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Induced plant responses to herbivory have major impacts on herbivore feeding behaviour, 

performance and population dynamics. These effects are well established for chemical defences, 

but induction of physical defences remains far less studied. However, for many plants it is 

physical defences that play the major role in regulating the levels of herbivore damage sustained. 

We provide evidence that in grasses induction of physical defences is both specific to herbivore 

feeding, as opposed to mechanical damage, and is may be dependant on the amount of damage 

imposed. Furthermore, we show that the magnitude of the induction response is sufficient to deter 

further damage and affect herbivore performance. We compared silica induction in two grass 

species in response to vertebrate and invertebrate damage, and to mechanical defoliation. 

Induction was assessed at two levels of damage over 16 months. Foliar silica content did not 

increase in response to mechanical defoliation, but damage by either voles or locusts resulted 

increases in silica content of over 400%. This increase deterred feeding by both voles and locusts. 

Silica induction in grasses due to repeated damage events over a prolonged period suggests a 

possible role for silica defence in the cyclical population fluctuations observed in many grass-

feeding herbivores. 

 

Key words: antiherbivore defences, feeding preference, induction, Microtus, physical defences, 

phytoliths, Schistocerca. 
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Induction of defences in response to herbivore damage is widely recognized as an effective plant 

defence strategy; particularly in cases where defences are costly or the threat of herbivore attack 

is intermittent and predictable from previous damage (Karban and Baldwin 1997; Karban et al. 

1999). Such defences can have profound impacts on the feeding behaviour, growth and 

population dynamics of herbivores (Haukioja 1991; Underwood 1999). Much previous work has 

focused on the induction of chemical defences, and on the induction strategies of woody species, 

with induction thought to be of less significance for grasses, where levels of chemical defences 

are often low. Physical defences such as silica are considered more important than chemical 

defences in deterring herbivory in grasses (McNaughton and Tarrants 1983, Vicari and Bazely 

1993), but little is known about the induction of these physical defences or the effectiveness of 

such induction against herbivores. Silica has been shown to deter feeding by both vertebrate and 

invertebrate herbivores (Gali-Muhtasib et al. 1992; Massey et al. 2006; Massey and Hartley 

2006). Further, it is known to reduce foliage digestibility and hence, to reduce the growth rates of 

both insect and mammalian herbivores (Massey et al. 2006; Massey and Hartley 2006). Silica is 

central to the interactions between grasses and grazers (McNaughton 1984; Jernvall and Fortelius 

2002; Prasad et al. 2005), but almost nothing is known about the magnitude of silica induction in 

response to herbivory, its effects on subsequent feeding, and hence its effectiveness as an induced 

defence strategy in grasses. 

 

To date, only two studies have found evidence for induction of silica (McNaughton and Tarrants 

1983; McNaughton et al. 1985). This may be due to the fact that most studies examining potential 

damage-induced silica deposition in grass leaves have tested induction in response to mechanical 

damage (McNaughton and Tarrants 1983; McNaughton et al. 1985; Brizuela et al. 1986; Cid et 

al. 1989; Cid et al. 1990; Banuelos and Obeso 2000). It has long been known that artificial 

damage can elicit different induction responses to those of herbivory (Hartley and Lawton 1987; 
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Hartley and Lawton 1991). Where feeding by herbivores has been considered, studies have relied 

on correlative evidence, such as comparing elevated silica levels in grasses from areas with high 

and low grazing pressure (McNaughton et al. 1985; Brizuela et al. 1986). In addition, for silica 

induction to be an effective resistance mechanism it must deter further feeding by herbivores, but 

no previous studies have tested the effects of induced silica levels on subsequent herbivore 

feeding.  

 

In this study, we compared the effects of herbivory, both insect and mammalian, and mechanical 

defoliation, on the concentration of silica in the leaves of two perennial grass species. As well as 

the type of damage, the intensity and timing of damage is also known to influence the magnitude 

of induction (Underwood 2000; Högstedt et al. 2005). Hence, we measured silica induction in 

response to a single damage event and to repeated damage events. In addition, we investigated 

the significance of silica induction for defence through a series of feeding preference trials using 

both invertebrate and vertebrate herbivores. The study addressed three key questions: 

i. Do different types of damage (mechanical, vertebrate and invertebrate herbivory) 

induce silica to the same extent? We predicted, as with chemical defences, that silica 

induction response would be greater following damage by herbivores than after 

mechanical damage.  

ii. Is induction dependent on the degree of damage sustained? We predicted that 

continuous damage would elicit a greater induction response than a single damage 

event.  

iii. Does silica induction deter further herbivore feeding? For silica induction to be an 

effective defence, the increased levels of silica should deter herbivory. 

 

Materials and methods 

Study organisms 
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We used two grass species with differing palatabilities and growth rates to test our hypotheses. 

Lolium perenne L. (perennial rye grass) is a relatively fast growing species (77.6 mg DM d-1) 

with relatively high levels of foliar nitrogen (2.59% DM) and high palatability to grazing 

mammals. Festuca ovina L. (sheep’s fescue) is a slower growing species (10.5 mg DM d-1) with 

lower levels of foliar nitrogen (1.65% DM) and is less palatable than L. perenne (Massey et al. 

2006). Our chosen mammalian herbivore, field vole (Microtus agrestis L.), is abundant in 

grasslands across Northern Europe (Corbet and Harris 1991). While considered a generalist 

herbivore, feeding primarily on leaves and stems of grasses, voles display highly selective 

feeding both between and within host plant species, dependent upon levels of nutrients and 

defences (Marquis and Batzli 1989; Hartley et al. 1995; Hjalten et al. 1996). The voles used in 

this study came from a captive bred colony at the University of Sussex. We used locusts 

(Schistocerca gregaria Forskal) as our generalist insect herbivore (Raubenheimer and Simpson 

2003) and nymphs were supplied by a local pet shop. Individual herbivores were used in a single 

feeding trial and different individuals were used in the feeding trials and to impose damage 

treatments. 

 

Experimental design 

Seeds of F. ovina and L. perenne were sown onto the surface of compost (John Innes No. 2) in 

15-cm pots and grown under greenhouse conditions (16/8 h l/d photoperiods, 15-25°C) and 

watered ad libitum for 3 months before the experiments. Plants of each species were randomly 

allocated into one of two experiments (see below), each of which had four damage treatments (n 

= 10): 1. mechanical defoliation (leaves were cut to 5 cm above ground level using scissors); 2. 

locust grazing (plants were placed in a locust cage with ten 3rd and 4th instar locust nymphs until 

they were eaten to approximately 5 cm above ground level. This took approximately 24 hours); 3. 

vole grazing (plants were placed in a cage with a single vole until they were eaten to 
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approximately 5 cm above ground level. This took approximately 5 hours); 4. no damage (control 

plants). 
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We simultaneously conducted two experiments to assess the plant’s response at different levels of 

herbivore damage. In experiment 1, plants were subjected to repeated damage treatments, as 

described above, every 3-4 weeks from 3 months to 15 months old (16 damage events in total). In 

experiment 2, plants were grown undamaged for 15 months, after which point they sustained a 

single damage event, as described above. In both experiments, plants were left undamaged for 6 

weeks following the final damage event to allow regrowth, before removing samples for silica 

analysis and to conduct feeding preference tests. Plants were treated with a liquid fertilizer after 9 

months (100 ml 12:1:1 N:P:K, Evergreen lawn food) to maintain nutrient levels in the compost. 

 

Foliar silica content (n = 10) was determined by fusing oven-dried leaf samples (approximately 

0.2 g) in sodium hydroxide followed by analysis using the colorimetric silicomolybdate technique 

(Allen 1989). 

 

Intraspecific feeding preference trials were conducted with plants from all damage treatments 

using both voles and locusts (n = 10). Individual tillers were removed at the base with scissors, 

matched for size across damage treatments (three tillers per damage treatment per trial) and the 

leaf area of each tiller scanned (AM-200 leaf area meter, ADC). The base of each tiller was 

wrapped in moist cotton wool, placed in an Eppendorf tube and arranged randomly in a grid 

design (3×4 tillers). The grid of tillers was then placed in an insect-tight enclosure with sawdust 

added level to the base of tillers, so that herbivores could move freely between grasses. Two 4th 

instar locust nymphs or a single vole were then placed in the cage and left for 6-12 hours at 25°C 

for locusts or 1-2 hours at 19°C for voles, until approximately 50% of total leaf area was eaten, 

after which the remaining leaf area of each tiller was measured. 
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Statistical analysis 

Foliar silica content between species, damage frequencies and damage treatments were compared 

using a 3-way ANOVA with Tukey’s post-hoc analysis. In the feeding trials, the leaf area 

removed from all three tillers per damage treatment was pooled to calculate the total leaf area 

eaten per damage treatment per trial. Feeding preferences were then compared using mixed-

model ANOVA’s, in which damage treatment was treated as a fixed factor and trial as a random 

factor. In this analysis, the only source of variation which can be used as an error term for the 

calculation of F-ratios is the interaction term between the fixed factor and the random factor. This 

term has 27 degrees of freedom for the treatment factor. There was no error term for the trial 

factor. 

