University of Sussex
Browse
Whiteetal2020_ATE_sCO2_Review.pdf (3.15 MB)

Review of supercritical CO2 technologies and systems for power generation

Download (3.15 MB)
journal contribution
posted on 2023-06-10, 06:54 authored by Martin WhiteMartin White, Giuseppe Bianchi, Lei Chai, Savvas A Tassou, Abdulnaser I Sayma
Thermal-power cycles operating with supercritical carbon dioxide (sCO2) could have a significant role in future power generation systems with applications including fossil fuel, nuclear power, concentrated-solar power, and waste-heat recovery. The use of sCO2 as a working fluid offers potential benefits including high thermal efficiencies using heat-source temperatures ranging between approximately 350°C and 800°C, a simple and compact physical footprint, and good operational flexibility, which could realise lower levelised costs of electricity compared to existing technologies. However, there remain technical challenges to overcome that relate to the design and operation of the turbomachinery components and heat exchangers, material selection considering the high operating temperatures and pressures, in addition to characterising the behaviour of supercritical CO2. Moreover, the sensitivity of the cycle to the ambient conditions, alongside the variable nature of heat availability in target applications, introduce challenges related to the optimal operation and control. The aim of this paper is to provide a review of the current state-of-the-art of sCO2 power generation systems, with a focus on technical and operational issues. Following an overview of the historical background and thermodynamic aspects, emphasis is placed on discussing the current research and development status in the areas of turbomachinery, heat exchangers, materials and control system design, with priority given to experimental prototypes. Developments and current challenges within the key application areas are summarised and future research trends are identified.

History

Publication status

  • Published

File Version

  • Published version

Journal

Applied Thermal Engineering

ISSN

1359-4311

Publisher

Elsevier

Volume

185

Page range

a116447 1-28

Department affiliated with

  • Engineering and Design Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2023-04-26

First Open Access (FOA) Date

2023-04-26

First Compliant Deposit (FCD) Date

2023-04-25

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC