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Two-Dimensional Atom Trapping in Field-Induced Adiabatic Potentials
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We show how to create a novel two-dimensional trap for ultracold atoms from a conventional magnetic
trap. We achieve this by utilizing rf-induced adiabatic potentials to enhance the trapping potential in one
direction. We demonstrate the loading process and discuss the experimental conditions under which it
might be possible to prepare a 2D Bose condensate. A scheme for the preparation of coherent matter-
wave bubbles is also discussed.
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Bose-Einstein condensation of dilute atomic gases has
been demonstrated for three-dimensional systems, but has
as yet to be realized for dilute atomic gases in “low-
dimensional” atomic traps where one or more of the mo-
tional degrees of freedom can be quantum-mechanically
frozen. The availability of such traps would open up the
pathway to the experimental study of a host of physical
phenomena which presently are under vigorous theoretical
debate [1]. Several promising ideas for the realization of
two-dimensional atom traps or “planar waveguides” have
been proposed recently. Trapping is provided either by
optical [2] or by magnetic potentials [3], and the loading
is typically achieved through optical pumping. A first re-
alization of such a trap was reported in [4] where about
103 atoms were stored in the node of a standing light wave.
A very different route to obtain a 2D degenerate quantum
gas was pursued in Ref. [5] where a hydrogen quasicon-
densate was produced on a liquid helium surface.

In this Letter we propose a novel scheme to obtain
two-dimensional trapping of ultracold atoms and, possi-
bly, Bose-Einstein condensates (BECs). Our method dif-
fers in several important ways from previous proposals:
(i) it is based on the use of field-induced adiabatic poten-
tials which are a powerful tool to create enhanced trapping
potentials from conventional magnetic traps; (ii) it inher-
ently provides a quasiharmonic confinement for the two
unfrozen motional degrees of freedom. Under these cir-
cumstances the behavior of ultracold Bosonic gases is pre-
dicted to be drastically different from the 2D-box case [1]
which is typically realized in the planar waveguides; and
(iii) loading does not rely on incoherent processes (opti-
cal pumping), but is performed by adiabatically deforming
a conventional magnetic trap, e.g., an Ioffe-Pritchard (IP)
trap. This offers the advantage of working with extremely
cold, dense, and, possibly, coherent atomic ensembles
throughout the whole process.

The basic scheme will use the field-induced potentials
from a magnetic trap to create a shell potential: i.e., a po-
tential where the atoms are confined to the surface of an
ellipsoid. Gravity will cause trapped atoms to pool at the
bottom of the shell potential where they are in a locally har-
monic trap. Then, provided the shell is sufficiently thin, a
2D condensate could be formed. In the following we will

first discuss the adiabatic potentials necessary for such a
2D system. We will then show how atoms can be loaded
into the 2D trap and we will discuss the parameters needed
to achieve a 2D system. Because full 3D quantum calcu-
lations of the dynamics of the system are difficult we will
appeal to some related, but simpler, model systems to
demonstrate both the loading of atoms from a pure mag-
netic trap and determine the lifetime of the adiabatic trap.
One of these models, with gravitational compensation,
leads to the possibility of atomic matter-wave bubbles.
However, when gravity is not compensated for, and the
atoms pool in the shell potential, we may be able to
produce a 2D condensate using reasonable experimental
parameters.

We will consider a model system of atoms with five Zee-
man sublevels (e.g., Rb87 F � 2) in a magnetic trap which
will be subjected, during loading, to a time dependent ex-
ternal field. We note that the same ideas should work for
other systems, e.g., simpler two-level systems are possible
[6]. As a result of the coupling to the magnetic field, and
for a harmonic 3D trap, there is a trap potential for the
MF � F state which we can write as

Utrap�r� �
1

2
m�v2

xx2 1 v2
yy2 1 v2

z z2� , (1)

where m denotes the atomic mass. Here we keep all three
frequencies of the trap (vx , vy , vz) generalized to allow
for different orientations of an IP trap. Gravity will act in
the z direction and it results in a net potential for atoms in
an MF state of

UMF
�r� � mgz 1 �MF�F�Utrap�r� , (2)

where g is the gravitational acceleration.
When we now consider the interaction with a strong

external field we obtain spatially dependent dressed states
with energies

VMF
�r, t� � mgz

1 MF

q

�Utrap�r��2 2 h̄D�t��2 1 �h̄V�t��2 ,

(3)

for F � 2 (see Fig. 1). The detuning, D�t�, of the external
field is defined with respect to the potentials at the center of
the trap. The Rabi frequencies between Zeeman sublevels
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FIG. 1. Illustration of field-induced adiabatic potentials, or
dressed states, VmF

[Eq. (3)], MF � 62, as a function of z
(x � y � 0) and for D . 0. Only the two extremes, V62, are
shown for simplicity. Dashed curves show the bare potentials
U62 [Eq. (2)]. Inset: bare potentials showing rf resonance.

differ, so V in Eq. (3) is chosen to be the Rabi frequency
between MF � 2 and MF � 1. These dressed states will,
for sufficiently strong V, provide a trapping potential shell
for the atoms. This is illustrated by the potential V2 shown
in Fig. 1. The left-hand side of the potential V2 is lower
in energy because of gravity, resulting in greater numbers
of atoms collecting there. We note that application of an rf
field is also the basis of evaporative cooling, which leads
to a loss of atoms. This, however, mostly corresponds
to dynamics on the potential V22, whereas we shall seek
adiabatic transport in the potential V2.

The effect of gravity on the atoms is seen more clearly
in Fig. 2 where the dressed potential V2 is shown for the
x-z plane along with the probability density for an atomic
condensate. It is seen that the atoms pool into a curved
disk at low z. The disk is curved because the atoms tend to
be tightly confined to an ellipsoid surface, or seam, where
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FIG. 2. Upper adiabatic potential V2�r� (in arbitrary units)
at y � 0 for nx � vx�2p � 11 Hz, ny � nz � 220 Hz,
V�2p � 2.6 kHz, and D�2p � 13.2 kHz. These parameters
are intermediate in the creation of the 2D system. The ground
state of a Rb87 condensate, with about 105 atoms, is superim-
posed on the left.

there is resonance between the bare states jMF�: i.e., where
Utrap�r��2 � h̄D. Thus in the three principal directions

the seam is located at ri � 2ai

p

D�vi , where ai are the
oscillator lengths for the trap (i � x, y, z). At the bottom
of the potential V2 the atomic motion is harmonic with the
frequencies v1,2 � �g�rz�1�2vx,y�vz along the surface of

the seam and vtrans � �2D�V�1�2vz in the transverse, or
normal, direction.

The atoms at the bottom of the shell potential will have
a finite temperature T , and they are effectively in a 2D
trap if h̄v1,2 , kBT , h̄vtrans. A good 2D trap has a
large vtrans to allow one motional degree of freedom to be
frozen out at high temperatures. For an ideal gas, Bose
condensation in a 2D trap occurs at kBT � h̄v̄�6N�1�2�p
with v̄ � �v1v2�1�2 and N the number of atoms [7]. Then
the maximum number of atoms that can undergo a genuine
2D condensation is given by N & �vtrans�v̄�2; for higher
atom numbers there would be transverse excitation and
then condensation would take place in a 3D regime. Thus
a high ratio vtrans�v̄ is desirable, which will lead to a
consideration of large detunings.

When we start with the atoms in the center of the mag-
netic trap we have to move to large detunings in an adia-
batic process which has to be sufficiently slow to avoid
nonadiabatic excitations, but fast enough to avoid losses
from leakage. To simulate this loading we have inte-
grated a 2D Gross-Pitaevskii equation for Rb87 using the
potentials UMF

, Eq. (2), but neglecting the y degree of
freedom. This simplification has been made to make the
problem more numerically tractable. The couplings be-
tween the MF states are time dependent, and examples
of the evolving atomic density can be seen in Fig. 3. In
the first step of a two stage preparation scheme, the rf
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FIG. 3. The initial phase of loading the adiabatic trap is cal-
culated with a 2D model for 105 Rb87 atoms and t � 0, 43,
86, and 180 ms. The probability density (integrated over x) is
shown as a function of z and can be seen to compress as time
increases. The transfer process is achieved by starting, at t � 0,
with no coupling and negative detuning (see inset). The dashed
curve shows the Thomas-Fermi approximation at t � 180 ms.
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intensity is linearly ramped up to create the desired fi-
nal value of V at negative detuning D (see Fig. 3 in-
set). In the example, in order to reach a final V � 12vz

(�2.64 kHz) the field was switched on at D � 25vz �
21.1 kHz within a time Dt � 20�vz � 14.4 ms. In the
second step the rf detuning is simply increased to the final
value, but keeping the intensity fixed. In Fig. 3, the detun-
ing D was increased to 60vz � 13.2 kHz within a time
Dt � 160�vz � 116 ms. Because this process is nearly
adiabatic, it is not necessary to follow exactly the linear
ramp of detuning shown in this example. (We note that this
adiabatic transport of the wave packet has some similarity
to APLIP [8].) The simulations in Fig. 3 clearly show the
compression of the BEC in the z direction. We note that
there is a corresponding expansion of the BEC in the x

direction. Figure 3 also shows that the Thomas-Fermi ap-
proximation gives a very good description.

