
About Hoare Logics for Higher-order Store⋆

Bernhard Reus1⋆⋆ and Thomas Streicher2

1 University of Sussex, Brighton BN1 9QH, UK
2 TU Darmstadt, 64298 Darmstadt, Germany

Abstract. We present a Hoare logic for a simple imperative while-
language with stored commands, ie. stored parameterless procedures.
Stores that may contain procedures are called higher-order. Soundness
of our logic is established by using denotational rather than operational
semantics. The former is employed to elegantly account for an inher-
ent difficulty of higher-order store, namely that assertions necessarily
describe recursive predicates on a recursive domain. In order to obtain
proof rules for mutually recursive procedures, assertions have to explic-
itly refer to the code of the procedures.

1 Introduction and Motivation

Hoare logic for imperative languages has been invented in the late 60es [7] and
since then extended in many directions (for a survey see e.g. [4]). Procedures
are a typical example. For a simple while language with parameterless recursive
procedures it is common to apply the following rule (see [4]) for a procedure p
declared with body C:

(proc)
{P} p {Q} ⊢ {P}C {Q}

{P} p {Q}

In order to verify the effect of a procedure call, one has to show that the procedure
body satisfies the very same effect under the assumption that the call already
does so. Semantically, this corresponds to a form of fixpoint induction where
admissibility of the semantical predicates is guaranteed automatically as store is
modeled by a flat domain. Thus, in rule (proc) the {P} p {Q} in the conclusion
refers to the fixpoint of the definition rec p⇐ C[p] whereas on the left hand side
in the premise it refers to an arbitrary implementation of p.

The situation changes dramatically if one allows stored procedures, ie. if
procedures are kept in the store – in the same way as basic data like numbers
– and called by their (variable) name. For example, runx invokes the procedure
stored in variable x. The semantics of programs, being state transformers, now

⋆ Both authors have been partially supported by APPSEM II (Applied Semantics), a
thematic network funded by the IST programme of the European Union, IST-2001-
38957.

⋆⋆ The first author has been partially supported by the EPSRC under grant
GR/R65190/01, “Programming Logics for Denotations of Recursive Objects”.

becomes implicitly higher-order, as they depend on the (code in the) store which
contains such transformers itself. For this reason such stores are sometimes called
“higher-order” or even recursive.

Landin had already observed1 that in such situations one is able to tie “knots
through the store”. Put differently, recursion through the store becomes available
such that additional fixpoint operators are obsolete. Consider e.g. the example
x := C; run x which first stores a command C in x and then runs this command.
But C itself may contain a command runx, in which case we obtain a recursive
procedure. In traditional semantics (see [9, 14, 6]) the semantics of a procedure
is a fixpoint. This is fine as long as newly added code can only call the old
procedures and not vice-versa. In object-oriented languages, however, new sub-
classes can change the semantics of the old classes (that is the whole point of
object-orientation) and the traditional semantics cannot cope with that. For
languages with higher-order store this is no problem, as recursion is through the
store and not by fixpoint.

To the best of our knowledge, there is no Hoare-calculus for partial correct-
ness of (even simple) imperative languages with higher-order store in the liter-
ature. However, in [8] a calculus for total correctness of programs with higher-
order store has been presented recently where soundness is based on induction
on a termination measure. The semantics does not make use of domain theory
and does not seem to be easily extendible to partial correctness.

Several (fully-abstract) models using games (or abstract versions of games)
have been developed but they focus on observational equivalence, e.g. [3, 10, 11].

A Hoare-like calculus for an object-based language, Abadi and Cardelli’s
imperative object calculus [1], has been suggested in [2]. In that language, simple
field values and method closures are kept together in the same store. Hence,
the store is higher-order. In [2], the program logic does not use Hoare-triples
but specifications that refer to the state before and after method execution.
Consequently, in [2], method specifications can only use static information about
other methods and thus cannot cope with callbacks or dynamic loading where
specifications may change at runtime. Method update had to be disallowed. Note
that in this paper our stored procedures can be updated.

In [16, 17], we have presented a denotational technique to understand and
model such object logics. This has been extended to a complete analysis of the
entire Abadi-Leino calculus in [15]. Separately, in [5], Calcagno and O’Hearn
set out to put ideas of separation logic [12] into a program logics for objects in
a traditional Hoare-triple style but had problems with the object introduction
rule.

In this paper we present a simple imperative language (Sect. 2) with higher-
order store but without objects, and an assertion language (Sect. 3). We present
some new proof rules (Sect. 4), give examples (Sect. 5) and prove soundness
(Sect. 6). We finish with an outlook where the results of this paper may lead us
and how related work could be helpful.

1 as Peter O’Hearn pointed out to the first author.

Table 1. BNF syntax of L

x ∈ Var variable
e ∈ Exp ::= x variable expression

| k numbers and other constants
| e ◦2 e binary operators
| ◦1 e unary operators
| ‘s’ quote (command as expression)

s ∈ Com ::= nop no op
| x := e assignment
| s; s sequential composition
| if e then s else s conditional
| run x unquote (run the command in x)

The language in use is arguably the simplest language that uses higher-order
store. It is thus an ideal candidate to investigate the problems caused by higher-
order store in isolation. Using denotational semantics we will discover where
exactly the difficulties of higher-order store are rooted.

2 The Programming Language

Syntax First we define the programming language syntax of our language, called
L. Let Var be the set of (countable) program variables, Exp the side effect free
expressions, and Com the statements (commands). A BNF grammar for L is
presented in Table 1.

The simplest non-terminating loop can be written as x := ‘runx’; runx.

Semantics The semantics is developed in a category of cpo-s and partial con-
tinuous maps (predomains). For any (pre-)domain there is, as usual, a partial
order ⊑, and for a partial continuous function f ∈ A⇀B and a ∈ A, we write
f(a)↓ to state that the application is defined.

Let BVal be the set of basic first-order values like numbers or booleans ordered
discretely. Values and stores are defined by the following system of (pre-)domain
equations

Val = BVal + [St⇀St] St = Val
Var

Stores in St map variables into values in Val. The fact that state transformers
can be values reflects the fact that the store is higher-order. Note that for a store
σ, a variable x, and a value a we write σ[x 7→ a] for the map σ′ defined as

σ′(y) =

{

a if y ≡ x

σ(y) otherwise

The equations for higher-order store can thus be rewritten in one equation
as follows:

St = (BVal + [St⇀St])Var

Table 2. Semantics of L

[[x]]e σ = σ(x)
[[‘s’]]e σ = [[s]]
[[k]]e σ = k

[[e1 ◦2 e2]]
e σ = ◦2([[e1]]

e σ, [[e2]]
e σ)

[[◦1 e1]]
e σ = ◦1([[e1]]

e σ)

[[nop]] σ = σ
[[x := e]] σ = σ[x 7→ [[e]]e σ]
[[s1; s2]] σ = [[s2]]([[s1]] σ)

[[if e then s1 else s2]] σ =

8

<

:

[[s1]]σ if [[e]]eσ = true

[[s2]]σ if [[e]]eσ = false

undefined otherwise
[[run x]] σ = σ(x)(σ)

or equivalently, by setting Cl = [St⇀St],

Cl = [(BVal+Cl)Var ⇀ (BVal+Cl)Var]

The mixed-variant functor for which Cl is the solution is given by its object
and morphism part below:

F (X,Y) = [(BVal+X)Var ⇀ (BVal+Y)Var]

If e : X⇀Y then let ê = (BVal + e)Var : (BVal + X)Var⇀(BVal + Y)Var. More
precisely, for a store σ ∈ (BVal +X)Var, ê(σ) is defined as follows:

ê(σ)(x) =

{

σ(x) if σ(x) ∈ BVal

e(σ(x)) if σ(x) ∈ X

Now we can define the morphism part:

F (e, f) = λh : F (X,Y). f̂ ◦ h ◦ ê.

For e ∈ [Cl⇀Cl] let eA ∈ [ClA⇀ClA] be defined by eA(h)(a) = e(h(a)). We
can interpret L using an interpretation function for expressions [[]]e : Exp →
[St⇀Val] and commands [[]] : Com → [St⇀St] as presented in Table 2.

The last equation [[runx]]σ = σ(x)(σ) is reminiscent of the self-application
semantics of method call in OO-languages.

3 The Assertion Language

The assertion language is based on the assertions of the classic Hoare-calculus
with the difference, though, that expressions can also refer to stored procedures.

Table 3. Syntax of Assertions

n, p ∈ AuxVar

τ ∈ Type ::= bool | int | com types
e ∈ Exp ::= n | p auxiliary variables in BVal and Cl

| x | k | e ◦2 e | ◦1 e | ‘s’
P ∈ Asrt ::= false falsity

| P ∧ P conjunction
| ¬P negation
| ∀n. P universal quantification
| τ? e type check
| e ≤τ e comparison

Table 4. Semantics of Assertions

(|false|) η = ∅
(|P ∧ Q|) η = (|P |) η ∩ (|Q|) η
(|∀n. P |) η = ∩v∈Val(|P |) η[n 7→ v]
(|τ? e|) η = {σ | [[e]]e η σ ∈ [[τ]] } where [[com]] = Cl, [[int]] = Z, [[bool]] = B

(|¬P |) η = {σ | σ 6∈ (|P |) η }
(|e1 ≤τ e2|) η = {σ | [[e1]]

e η σ ∈ [[τ]] ∧ [[e2]]
e η σ ∈ [[τ]] ∧ [[e1]]

e η σ ⊑ [[e2]]
e η σ }

Syntax The syntax of assertions is presented in Table 3. They may contain
expressions of L which have no side effects. Note that e = e and φ ∨ φ can be
expressed using ≤, and ∧ and ¬, respectively.

As already known from classic Hoare-calculus one needs “ghost variables”
(also called auxiliary variables) to be able to refer to values in the pre-execution
state. For example, in the Hoare-triple {x = n} fac {x = n!} we have a program
variable x, and an auxiliary variable n. The countable set of auxiliary ghost vari-
ables is called AuxVar. Throughout the paper we use x, y, z to denote instances
of program variables in Var and n, p, q to denote instances of auxiliary variables
in AuxVar where n is usually used for auxiliary variables of basic type and p

and q for auxiliary variables for commands (procedures). It is important not to
confuse those different types of variables.

Semantics The denotational semantics of assertions is standard but we have to
take care of auxiliary variables. For those variables an additional environment is
in use of type Env = ValAuxVar. Correspondingly, an interpretation function for
assertions must have type (| |) : Asrt → Env → P(St) and its equations can be
found in Table 4.

Observe that [[]]
e

has to be extended to auxiliary variables. Therefore, we
stipulate [[n]]eη σ = η(n) and assume that the definitional equations for [[]]e in
Table 2 have been changed accordingly.

A particular subset of downward-closed assertions Equality between procedures
(≤com) is problematic as it is not a downward-closed predicate which will be

Table 5. Syntax of pure assertions without undesired comparisons of commands

φ,∈ BAsrt ::= false | φ ∧ φ | ¬φ | ∀n. φ | τ? e | e ≤nat e | e ≤bool e
P ∈ DClAsrt ::= φ | ∀n. P | x ≤com n | x ≤com ‘s’ | ‘s’ ≤com ‘s’ | P ∧ P | P ∨ P

important for our semantics. We therefore identify a particular sublanguage of
assertions, DClAsrt, which are more restrictive with respect to comparisons of
commands, in particular they do not admit equality on procedures. To define
DClAsrt, we introduce “basic assertions” BAsrt first, which do not use any com-
parison between expressions of type com at all. The exact definitions can be
found in Table 5.