 

Results 

Response to damage: foliar silica concentration 

Single damage events, by either clipping or herbivore grazing, did not alter the silica 

concentration in the re-growth tissue of either species (Table 1, Fig. 1). Repeated mechanical 

damage events induced a 129% increase in silica concentrations of F. ovina leaves, but there was 

no significant change in foliar silica concentrations in L. perenne. Repeated damage events by 

both locusts and voles resulted in large increases in silica levels for both grass species (Table 1, 

Fig. 1). Feeding by locusts resulted in 534% and 399% increases in silica concentrations of F. 

ovina and L. perenne leaves respectively, while vole feeding resulted in 399% and 414% 

increases in silica concentrations. 

 

Feeding preference trials 

The feeding preferences of both voles and locusts reflected the large increases in silica levels 

induced by previous herbivore damage. Feeding trials with locusts revealed higher feeding on 

undamaged F. ovina plants compared to all damage treatments (damage treatment, F3,27 = 13.10, 
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P < 0.001; Fig. 2a), and higher feeding on both undamaged and mechanically damaged plants 

compared with herbivore damaged plants of L. perenne (damage treatment, F3,27 = 9.56, P < 

0.001; Fig. 2b). Voles also displayed feeding preference for undamaged or mechanically 

damaged plants over herbivore damaged plants for both species (F. ovina: damage treatment, 

F3,27 = 5.95, P = 0.003; L. perenne: damage treatment, F3,27 = 8.28, P < 0.001; Fig. 2). 
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Single damage events did not result in significant changes in the feeding preferences of either 

locusts (F. ovina: damage treatment, F3,27 = 2.77, P = 0.061; L. perenne: damage treatment, F3,27 

= 1.68, P = 0.195; Fig. 2) or voles on plants of either species (F. ovina: damage treatment, F3,27 = 

1.13, P = 0.356; L. perenne: damage treatment, F3,27 = 0.35, P = 0.786; Fig. 2). 

 

Discussion 

Silica induction in grasses was dependent on both the degree and type of damage sustained. Both 

grass species responded to locust and vole grazing with induced silica levels, but mechanical 

damage did not elicit an induction response. Repeated damage events by either insect or 

mammalian herbivores resulted in large increases in the foliar silica levels of both species 

(~400% greater than undamaged plants), whereas single damage events were not sufficient to 

result in induction responses in either grass species. This is the first study to impose actual 

herbivore damage on grasses and measure the subsequent induction of silica in a manipulative 

experiment. All previous studies on this subject either correlated silica content with natural 

damage levels or assessed induction after mechanical damage (McNaughton and Tarrants 1983; 

McNaughton et al. 1985; Brizuela et al. 1986; Cid et al. 1989; Cid et al. 1990; Banuelos and 

Obeso 2000) and the degree of induction in our experiment using repeated herbivore damage was 

much higher than found these previous studies. 
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The patterns of silica induction in response to different damage types are consistent with those of 

many previous studies assessing chemical induction responses. Natural herbivory has been 

demonstrated to elicit greater induction of chemical defences than mechanical wounding in many 

systems (Hartley and Firn 1989; Hartley and Lawton 1991; Hamhimaki and Senn 1992, Korth 

and Dixon 1997; Lawrence and Novak 2004; Pontoppidan et al. 2005). Herbivores activate 

specific responses at the biochemical and molecular level (Korth and Dixon 1997; Felton and 

Eichenseer 1999; Reymond et al. 2000), and in insects, oral secretions have been identified as the 

sources of the cues leading to the unique responses to herbivory (Alborn et al. 1997). Our results 

suggest that similar response pathways, specific to damage by herbivores, may exist for silica 

defence induction. 

 

As our study assessed the impact of silica induction on subsequent herbivore feeding, we provide 

strong evidence that silica induction is a defence response following damage. The levels of 

feeding by both voles and locusts were reduced on plants previously damaged by herbivores 

compared with undamaged and mechanically damaged plants. Previously, the growth and 

digestion efficiency of locusts and voles have been found to be substantially reduced by high 

silica levels in F. ovina and L. perenne, similar to those induced by the herbivore damage 

treatments (Massey et al. 2006; Massey and Hartley 2006). Therefore, our results suggest a 

positive feedback mechanism for grass defence, whereby herbivory elicits silica induction in 

grass leaves, deterring further feeding and potentially reducing growth rates of herbivores.  

 

The induction response is much greater following repeated damage events than a single damage 

event, which may be due to a requirement either for several damage events and/or a significant 

time period to elapse before silica concentration in new leaves increases. These aspects of the 

feedback between grazers and grasses could be of particular significance to herbivore population 

dynamics (Lindroth and Batzli 1986; Haukioja 1991; Högstedt et al. 2005). Many herbivore 
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populations undergo cyclical fluctuations, but the delayed density dependent factors underpinning 

these cycles remain a topic of intense debate (Agrell et al. 1995; Krebs et al. 1995; Klemola et al. 

2000; Turchin and Hanski 2001). Although predation (Krebs et al. 1995) and parasitism (Hudson 

et al. 1998) appear to have strong influences in some of these cycles, changes to plant food 

quality with increased grazing pressure may also play a role (Agrell et al. 1995, Högstedt et al. 