As the dimensions of the 2D trap become more extreme,
numerical simulations become very difficult, and so we
must make some general arguments about the necessary
conditions to understand whether it is possible to make a
2D condensate in this way. (i) Lifetime: For a given V one
would like to increase D as much as possible to enhance
vtrans. However, we will see below, Eq. (9), that for a
2-state system the decay rate g is less than, say, 0.01vz if

V3 $ lv2
z D , (4)

where the constant l � 5.7. As an approximation we
adopt this condition for the five-level system and note that
it also guarantees harmonic trapping in the transverse di-
rection; (ii) an upper limit for V at a given D is imposed
by the obvious conditions vtrans ¿ v1,2 and rz ¿ atrans,

where atrans �
p

h̄�mvtrans. These requirements are typi-
cally not in conflict with condition (4). (iii) Harmonicity in
x and y: Condensation might also take place in a slightly
anharmonic 2D trap, but, in any case, we find that this
2D trap is in a harmonic regime because of constraints on
temperature and lifetime; and (iv) loading: while, to avoid
leakage, we would want to expand (and flatten) the atom
cloud as fast as possible, we need to avoid nonadiabatic ef-
fects due to rapid change in the trap frequencies v1,2. To
estimate the minimum duration of this process we stipulate
the adiabaticity condition �v1,2 ø v2

1,2. Relation (4) then
leads to the condition

t ¿ �Vfinal�vx,y�3�4

l1�4
q

g�2ax,y

. (5)

Note that during loading, V can be increased above its in-
tended final value to reduce intermediate adiabatic losses.
At present, it is not clear whether the condensate will be
preserved during loading or if it could be destroyed due
to thermalization processes. In the first case, one would
eventually end up with a 2D condensate without observ-
ing an actual two-dimensional condensation process (un-
less additional measures are taken). In the second case,
it is interesting to note that the adiabatic potential has a

“built-in cooling system” as higher-lying states have a re-
duced lifetime. Furthermore, it may be possible to apply
a certain amount of evaporative cooling with the help of a
second, sufficiently detuned rf field.

To summarize, using condition (4) and the other
estimates it follows that the trap is effectively 2D for
temperatures

T ,
p

2 h̄V��
p

l kB� . (6)

Then using the 2D harmonic condensation temperature,
and expressing v̄ in terms of V, we find that the number
of atoms that can undergo condensation is limited by

N ,
2p2azV7�2v1�2

z

3gl3�2vxvy

. (7)

To give a numerical estimate, we consider an IP trap for
Rb87 atoms with nx � 11 Hz, and ny � nz � 220 Hz.
The rf field produces a Rabi frequency V � 15 kHz and
[from (4)] D � 12.2 MHz. The resulting trap frequen-
cies are ntrans � vtrans�2p � 8.9 kHz, n1 � 1.3 Hz,
and n2 � 27 Hz. The new trap is vertically shifted by
0.34 mm from the center of the original magnetic poten-
tial. The critical temperature is given by 0.43 mK, which
would allow condensation of up to 3.6 3 106 atoms.
Neglecting atomic interactions the transverse width of the
condensate is estimated at 0.08 mm. Equation (5) then
suggests a time of the order of a second for the preparation
process. In view of these estimates an attempt at the
experimental realization of the present proposal seems
possible with currently available technology.