Assertions like x =com ‘s’, i.e. x ≤com ‘s’ ∧ ‘s’ ≤com x, are not in DClAsrt as
‘s’ ≤com x is not in DClAsrt. The assertions in DClAsrt all satisfy three conditions
explained in Lemma 1 below. These properties will turn out to be crucial to
obtain a semantics that validates the proof rules introduced in the next section.

Lemma 1. For any assertion P ∈ DClAsrt its semantics (|P |) ∈ Env → P(St)
has the following properties:

1. (|P |) η is a downward closed predicate for all η ∈ Env.
2. (|P |) is monotonic in its (procedure environment) argument.
3. (|P |) η σ implies (|P |) ê(η) ê(σ) for all e ∈ Cl⇀Cl, σ ∈ St, and η ∈ Env where

ê(η) is defined analogously to ê(σ) with the only difference that the variables
used in Env are AuxVar whereas those used in St are Var.

Proof. We only have to consider assertions on commands. Assertions on basic
types trivially fulfill the requirements since BVal is ordered discretely. Since ∀,
∧, and ∨ preserve the conditions above we only need to show each of them for
the three comparisons on commands (and the type check assertion com?e which
trivially fulfills all conditions). (1) and (2) are immediate by definition of the
assertions. For (3) we show the interesting case: [[x ≤com n]] η σ iff σ(x) ⊑ η(n)
(†). Now [[x ≤com n]] ê(η) ê(σ) iff ê(σ)(x) = e(σ(x)) ⊑ ê(η)(n) = e(η(n)) which
follows from (†) as e is monotonic.

4 Proof Rules

First of all, the standard rules for assignment (A), composition (S), conditional
(I), weakening (W), and no operation (ǫ) are in use as presented in Fig. 1.

New rules are needed to deal with stored procedures as outlined in Fig. 2.
The run-rule (R) is canonical for non-recursive procedure calls. Rule (H) is like
(R) for cases where the code in a variables is not known but described by an
auxiliary variable. Finally, the recursion rule (µ) is used for stored procedures
that are (mutually) recursive. This is necessary as rule (R) is not able to get
rid of the circular reference to the procedure. Rule (µ) is able to do just that
analogously to the standard procedure rule (proc) mentioned in the introduction.

(A)
{P [e/x]}x := e {P}

(S)
{P}C1 {R} {R}C2 {Q}

{P}C1; C2 {Q}

(I)
{b ∧ P}C1 {Q} {¬b ∧ P}C2 {Q}

{P} if b thenC1 else C2 {Q}
(W)

P ⇒ P ′ {P ′}C {Q′} Q′ ⇒ Q

{P}C {Q}

(ǫ)
{P} nop {P}

Fig. 1. Standard Rules

(R)
{P ∧ x ≤ ‘C’}C {Q}

{P ∧ x ≤ ‘C’} runx {Q}
Q ∈ DClAsrt

(H)
{P ∧ x ≤ p} p {Q} ⊢ {P ∧ x ≤ p} run x {Q}

Q ∈ DClAsrt

(µ)

V

1≤i≤n
{P1} p1 {Q1} . . . {Pn} pn {Qn} ⊢ {Pi}Ci {Qi}

V

1≤i≤n
{Pi[C/p]}Ci {Qi[C/p]}

∀1≤i≤n. Pi, Qi ∈ DClAsrt

Fig. 2. New Rules for Stored Procedures

In fact, by using first (R) and then (µ), one obtains the derived rule stated below
(left). For comparison the standard recursive procedure rule is repeated next to
it (right).

