seen as the modulation
�interference-like patterns� of P2A observed in Fig. 3. In par-
ticular, we see in these equations that there will be some
interesting behavior when �= ±�. In either case the condi-
tion is realized by two values of �: �0 and 	−�0 with �0
=arcsin��1 /��. If �� ±�, the coefficients �i�t� are oscilla-
tory with finite amplitudes. However, when �=� at �=�0,
for instance, ����t� shows a linear tendency in time of the
form �2 cos2��0 /2�t while the other two components are
negligible. This suggests that the spin will essentially rotate
at a frequency �2 cos2��0 /2� around the axis F��. Starting
from an eigenstate of F�, as in Sec. III A, the spin will be
completely flipped after a half period. This rotation corre-
sponds to the outer resonance OR in Fig. 3�f�. At the location
�=	−�0, the same resonant behavior occurs with a rotation
frequency �2 sin2��0 /2�. This corresponds to the inner reso-
nance IR in Fig. 3�f�. In the case when �2 is smaller than �1,
we have the resonant condition �=−� and we have the same
behavior except that the character of the inner and outer reso-
nances is now reversed.

Away from the resonant conditions just described the
analysis of Eqs. �7�–�9� is more complicated and conse-
quently we evaluate these equations numerically. Some re-
sults for the time evolution of the populations of the adia-
batic states 	0A
 and 	2A
 are given in Fig. 4. We show both
Magnus approximation �dashed lines� and the exact numeri-
cal solution �circles� for comparison. As can be seen, if we
constrain the dressed spin dynamics to half of the first pe-
riod, we obtain a very good agreement between the first or-
der Magnus series and the exact numerical results. After this
time we see dephasing between the two evolutions and, even
more dramatic, an important disagreement in the amplitude
of the observed oscillations. These two behaviors are some-
how expected because at time instants very far from t=0 the
contribution of the next order terms in the Magnus series
becomes more relevant �26�. In Sec. III C we can find a
better approximation �using a second RWA� to the numerical
solution which is shown in Fig. 4 with solid lines.
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Another test for the validity range of the first order Mag-
nus series approximation is presented in Fig. 5, where the
population of the dressed state 	2A
 and the probability of
leaving the rf trap are shown. In this figure the results of the
numerical treatment and those from the Magnus series are
represented by the points and the solid lines, respectively. To
obtain the results in Fig. 5, the initial adiabatic spin state has
evolved during a time interval approximately equal to one
half of the first oscillation period observed in Fig. 4, in short,
up to �1t=20	 that is t=	 /�2. In addition to the good
agreement that both methods show in the regions of less
interest for us, we can notice the four resonances in the z

dependence. The inner peaks are rather smaller than the outer
ones, indicating that we have a position-dependent resonant
coupling.

C. Effective Hamiltonian from a second rotating wave
approximation

The first order Magnus approximation predicts well the
location of the resonances and their spin rotation frequency.
However, it fails to describe correctly the dynamics away
from the resonance points �= ±�. To tackle this problem,
we used a different approach and derived more generally
applicable analytical expressions. The approach is based on a
second rotating wave approximation, performed on Eq. �1�
and expressed through the rotation H̄�t�=R�H�t�R�

† , where
R�=exp�i�tF� /��. This transformation leads to the time-

dependent Hamiltonian H̄�t� given by

H̄�t� = − �� − � − �2 sin���cos��t��F� + �2�cos���cos2��t�

+ sin2��t��F�� + �2�1 − cos����sin��t�cos��t�FY ,

�10�

where all the parameters appearing in it have already been
introduced. We note that this equation is valid for any value
of �, including those close to �1, i.e., when �1 and �2 are
not so different from each other. Now we apply a second
rotating wave approximation, which is valid provided that
the “detuning” �−� and the maximum coupling �2 are
much less than the “carrier frequency” �. We finally obtain
from Eq. �10� the effective Hamiltonian

H̄� = − �� − ��F� +
�2

2
�1 + cos����F��. �11�

This last equation provides a new compact and powerful
description of the spin dynamics in the dressed trap in the
presence of a second rf field. As an example we have shown
in Fig. 4 the spin evolution �solid lines� predicted with the
effective Hamiltonian which is in excellent agreement with
the exact numerical calculations.

The form of the effective Hamiltonian �11� is completely
equivalent to that of HA in Eq. �A7�. If we look, for instance,
at the vectorial representation of the spin in the case of a
single rf field �Fig. 1�, then in the presence of the second rf
field one gets the picture shown in Fig. 6, where now F��

=cos����F�+sin����F�� plays a similar role as F� did be-
fore. The angle �� is then

tan���� � −
�2�1 + cos����

2�� − ��
, with �� � �0,	� . �12�

We can view the resulting precession as a second dressing of
the dressed spin states �18�. One can obtain the doubly
dressed states by diagonalizing the Hamiltonian �11�. The
corresponding eigenenergies of these states are given by
multiples of ��� where clearly

FIG. 4. �Color online� Occupation probability of the dressed
states 	2A
 �black upper traces� and 	0A
 �blue lower traces� �a�. In
�b� the probability for an atom to be in the untrapped dressed states
is shown. The circles show exact numerical results �Sec. III A�, the
dashed lines from the Magnus approximation �Sec. III B�, and the
solid lines from the second RWA �Sec. III C�. The calculation has
been done at the rf trap bottom �xmin,0 ,zmin� for �=1.05�1 and
�2=0.05�1.

FIG. 5. �Color online� Population of the dressed state 	2A
 versus
position in the x �a� and z �c� directions at �1t=20	. The probabil-
ity for an atom to be in the untrapped dressed states is shown in �b�
for the x and in �d� for the z spatial dependence �solid line: Magnus
solution, circles and squares: numerical solution�. As before, �
=1.05�1 and �2=0.05�1. The inset shows a zoom of the reso-
nances around the avoided level crossing at zmin�−0.19 mm. The
solid line in the inset is just to guide the eyes.
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�� =��� − ��2 +
�2

2

4
�1 + cos����2. �13�

The spin oscillation frequency observed in Fig. 4 is precisely
��. On resonance, the period of these Rabi oscillations in-
duced by the coupling in Eq. �11� is then T=4	 /�2�1
+cos���� in agreement with the prediction of the Magnus
approximation.

Looking at Fig. 6 we realize that ��=	 /2 corresponds to
resonant coupling with a maximum transition probability to a
state orthogonal to the eigenstates of F�. This happens when
�=� �see Eq. �12��. As in the Magnus case, this condition is
realized by the two values �0=arcsin��1 /�� and 	−�0 with
�0� �0,	 /2�. Recalling that when �=	 /2 we are exactly at
the avoided level crossings in Fig. 2�b�, �0 indicates the lo-
cation of the outer resonances OR while 	−�0 takes care of
the inner ones IR.

IV. EVAPORATION

A. General remarks

In the following two subsections we will consider two
schemes for implementing the evaporative cooling. First, we
will look at a pulsed scheme in which a fraction of the atoms
are spin flipped out of the trapped state by a sudden switch
off of the second rf field. Then, secondly, we will examine a
continuous scheme in which hot atoms are removed from the
rf trap by adiabatically following a doubly dressed state. In
both these schemes the hot atoms that are going to be re-
moved have to reach the resonances at �0 or 	−�0. If we can
neglect the gravitational potential, the energy of these atoms
should be larger than about F���−�1� with respect to the
bottom of the dressed rf trap. This approximation, valid for
relatively small �2, can be refined using Eq. �13� and taking

gravity into account. As an example, for our typical experi-
mental setup �11� and �2=0.05�1, this energy is equivalent
to temperatures of 0.21, 6.1, and 11 �K for � equal to
1.05�1, 1.25�1, and 1.4�1, respectively.

These limiting energies imply, of course, that the atom
cloud will have a finite size determined by the location of the
inner and outer resonances. In Fig. 7 we investigate the dis-
tance �zres between the neighboring inner and outer reso-
nances as a function of �. As expected, the distance between
the resonances goes to zero when � is reduced. In fact, since
�2��, and if we assume a constant magnetic field gradient
b�, we can derive the approximate form of �zres from
�=� as

�zres = 2
��2 − �1

2

�
, �14�

where �=gF�Bb� /�.
The last point we would like to consider here concerns the

inner resonance observed in the z direction. One positive
aspect about this resonance is that when � is such that both
the inner and outer resonances are close to the bottom of the
dressed rf trap, the atomic cloud trapped in the adiabatic state
	2A
 can be evaporated from both sides. However, the nega-
tive point is that some atoms are transferred by the inner
resonance into the state 	−2A
 and trapped around z=0. If
these atoms come back to the region of the avoided level
crossing, then they will be energetic enough that heating of
the coldest atoms will take place via interatomic collisions.
Note that for the rf dressed trap geometry discussed here
gravity favors the evaporation through the outer resonance
because a lower atomic energy is required than for the inner
resonance.

B. Pulsed evaporative cooling

We first look at the pulsed evaporation scheme, which has
as its main idea the extraction of hot atoms, in a controlled
way, from the rf trap at the resonance locations. We can do

FIG. 6. �Color online� In the presence of the second rf field and
applying a second RWA, the spin �black arrow� precesses around an
axis obtained when first, �1 tilts FZ by � getting F�, and then �2

tilts F� by �� getting F��.

FIG. 7. �Color online� Distance between neighboring inner and
outer resonances around an avoided level crossing. The circles are
from the numerical calculation and the solid line is obtained using
Eq. �14� with b�=203 G/cm. The points were obtained at t
=	 /�2 by measuring the distance between the resonances as seen
in the inset of Fig. 5�d�.
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this because at these locations we have large transition prob-
abilities between the rf dressed states as seen in Figs. 3�e�
and 3�f�. These transitions have been already analyzed, first,
by using the Magnus approximation �Sec. III B� and, sec-
ondly, by using the second RWA �Sec. III C�. They have also
been interpreted with the vector picture in Fig. 6 as rotations
about F��. Hence we can see that if at a given time instant t
the precession axis of 	�t�
 has zero projection onto F�,
then this state vector will be orthogonal to the initial dressed
rf state and consequently, a transition has taken place.
Clearly, the second rf field can transfer hot atoms out of the
initial trapped dressed state. The pulse has to be repeated
several times during the trap oscillation period to ensure an
efficient evaporation of all the atoms with sufficient energy
to reach the resonances. The pulsed evaporative cooling
scheme requires that we can discriminate between hot and
cold atoms by affecting as little as possible the atoms in the
region of the rf trap center. This implies a careful choice of
the pulse duration and amplitude as will be discussed below.

We already noted that in some situations it may not be
desirable to evaporate via the inner resonance �Sec. IV A�.
One way we can avoid this resonance in the pulsed scheme is
to carefully chose the time duration of the pulse. For ex-
ample, we can see in Fig. 3�f� that the depletion at the inner
resonance �IR� takes place later compared to the outer reso-
nance �OR�. This happens because, independently of the ori-
entation of the dc magnetic field, the coupling with the Rabi
frequency �2 in Eq. �11� is spatially inhomogeneous since �
depends on r. To investigate this inhomogeneity for different
values of �, we have chosen in Fig. 8 a particular value t
=	 /�2 and explore the ratio of the probability of being in
the untrapped states at the two resonances. This is shown in
the figure as a function of the frequency difference �. The
second RWA can predict this relative effectiveness of the
inner and outer resonances. From Eq. �11� this ratio can be
determined analytically for �=� and it is plotted in Fig. 8
with a solid line. The calculation of the numerical results in
Fig. 8 is done as follows. For a given value of � a figure

similar to Fig. 5�d� is plotted. Then, the ratio of the inner
peak height to the outer peak height is found. This is the
coupling strength ratio we are interested in. Since there is an
excellent agreement between the exact solution and the solid
line in Fig. 8, we can state that indeed the second RWA
works well in the parameter range we have explored. Notice
that for ���1 we recover the expected result that only the
resonant coupling at the frequency �2 will occur between the
bare states. For intermediate values of �, we can clearly see
that the particular choice t=	 /�2 for the pulse duration al-
lows a good discrimination between the resonances IR and
OR. In the final evaporation stage, where ���1, if we wish
to limit the IR excitation it is necessary to adapt the pulse
duration.