Before concluding this Letter we consider a simplified,
2-state, spherical model in which we may neglect gravi-
tational effects, i.e., we consider atoms that are free to
move about the surface of the seam. This model will
realize atomic bubbles, i.e., a 2D system, but the con-
densate dynamics is more tractable numerically and ana-
lytically as the wave equation is effectively 1D. We use
this system to provide information on the decay rate at
the seam, which leads to Eq. (4), but the atomic bubbles
that are realized when gravity is compensated may be of
interest in their own right. For a spherical system (e.g.,
an IP trap with an appropriately large bias field) we as-
sume a radial l � 0 form of the wave function components
Fi�r� � fi�r��

p
4p r . Then working in an interaction

picture with respect to the applied fields, and neglecting
atomic interactions, the time development is determined
by the radial Schrödinger equation

ih̄ �f1 �

µ

2
h̄2

2m

≠2

≠r2
1

1

2
mv2r2 2

h̄D�t�

2

∂

f1

1 h̄V�t�f2 ,

ih̄ �f2 �

µ

2
h̄2

2m

≠2

≠r2
2

1

2
mv2r2 1

h̄D�t�

2

∂

f2

(8)

1 h̄V�t�f1 ,
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where v is the (spherical) magnetic trap frequency. The
upper dressed state of this system supports a vibrational
“ground” state j0� in the same way as the five-level system.
This state can also be loaded and deformed by changing
V and D slowly in time. However, because of nonadia-
batic transitions, there is leakage from the state j0�, i.e., it
decays. The decay rate for the harmonic system in Eq. (8)
can be determined, at fixed V and D, with the help of semi-
classical methods developed in connection with molecular
predissociation [9,10]. Applying these techniques we find
that the decay rate g shows a tendency to decrease expo-
nentially with increasing V, although there are also “reso-
nances.” In the desirable limit of g ø v, the exponential
suppression may be approximated as [11]

g 	 2v exp�2pV3�2�
p

2 vD1�2� , (9)

which shows that while high Rabi frequencies are desirable
to prevent losses, the detuning should not be too large.
Resonances, where the actual g is significantly smaller
than this approximation, take place when the state j0� is in
resonance with an eigenstate of the bare harmonic trapping
potential. This stabilization effect may be used to obtain
extremely long-lived states at rather moderate coupling
strengths.

Matter-wave bubbles can, with gravitational compensa-
tion, be prepared and used to observe other phenomena.
For example, if a bubble is formed and then the rf cou-
pling is turned off, the bubble will divide into the com-
ponents on the separate, bare, sublevels. For a two-level
system, one component will collapse, collide with itself at
the origin, and then expand outwards again. Anything in-
side the bubble will be efficiently exposed to an incoming
s-wave packet. A similar effect can be gained by turn-
ing off both the coupling and the magnetic trap: in this
case the spherical wave packet spreads, filling in its cen-
ter. However, unless the bubble is very small [i.e., smaller
than 	�h̄2�gm2�1�3 or 5 3 1027 m for Rb87 [11] ], or the
nonlinear interactions are very strong, none of these effects
can be seen without gravitational compensation. This can
be achieved over a finite region of space by exposing the
trapped atoms to an additional optical dipole potential Ud .
Utilizing a horizontal Gaussian laser beam we can choose
the laser intensity such that at the turning point zt of Ud ,
which is defined by ≠2Ud�zt��≠z2

� 0, the slope ≠Ud�≠z

balances the gravitational acceleration. In this way, the
combined optical and gravitational potential is almost con-
stant around zt ; the lowest-order corrections being cubic in

z 2 zt . The magnetic trap is then placed inside this area.
To test this scheme we made a 2D simulation for a BEC
of about 105 Rb87 atoms trapped in a magnetic potential
with nz � ny � 220 Hz, and nx � 30 Hz. We found that
when D � 6.6 kHz and V � 2.64 kHz we could form a
bubble of radial and axial diameters 15 and 110 mm if we
use a dipole potential with a beam waist radius of 73 mm
and power of 1 W.

In conclusion, we have proposed a novel scheme to
create two-dimensional atom traps by using rf-induced
adiabatic potentials in a shell form. In the presence of
gravity the atoms at the bottom of the shell potential are
in a two-dimensional harmonic trap which may sustain an
atomic BEC. Gravitational compensation with an opti-
cal potential also allows us to create stable atomic bubble
states which would allow the study of atomic dynamics
on a closed two-dimensional surface and the creation of
novel matter-wave states. The prospects for the experi-
mental realization of the scheme seem to be promising.
Nevertheless, more work is needed to obtain a detailed un-
derstanding of all aspects of engineering and loading such
traps.

We would like to thank the experimentalists in SCOAP
for many discussions. This work was supported by the
United Kingdom Engineering and Physical Sciences Re-
search Council.
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