2005). A recent study compared population cycles of  three mammalian (Microtus agrestis: field 

voles, Lemmus lemmus: lemmings and Ovis aries: Soay sheep) and two invertebrate (Melolontha 

hippocastani and Cerapteryx graminis) grass feeding herbivores and concluded that changes in 

food plant quality could dictate the 3-5 year population cycles by determining the duration of the 

induction response (Högstedt et al. 2005). Previous studies on cyclic dynamics of grass feeding 

herbivores have failed to identify any factors in grasses which are both affected by herbivore 

feeding and could influence food quality (Lindroth and Batzli 1986; Bergeron and Jodoin 1993; 

Klemola et al. 2000). However, none of these studies measured changes in silica concentrations 

and our study suggests that silica induction could be this key factor. The grazing pressure 

associated with high population densities could lead to the delayed induction of silica defences. 

This would deter herbivore feeding and as we have previously shown, lead to reductions in 

herbivore growth rates and digestion efficiency (Massey and Hartley 2006). This may have direct 

or indirect effects on herbivore mortality and so could contribute to population change at local 

scales. 

 

The variation in silica concentrations between damage treatments and degrees of damage suggest 

a cost associated with silica defence preventing the provisioning of leaves under all 

circumstances. Unlike many carbon or nitrogen based antiherbivore defences, where resources 

involved could be allocated either to growth or defence (Bryant et al. 1983), silica is not directly 

associated with plant growth (Raven 2003); therefore, the cost of defence is unclear. In addition, 

more research is required to determine whether induction is a result of increased silica uptake 
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from the soil, increased deposition of phytoliths within leaves, or both of these factors. There is 

evidence to suggest that both of these explanations are possible: McNaughton et al. (1985) found 

the highest levels of silica in the roots of grasses; damage by herbivores may result in the 

reallocation of this silica. Also, many grass species, including L. perenne, are known to actively 

take up silica from the soil (Jarvis 1987; Raven 2003) and herbivore damage could elicit an 

increase in this active transport. 

 

We have demonstrated that silica concentrations in grass leaves are induced in response to 

herbivore damage and that the elevated silica concentrations have deterrent effects on subsequent 

feeding by both vertebrate and invertebrate herbivores. This evidence for silica induction in 

grasses is consistent with an evolved defence mechanism and the large increases in induced foliar 

silica by herbivores have significant implications for the understanding of grass-grazer 

interactions. Further study is required to determine the extent to which silica induction in grasses 

affects plant and herbivore performance under field conditions, as well as any role silica may play 

in the population dynamics of grass feeding herbivores. 
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Table 1: ANOVA results for the effects of damage treatment (undamaged control, mechanical 

clipping, locust and vole feeding) and the degree of damage sustained (long-term [experiment 1], 

and short-term [experiment 2]) on the silica content of the leaves of two grass species (F. ovina 

and L. perenne). 

 

Factor df MS F ratio P value 

Species (S) 1 5.51 10.62 0.001

Degree of damage (D) 1 92.45 178.25 <0.001

Damage treatment (T) 3 22.69 43.74 <0.001

S × D 1 0.30 0.58 0.446

S × T 3 2.27 4.38 0.006

D × T 3 17.37 33.49 <0.001

S × D × T 3 1.10 2.13 0.099

Error 144 0.52
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Figure legends 1 
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Fig. 1 Foliar silica concentration of re-growth tissue of F. ovina and L. perenne plants following 

repeated and single damage treatments by mechanical defoliation, locust grazing and vole 

grazing, with undamaged controls. Values are means (±SE). Different letters indicate significant 

differences between damage treatments (Tukey’s test P < 0.05). 

 

Fig. 2 Locust and vole feeding preferences for a F. ovina and b L. perenne plants after repeated 

and single damage events by mechanical defoliation, locust grazing and vole grazing, with 

undamaged controls. Values are means (±SE). Different letters indicate significant differences 

between damage treatments within each feeding trial (Tukey’s test P < 0.05), ns = not significant.
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1 Fig. 2 
Le

af
 a

re
a 

co
ns

um
ed

 (m
m

2 )

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Le
af

 a
re

a 
co

ns
um

ed
 (m

m
2 )

0

200

400

600

800

1000

1200

1400

1600

1800

C M L V C M L V C M L V C M L V
RepeatedSingleRepeated Single

Locust Vole

ns

ns
a

b b

c

a a

b b

C M L V C M L V C M L V C M L V
RepeatedSingleRepeated Single

Locust Vole

a
a

b
b

ns

a a

b
b

ns
b) Lolium perenne

a) Festuca ovina

Control Mechanically damaged Locust grazed Vole grazed

 2 

3   