{P ∧ x ≤ p} p {Q} ⊢ {P ∧ x ≤ p}C {Q}

{P ∧ x ≤ ‘C’} runx {Q}
(proc)

rec p⇐ C[p]
{P} p {Q} ⊢ {P}C {Q}

{P} p {Q}

Whereas for (proc) the definition of the procedure p is separate, for stored pro-
cedure x one needs to use an auxiliary variable p to denote the content of x
during execution of its body which may change x.

Note that throughout the rest of the paper we simply write ≤ instead of
≤com when one of its arguments is obviously of type com. The necessity of the
side conditions for (µ), (R), and (H) will become clear when we discuss the
soundness of these rules.

5 Sample Derivations

We present some sample derivations to demonstrate how the proof rules above
are to be used.

Example 2. A derivation for a specification of our introductory example of a
non-terminating loop, {true} x := ‘run x’ ; runx {false}, is outlined in Figure 3.

Example 3. Because of recursion through the store we can simulate a while loop
while B do C od as z := ‘if B thenC; run z else nop’ ; run z. Of course, program
variable z is not supposed to occur in C. When doing the proof it becomes clear

(A)
{‘run x’ ⊑ ‘run x’} x := ‘run x’ {x ⊑ ‘run x’}

(W)
{true}x := ‘run x’ {x ⊑ ‘run x’}

(H)
{x ⊑ q} q {false} ⊢ {x ⊑ q} run x {false}

(µ)
{x ⊑ ‘run x’} run x {false}

(S)
{true}x := ‘run x’; run x {false}

Fig. 3. Derivation for Example 2

that it is enough that z is not altered by C. The standard rule for while and its
derived equivalent for the encoding in L read as follows:

{B ∧ I}C {I}

{I}whileB doC od {¬B ∧ I}

{B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p}

{I}whileB doC od {¬B ∧ I}

The encoded form has to state that z is invariant, i.e. that the content of this
cell is not changed by the body of the while statement. This is expressed using
an auxiliary variable p ∈ AuxVar.

For the proof assume that (∗) {B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p} and let IF
abbreviate the expression (of command type) ‘if B thenC; run z else nop’. The first
part of the derivation is straightforward (see Fig. 4). The remaining open goal
{I ∧ z ≤ IF} run z {¬B ∧ I} is then derived in (β) in the second prooftree of
Fig. 4. The application of the recursion rule (µ) will introduce the hypothesis
(†) {I ∧ z ≤ p} p {¬B ∧ I} to be used at the top of subtree (β).

(A)
{I ∧ IF ≤ IF} z := IF {I ∧ z ≤ IF}

(W)
{I} z := IF {I ∧ z ≤ IF}

(β)
(R)

{I ∧ z ≤ IF} run z {¬B ∧ I}
(S)

{I} z := IF ; run z {¬B ∧ I}

where (β) is the following prooftree

(∗)
{B ∧ I ∧ z ≤ p}C {I ∧ z ≤ p}

(†)
{I ∧ z ≤ p} p {¬B ∧ I}

(H)
{I ∧ z ≤ p} run z {¬B ∧ I}

(S)
{B ∧ I ∧ z ≤ p}C; run z {¬B ∧ I}

(N)
{¬B ∧ I} nop {¬B ∧ I}

(W)
{¬B ∧ I ∧ z ≤ p} nop {¬B ∧ I}

(I)
{I ∧ z ≤ p} if B then C; run z else nop {¬B ∧ I}

(µ)
{I ∧ z ≤ IF} if B then C; run z else nop {¬B ∧ I}

(R)
{I ∧ z ≤ IF} run z {¬B ∧ I}

Fig. 4. Derivation for Example 3

Table 6. Semantics of Triples

(η, σ) |= {P}C {Q} ⇔ ∀σ′∈St. (|P |) η σ ∧ [[C]] σ = σ′ ⇒ (|Q|) η σ′

(η, σ) |= {P} p {Q} ⇔ ∀σ′∈St. (|P |) η σ ∧ η(p)(σ) = σ′ ⇒ (|Q|) η σ′

|= {P1} p1 {Q1}, . . . , {Pn} pn {Qn} ⇔ ∀η∈Env.(∀σ∈St.
V

1≤i≤n
(η, σ) |= {Pi} pi {Qi})

⊢ {P}C {Q} ⇒ ∀σ∈St. (η, σ) |= {P}C {Q}

Example 4. This example shows how procedures can modify themselves so that
different invocations of x behave differently. Let

S ≡ ‘if z=0 then nop else (y := y + z; z := z−1; runx)’

and consider the program x := ‘y := y+1;x := S’; runx; runx for which we can
derive the following annotations:

{y = n ∧ z = m}
x := ‘y := y+1;x := S’ (A),(W)
{y = n ∧ z = m ∧ x ≤ ‘y := y+1;x := S’}
runx (R),(A),(S),(W)
{y = n+1 ∧ z = m ∧ x ≤ S}
runx (R),(µ),(I),(S),(A),(W),(ǫ)
{y = n+1 +

∑m
1 i ∧ z = 0 ∧ x ≤ S}

6 Soundness

Pre-condition P and post-condition Q of Hoare triples do not only depend on
the store but also on the values for the auxiliary variables in environment Env.
We write (η, σ) |= {P}C {Q} meaning that {P}C {Q} is valid in σ and η.

Definition 5. The semantics of Hoare triples for commands, for closure vari-
ables, and for commands in context, resp., is given in Table 6. Note that triples
express partial correctness.

Now we are in a position to formally prove the soundness of the new rules.2

Theorem 6. The (run-)rules (R) and (H) are sound.

Proof. Let C be a command. Assume that (1) |= {P ∧x ≤ ‘C’}C {Q}. We have
to show |= {P ∧ x ≤ ‘C’} runx {Q}. Therefore, assume that η ∈ Env, and σ ∈ St

such that (2) (|P ∧ x ≤ ‘C’|) η σ and that (3) [[run x]]σ = σ′. It remains to show
that (|Q|) η σ′. Define (4) σ′′ := [[C]]σ. From (1), (2) and (4) we obtain (|Q|) η σ′′.
Since (|Q|) is downward-closed by Lemma 1(2) and Q ∈ DClAsrt, it suffices to
prove that σ′ ⊑ σ′′. But

σ′ =(3) [[run x]]σ = σ(x)(σ) ⊑(2) [[C]] σ =(4) σ
′′ .

The proof for (H) is carried out analogously.

2 Soundness of the old rules is standard.

In the next proof we will make use of a binary operation + : Env × ClA → Env

that represents “overwriting of environments” where A ⊆ AuxVar. Accordingly,
(η+δ)(n) = η(n) if n ∈ A and δ(n) otherwise.

Theorem 7. The rule (µ) is correct.

Proof. Let (|Pi|), (|Qi|) ⊆ Env×St for 1≤i≤n be the denotations of the predicates
in the assertions of (µ). We basically follow the ideas of [16] where similar argu-
ments were used to prove the correctness of the object introduction rule of [2].

For arbitrary η ∈ Env let Aη ⊆ Cl{p1,...,pn}×Cl{p1,...,pn} be defined as follows:

Aη(ψ, φ) ≡ ∀1≤j≤n. ∀σ∈St.

(|Pj |) (η+ψ)σ ∧ φ(pj)(σ)↓ ⇒ (|Qj|) (η+ψ) (φ(pj)(σ))

Let pi 7→ [[Ci]] be the environment in Cl{p1,...,pn} that assigns [[Ci]] to pi for
1≤i≤n. Then verifying rule (µ) amounts to showing that for arbitrary η ∈ Env:

(†) ∀φ∈Cl{p1,...,pn}. Aη(φ, φ) ⇒ Aη(φ, pi 7→ [[Ci]])
implies

Aη(pi 7→ [[Ci]], pi 7→ [[Ci]])

since in general ∀φ∈Env. R φ is equivalent to ∀φ∈Env. ∀ψ∈Cl{p1,...,pn}. R (φ+ψ).
Let S be a predicate on Cl

{p1,...,pn} such that for all φ ∈ Cl
{p1,...,pn}

(1) S(φ) ⇐⇒ ∀ψ∈Cl{p1,...,pn}. S(ψ) ⇒ Aη(ψ, φ)

from which it follows that for any φ

(2) S(φ) ⇒ Aη(φ, φ).

Now from (2) and assumption (†) it follows that

(3) S(φ) ⇒ Aη(φ, pi 7→ [[Ci]])

i.e. S(pi 7→ [[Ci]]) due to (1) as φ was arbitrary such that by (1) again we obtain
Aη(pi 7→ [[Ci]], pi 7→ [[Ci]]) as desired. The existence of an appropriate S in (1) is
shown in Lemma 8.

Lemma 8. There is a S ⊆ Env such that S(φ) ⇐⇒ ∀ρ∈Env. S(ρ)⇒Aη(ρ, φ)
for any η ∈ Env.

Proof. Let L denote the admissible subsets of Cl{p1,...,pn} ordered by ⊆ and

Φ : Lop→L : S 7→ {φ∈Cl{p1,...,pn} | ∀ρ∈Cl{p1,...,pn}. S(ρ)⇒Aη(ρ, φ) }

for which it is necessary thatAη(ρ,−) specifies an admissible subset of Cl{p1,...,pn}

for all ρ ∈ Cl{p1,...,pn} which follows from Lemma 1(1). For guaranteeing existence
(and uniqueness) of such an S by Pitts’ Theorem [13] we have to show that
e : S1 ⊆ S2 implies F (e, e) : Φ(S2) ⊆ Φ(S1) for all (idempotent) e ⊑ idCl where

forX,Y ⊆ Cl{p1,...,pn} one defines e : X ⊆ Y iff ∀x∈X. ê(x)↓ ⇒ ê(x)∈Y . Suppose

e ⊑ idCl with e : S1 ⊆ S2 and Φ(S2)(φ). We have to show Φ(S1)(F̂ (e, e)(φ)). For
this to be possible we need that (|Pj |) and (|Qj |) satisfy all three properties of
Lemma 1.

7 Loose Ends and Related Work

Our programming language L contains only constant command expressions. Self-
modifying programs would also modify commands, in other words, use operations
on commands.

Consider, for example, an operation make com that concatenates two com-
mands returning a new one, such that modifications like x := make com(x, y)
become possible. To allow for such expressions one needs to axiomatise make com

algebraically, i.e. the underlying first-order logic on data types needs to be en-
riched by axioms like make com(‘s1’, ‘s2’) = ‘s1; s2’ and a monotonicity axiom
for make com w.r.t. ≤com.

Procedures with parameters have not been discussed here but are certainly
an issue. We expect, however, that they are not more difficult to cope with than
in ordinary Hoare-calculus with recursive procedures. In particular, if parameters
are passed by value.

The logic presented is not modular as all code must be known in advance and
must be carried around in assertions. In [5], a calculus for objects was suggested
that uses nested Hoare triples in order to state properties of programs in the
store rather than referring to their explicit code without a hint on a denotational
semantics nor a soundness proof. The meaning of such a “specification” triple in
our setting would be a recursively defined predicate:

(σ, η) |= {P} x {Q} ⇔ ∀σ′, σ′′∈St.

(σ′, η) |= {P} x {Q} ∧ (|P |)σ′ ∧ σ(x)(σ′)=σ′′ ⇒ (|Q|)σ′′

Unfortunately, such a recursively defined semantics of triples, |=, does not allow
for a separate specification for mutual recursive procedures (there is no “Bekic
Lemma”). This suggests that it is highly unlikely that there is a modular logic
for L. On the other hand, in [2, 15] it has been shown that modularity can
be achieved for Abadi and Leino’s object logic in a setting where assignments
to procedure variables are disallowed. It is unclear yet, to which extent this
restriction can be relaxed. In [17] we have discussed an idea for a relaxation
but it will have to be tested on a fully-fledged soundness proof where frame
properties are to be shown.

Alternative models for higher-order store have been suggested by [3, 10, 11]
using games or locally boolean domains. It might be worthwhile to consider the
domain equation for Cl within such locally boolean domains (or equivalently the
category of sequential algorithms). This would already provide us with a fully
abstract model for higher-order store in the sense of Idealized Algol.

Another open question is relative completeness of our logic. It is no problem
to express weakest liberal preconditions, at least when extending the assertion
language such that it can express arbitrary inductively defined predicates. The
hard problem is to show, by induction on S, that {wlp(C,P)}C {P} is derivable
for all post-conditions P .

The results of this paper, however, are the first step to get a grip on higher-
order store from a programming logic point of view.

Acknowledgements We would like to thank Cristiano Calcagno, Peter O’Hearn,
and Jan Schwinghammer for discussions and comments on this work. We are
grateful to the anonymous referees for their suggestions to improve readability.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Nachum

Dershowitz, editor, Verification: Theory and Practice, pages 11–41. Springer, 2004.
3. S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics for

general references. In LICS ’98: Proceedings of the 13th Annual IEEE Symposium

on Logic in Computer Science, page 334. IEEE Computer Society, 1998.
4. K.R. Apt. Ten Years of Hoare’s Logic: A Survey – Part I. TOPLAS, 3(4):431–483,

1981.
5. C. Calcagno and P.W. O’Hearn. A logic for objects. Slides of a Talk, 2001.
6. A.V. Hense. Wrapper semantics of an object-oriented programming language with

state. In Proceedings Theoretical Aspects of Computer Software, volume 526 of
Lecture Notes in Computer Science, pages 548–568, Berlin, 1991. Springer.

7. C.A.R. Hoare. An axiomatic basis for computer programming. Comm. ACM,
12:576–583, 1969.

8. K. Honda, N. Yoshida, and M. Berger. An observationally complete program
logic for imperative higher-order functions. In 20th Symp. on Logics in Computer

Science, LICS. To appear in IEEE, 2005.
9. S.N. Kamin and U.S. Reddy. Two semantic models of object-oriented languages.

In Carl A. Gunter and John C. Mitchell, editors, Theoretical Aspects of Object-

Oriented Programming: Types, Semantics, and Language Design, pages 464–495.
The MIT Press, 1994.

10. J. Laird. A categorical semantics of higher-order store. Electronic notes in Theo-

retical Computer Science, 69, 2002.
11. J. Laird. Locally boolean domains. 2004. Submitted.
12. P.W. O’Hearn, J.C. Reynolds, and H. Yang. Local reasoning about programs that

alter data structures. In CSL, volume 2142 of Logic in Computer Science, pages
1–19, Berlin, 2001. Springer.

13. A. M. Pitts. Relational properties of domains. Information and Computation,
127:66–90, 1996.

14. B. Reus. Modular semantics and logics of classes. In Computer Science Logic,
volume 2803 of Lecture Notes in Computer Science, pages 456–469, Berlin, 2003.
Springer.

15. B. Reus and J. Schwinghammer. Denotational semantics for Abadi and Leino’s
logic of objects. In Mooly Sagiv, editor, European Symposium on Programming,
volume 3444 of Lecture Notes in Computer Science, pages 263–278, Berlin, 2005.
Springer.

16. B. Reus and Th. Streicher. Semantics and logics of objects. In Proceedings of the

17th Symp. Logic in Computer Science, pages 113–122, 2002.
17. B. Reus and Th. Streicher. Semantics and logic of object calculi. TCS, 316:191–213,

2004.