As mentioned above we should avoid introducing transi-
tions at the dressed rf trap centre. Because of such transitions
we can see in Figs. 3�a�, 3�b�, 3�e�, and 3�f� that, even when
the detuning for coupling adiabatic states is red or blue ��
��1 or ���1�, the population of the initial trapped dressed
state 	2A
 is in fact modulated at the center of the rf trap
�avoided level crossing�. Such a modulation can produce un-
wanted losses and, to study this process, we introduce the
modulation depth. This quantity is defined as the contrast of
the oscillations presented in Fig. 4�a� as the black points
�numerical result�. In Fig. 9 we plot the modulation depth as
a function of the Rabi frequency of the evaporation rf field,
and for two different values of �. As expected, the modula-
tion depth increases with �2 since larger rf power is avail-
able for coupling the adiabatic states. Also not very surpris-
ing, this modulation is more pronounced when � is such that
�2 couples adiabatic states close to the position of the
avoided level crossing.

Taking into account the result presented in Fig. 9, we
devised a strategy which affects as little as possible the cold-
est atoms, while doing the evaporation. The idea is to ramp
�2 and � simultaneously to preserve a fixed modulation
depth at the rf trap center �27�. In Fig. 10 such a ramp is
presented, where we have allowed for a 3% modulation level
of the coldest atoms population. Note that the reduction of

FIG. 8. �Color online� Ratio between the coupling strengths at
the locations of the inner and outer resonances. The exact numerical
solution is represented by the points whereas the solid line is de-
rived from the second RWA with �=�. For � large compared to
�1, the coupling at the inner resonances goes to zero.

FIG. 9. �Color online� Modulation of the dressed state 	2A

population at the trap center for �=1.05�1 �black open circles� and
1.25�1 �blue open squares�. The solid lines are calculated analyti-
cally from the second RWA treatment.
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�2 has to be taken into account for the optimization of the
pulse duration.

In fact, since �2 and � can be controlled independently,
we can make individual ramps for each one of these param-
eters and manipulate independently the position and strength
of the evaporation resonances. Taking into account that there
is a finite modulation of the atomic population at the rf trap
center, even for � very different from �1, we propose using
a limited number of rf pulses to cool down the sample. For
example, a pulsed evaporative cooling scheme has been de-
veloped demonstrating the achievement of the collisional re-
gime in a beam of neutral atoms �28�. However, this pulsed
scheme uses pulses longer than the trap oscillation period
unlike the scheme proposed here.

C. Continuous evaporative cooling

Our second scheme for the evaporative cooling of atoms
in the dressed rf trap uses the second rf field in a continuous
rather than pulsed mode. This situation is closer to the nor-
mal case of the evaporation of atoms in a dc magnetic trap
by a single rf field. Here, we simply use the second rf field as
a tool to control the dressed rf trap depth. This trap depth
corresponds to the energy required to reach the resonances
�with respect to the dressed rf trap bottom� as considered in
Sec. IV A.

In the usual case of continuous rf evaporation it is useful
to look at the system using dressed states. In our situation,
the equivalent relevant basis is given by doubly dressed
states. As remarked earlier, these are found by diagonalizing

H̄�, Eq. �11�, or we can write

H̄� = ��F��, �15�

with the frequency �� as given in Eq. �13�. This frequency
determines the doubly dressed potential ����r� which we
would like the atoms to follow for the evaporation to pro-
ceed. If we include gravity the resulting potential V��r� is
given by

V��r� = − F����r� + Mgz . �16�

An example of this potential is given in Fig. 11 which shows
the minimum at z=zmin �i.e., at �=	 /2 or �=0�, where the
cold atoms will eventually collect, as well as the resonance
regions IR and OR which form the “lips” of the doubly
dressed trap over which the hotter atoms must pass. �During
the usual evaporation process the “lips” are subsequently
lowered by ramping the rf frequency and the same procedure
can be carried out here with the second rf field.�

For this picture to be valid, we must have an adiabatic
following of the vector F�� as the atoms move about the trap.
A general condition for this can be expressed as

�d��

dt
� � ��, �17�

where �� is given in Eq. �12� and the right-hand member of
the inequality �17� is seen to be just the energy separation
between the doubly dressed levels. In practice this condition
is rather easily satisfied for a singly dressed rf trap �see, for
example, Ref. �11��, which is relevant for the bottom of the
doubly dressed trap as illustrated in Fig. 11. However, in
order to also satisfy the adiabatic following condition �17� at
the resonances, we will find a new constraint that �2 should
not be too small. The analysis of adiabaticity is conveniently
carried out in terms of a Landau-Zener parameter � such that
Eq. �17� implies that ��1. To proceed, we use the definition
�12� of �� in order to compute its time derivative assuming
that only � is time dependent. Calculating the time derivative
and evaluating Eq. �17� at the outer resonance location �0,
we find that in terms of the Landau-Zener parameter �

=�� / 	�̇�	 the adiabatic condition reads

� =
�2

2�1 + cos��0��2

4	�̇0	cos��0�
� 1, �18�

where �̇0 is the time derivative of the detuning ��r� evaluated
at �0, and is proportional to an atom velocity. From the ex-

FIG. 10. Optimized Rabi frequency as a function of the fre-
quency difference �. In this optimization, the population modula-
tion at the rf trap center is limited to 3%.

FIG. 11. �Color online� Doubly dressed potential V� shown as a
function of distance z−zmin from the dressed rf trap center at zmin

for �2=0.05�1 and �=1.25�1 as in Figs. 3�e� and 3�f�. The po-
tential is only shown in the region of the singly dressed rf resonance
where �=0, with the associated inner and outer doubly dressed
resonances indicated with IR and OR as in Fig. 3�f�. Only the rel-
evant, i.e., lowest, state is shown for F=2 and gravity was taken
into account in this figure. The vertical unit corresponds to about
20 �K for the value of �1 given in Sec. II.
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pression for � we can see that as soon as �2 is reduced, only
the slow atoms will have their spin adiabatically following
the axis F��, and in fact, for motion linearized over the reso-
nance, the multistate Landau-Zener analysis �20� shows that
the probability for an atom to be lost from the adiabatic state
in a single pass is 1− �1−exp�−	���2F. For the parameters of
Fig. 11, the energy of the atoms E �measured from the trap
bottom in temperature units� would have to have a value of
E /kB=20 �K for the probability of a non-adiabatic crossing
to reach about 10−5 for the OR.

It is clear that if we switch from the outer resonance OR
�at �=�0� to the IR �at �=	−�0� the adiabaticity condition
�18� will be different. This is connected to both the spatially
dependent coupling �2�1+cos���� /2, and the effect of grav-
ity, which as seen in Fig. 11 make the IR “lip” higher. The
weaker coupling at the inner resonance also means that the
dynamics is less adiabatic at this point. In fact for fairly
“hot” atoms one can contrive that the resonance OR is rather
adiabatic while the resonance IR is rather diabatic. Together
with the effect of gravity, this would mean that atoms can be
evaporated out of the OR resonance while adiabatic coupling
through the IR resonance is prevented. As explained in Sec.
IV A this can be useful to partially prevent the return of
evaporated atoms to the resonance regions with subsequent
collisions and heating. However, we note that if we want to
reduce the final temperature by steadily reducing �, the cou-
plings at the two resonances become more equal �as in the
pulsed scheme� and less discrimination between the two
evaporation zones is possible.

V. CONCLUSIONS

We have seen that we can employ a doubly dressed basis
�18� for the analysis of a dressed rf trap with two rf fields
provided the second rf field is sufficiently weak. Using this
arrangement of fields we can create a scheme for the evapo-
rative cooling of atoms in a singly dressed rf trap in a con-
tinuous mode. In contrast with the traditional continuous
forced evaporation scheme the idea of evaporative cooling
based on the application of rf pulses with properly chosen
durations and frequencies is also developed for a dressed rf
trap. The duration of such pulses is essentially determined by
the power of the rf field used for the evaporation, although
the optimal pulse length changes from one location to an-
other in the adiabatic trapping potential. When the trapping
and evaporative cooling radio frequencies are comparable,
we found that the evaporation also happens via additional
resonances. Even if these resonances can enhance the evapo-
ration process in both the pulsed and continuous schemes,
we have to be careful that atoms evaporated through these
resonances do not come back and heat the cold atomic cloud.
In this respect, the advantage of the pulsed scheme is to
provide an additional control of the transition probability at
the inner resonance via the pulse duration. However, the ef-
fect of gravity is to favor the evaporation via the outer reso-
nance OR which is then located at a position of lower energy.
Although the importance of this effect may depend on the
particular trapping geometry �pancake, ring traps�, the
evaporation schemes proposed in this paper are quite general

and should allow an efficient cooling of atoms directly in the
various rf traps which have been proposed or realized
�11–16�.

The main application of the work in this paper is to the
evaporative cooling of atoms in a dressed trap. However,
there are also applications concerning noise and stability of
dressed rf traps where the carrier frequency �1 is not per-
fectly monochromatic. This can be due, for instance, to con-
tamination by stray fields. Then it is clear that if the fre-
quency components next to the carrier are in the range of, let
us say, �=1.01�1−1.05�1, they will empty the rf trap if
they have enough power to do so or, in the best case, they
will raise the temperature of the atoms. This means that if we
look at the second rf source as a noise term �a sideband in the
frequency spectrum�, the results presented here can be used
to estimate the damage it causes.

After submission of this work we became aware of an
experimental paper using a second rf source in a dressed rf
trap �29�.
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APPENDIX: DERIVATION OF H�r , t�

We will start the derivation of Eq. �1� by considering that
the total magnetic field experienced by the atoms consists of
three contributions or terms. One coming from the inhomo-
geneous dc magnetic field Bdc�r� of the QUIC trap, a second
term oscillating at the frequency �1, B1�r , t�
=B01e1 cos��1t�, associated with the adiabatic trapping po-
tential, and a third term of frequency �2, B2�r , t�
=B02e2 cos��2t�, responsible for the evaporative cooling in
the rf trap. Here, B01 and B02 are the amplitudes of the fields
whereas e1 and e2 are unit polarization vectors. Using these
definitions and denoting by F the atomic angular momentum
operator, the total Hamiltonian of our physical system
HT�r , t� can be approximated by

HT�r,t� = gF�BF · �Bdc�r� + B1�r,t� + B2�r,t��/� , �A1�

where gF and �B are the Landé factor and the Bohr magne-
ton, respectively. If we assume that at every point r the di-
rection of the dc magnetic field defines the local Z quantiza-
tion axis then, for X polarized rf fields, Eq. �A1� takes the
form

HT�r,t� = �0�r�FZ + V1�r,t� + V2�r,t� . �A2�

In Eq. �A2� �0�r�=gF�BBdc�r� /� is the Larmor precession
frequency. The interaction Hamiltonian Vj�r , t� is defined by
the expression

Vj�r,t� = � j�r�FX�ei�jt + e−i�jt�, j = 1,2 �A3�
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where � j�r��gF�BB0j / �2�� is the Rabi frequency.
Given HT�r , t�, the dynamics of an atomic spin state

	��r , t�
 is governed by the Schrödinger equation

i�
d	��r,t�


dt
= HT�r,t�	��r,t�
 , �A4�

which in the frame rotating at the frequency �1, becomes

i�
d	��r,t�


dt
= �− ��r�FZ + R1

†V1�t�R1 + R1
†V2�t�R1�	��r,t�
 .

�A5�

In Eq. �A5� we have introduced the detuning ��r�=�1

−�0�r�, the rotating frame operator R1=exp�−i�1tFZ /��,
and the rotated state 	��r , t�
=R1

†	��r , t�
. If we consider the
bare state basis �	−2
 , 	−1
 , 	0
 , 	+2
 , 	+1
� of a spin-2 sys-
tem, the matrix form of the rotated interaction Hamiltonians
R1

†V1�t�R1 and R1
†V2�t�R1 are, respectively, given by

�1�r��
0 1 0 0 0

1 0 �3

2
0 0

0 �3

2
0 �3

2
0

0 0 �3

2
0 1

0 0 0 1 0

�
and

�2�r��
0 ei�t 0 0 0

e−i�t 0 �3

2
ei�t 0 0

0 �3

2
e−i�t 0 �3

2
ei�t 0

0 0 �3

2
e−i�t 0 ei�t

0 0 0 e−i�t 0

� ,

where �=�2−�1 and we have made use of the rotating wave
approximation �RWA� by discarding the terms that oscillate
at 2�1 and �1+�2. In general, we find the dynamics of
	��r , t�
 in Eq. �A5� to be described by the Hamiltonian

H�r,t� = HA�r� + �2�FX cos��t� + FY sin��t�� , �A6�

where the adiabatic Hamiltonian HA�r� is defined as

HA�r� = − ��r�FZ + �1FX. �A7�

The time-independent Hamiltonian �A7� can be rewritten
as HA�r�=��r�F� if we define ��r�=���r�2+�1

2, cos���
=−��r� /��r�, sin���=�1 /��r�, and F�=cos���FZ

+sin���FX.
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