University of Sussex
Browse
polymers-15-02188.pdf (3.49 MB)

Chitosan polymer functionalized-activated carbon/montmorillonite composite for the potential removal of lead ions from wastewater

Download (3.49 MB)
journal contribution
posted on 2023-06-10, 07:00 authored by Ibrahim Hotan Alsohaimi, Mosaed S Alhumaimess, Hassan MA Hassan, Mohamed Reda, Abdullah M Aldawsari, Qiao ChenQiao Chen, Mohammed Abdo Kariri
A simple approach for synthesizing a highly adsorbent composite was described for the uptake of heavy metal ions from wastewater. A simple approach for synthesizing a highly adsorbent composite was also described for the elimination of heavy metal ions from contaminated water. The nanocomposite was synthesized via a polymer grafting of chitosan on the activated carbon surface, followed by a stacking process with the layers of montmorillonite clay. The spectroscopic analyses were exploited to confirm the composite structure of the prepared materials. Various adsorption parameters, such as pH, initial concentration, and adsorption time, were assessed. The results showed that the adsorption capacity of the composite for Pb2+ ions increased as the pH increased until it reached pH 5.5. The maximum adsorption capacity was observed at an initial Pb2+ level of 20 mg/L and a contact time of 150 min. Kinetic models were evaluated, and the pseudo second-order model showed the best match. The adsorption isotherm data were processed by fitting the model with different isotherm behaviors, and the Langmuir isotherm was found to be the most suitable for the system. The maximum adsorption capacity for Pb2+ ion on the MMT/CS/AC composite was found to be 50 mg/g at pH 5.5. Furthermore, the composite maintained a high adsorption capability of 85% for five adsorption–desorption cycles. Overall, this composite is envisioned as an addition to the market of wastewater remediation technology due to its chemical structure, which provides influential functional groups for wastewater treatment.

History

Publication status

  • Published

File Version

  • Published version

Journal

Polymers

ISSN

2073-4360

Publisher

MDPI AG

Issue

9

Volume

15

Page range

a2188 1-15

Department affiliated with

  • Chemistry Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2023-05-09

First Open Access (FOA) Date

2023-05-09

First Compliant Deposit (FCD) Date

2023-05-09

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC