Synthesis of a thiazole library via an iridium-catalyzed sulfur ylide insertion reaction

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/108603/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Synthesis of a Thiazole Library via an Iridium-Catalyzed Sulfur Ylide Insertion Reaction

Storm Hassell-Hart,* Elisa Speranzini, Sirihathai Srikwanjai, Euan Hossack, S. Mark Roe, Daren Fearon, Daniel Akinbosede, Stephen Hare, and John Spencer*

ABSTRACT: A library of thiazoles and selenothiazoles were synthesized via Ir-catalyzed ylide insertion chemistry. This process is a functional group, particularly heterocycle-substituent tolerant. This was applied to the synthesis of fanetizole, an anti-inflammatory drug, and a thiazole-containing drug fragment that binds to the peptidyl-tRNA hydrolase (Pth) in Neisseria gonorrhoeae bacteria.

Thiazoles are important motifs in natural and bioactive compounds.1-5 Unsurprisingly, a myriad of synthetic routes to these important heterocycles are documented, for example, Hantzsch’s seminal thiazole synthesis.6,7 However, the latter has limitations, which include the concomitant formation of 1 equiv of strong acid (HX) (Scheme 1).

Scheme 1. Hantzch Thiazole Synthesis

Moreover, it has a limited synthetic scope in terms of forming the α-halo or equivalent (X) ketone precursor, which can be unstable, be a potential allylating agent, and not tolerate, e.g., heterocyclic, notably pyridyl, substituents. This has prompted the development of a range of methods to circumvent some of these shortcomings including, but not limited to, Cu-mediated reactions of oximes, anhydrides, and KSCN;8 oxidative amine and aldehyde couplings;9 Pd-mediated reactions to diversify thiazole cores via direct arylation;10,11 transformations using Lawesson’s reagent;12 and three-component reactions of enamines, sulfur, and bromodifluoroacetamides.13 However, many of these often require complex or unstable starting materials or are limited in scope.

In 1993, Baldwin et al. demonstrated the use of rhodium-catalyzed carbeneoid formation from sulfoxonium ylides, followed by intramolecular N–H insertion. Although this was somewhat limited, due to potential catalyst deactivation by the DMSO byproduct, it demonstrated that carbeneoids could be synthesized from sulfoxonium ylides.14 More recent research has demonstrated the value of sulfoxonium ylides as diazo surrogates.15 In a key early example of this reactivity, sulfoxonium ylides were treated with HCl (or MeOH) to access α-halo carbonyls (or equivalents). A major advantage is that ylides are easy to prepare and are stable compared to their diazo congeners,16 which are generally found to be thermally unstable, presenting a potential explosion risk.17

Significant improvements to the insertion reaction were published by Mangion et al., who undertook a new catalyst screen and identified an iridium catalyst for the N–H insertion of sulfoxonium ylides.18 This occurs via loss of DMSO and the formation of an iridium carbene intermediate and was utilized by Merck in the synthesis of MK-7246, a CRTH2 antagonist,19 and MK-765S, a β-lactamase inhibitor.20 Sulfoxonium ylides have also recently been utilized in C–H activation, C–C bond formation, and asymmetric reactions, and this area is expected to grow as a scalable, industrially viable alternative to the use of diazonium compounds.21-24

Here, we disclose a convenient, scalable, broad substrate tolerant route to a large thiazole library, mainly for biological evaluation. Central to this is an efficient synthesis of novel...
sulfoximine ylides 1 as precursors to thiazoles with excellent substituent tolerance, operating under mild conditions.

After preliminary optimization studies (Tables S1 and S2) an iridium-catalyzed C=H insertion was applied to the synthesis of a library of thiazoles containing a R^1 = Ph group (Scheme 2). Key observations include the reaction tolerance of

Scheme 2. Thiazole Synthesis from Sulfoximine Ylides

free primary amine (3c), heterocycle (3f, 3l), amide (3h), phenolic OH (3k), Boc (3e), and alkyl (3o, 3p) groups. The yields were, generally, good to excellent. Of note, many products have high Csp^3 character and are attractive as drug discovery scaffolds. Compound 3b, fanetizole, an anti-inflammatory drug, was made in excellent yield. Its ^1H NMR spectrum matched the one in the literature, verifying the regiochemistry of the reaction, which is known to be adversely affected under strong acidic conditions.

The scope of this reaction was significantly broadened by next changing the R^1 group. Hence, this procedure tolerates a wide range of substituted aryl and heterocyclic groups (Scheme 3). Notably, a pyridyl substituent, incompatible with previous Hantzsch chemistry (Scheme 1) yet readily synthesized as an ylide precursor, was tolerated, as well as alkyl and cycloalkyl groups, which tend to be harder to introduce at a later stage using standard chemistry.

Moreover, primary amines (3c'–3h') and aryl groups, substituted with a range of electron-donating and electron-withdrawing groups, are tolerated. Those of the type "Ar-X" (e.g., 3w, 3x, 3f', and 3g') are especially attractive for further elaboration such as in Pd-catalyzed couplings.

Next, the related insertion reactions of thioamides 4 were attempted, enabling the synthesis of thiazoles devoid of a direct amine linker. These used the previously found conditions, as our goal was to make a broad selection of analogues 5 relatively quickly (Scheme 4). Despite this, yields tended to be moderate to good. Reactions are tolerant of alkyl (5a), aryl (5b–5e and 5k), and heterocyclic substituents (5g–5j). Protected amines, such as 5f, will be useful "handles", once deprotected, for further library elaboration.

Buoyed by the successful implementation of these protocols, we shifted our attention to the corresponding selenazoles, which were made in moderate yields, starting from selenourea 6 (Scheme 5). All analogues 7 should be useful building blocks for further elaboration, such as amide, sulfonamide, reductive amination, and heterocyclization chemistry.

Finally, we have applied this chemistry to the synthesis of a small library of analogues related to and including 3r'. The latter was found as a crystallographic hit (PDB: 8AXP) from a
Scheme 6. PTH Hit Based Library

structural screen of a fragment library vs the peptidyl-tRNA hydrolase (Pth) in Neisseria gonorrhoeae bacteria (Scheme 6).31–33

In conclusion, Ir-catalyzed insertions of sulfoxonium ylides are very versatile reactions in the synthesis of a range of S, N, and Se heterocycles. This is a useful, substrate-tolerant approach to thiazoles and selenazoles and should have high value in library diversification in medicinal chemistry.

\section*{ASSOCIATED CONTENT}

\subsection*{Data Availability Statement}

The data underlying this study are openly available at https://pubs.acs.org/doi/10.1021/acs.orglett.2c02996.

\subsection*{Supporting Information}

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.2c02996.

Optimization procedures, synthetic and analytical procedures for ylides and final heterocyclic products, and scanned spectra (1H, 13C NMR, and HPLC-MS) (PDF)

\section*{AUTHOR INFORMATION}

\subsection*{Corresponding Authors}

Storm Hassell-Hart — Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.; Email: s.hassell-hart@ucl.ac.uk

John Spencer — Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.;

\ orcid.org/0000-0001-5231-8836; Email: j.spencer@sussex.ac.uk

\subsection*{Authors}

Elisa Speranzini — Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Sirihath Srikwanjan — Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Euan Hossack — Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

S. Mark Roe — Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.

Daren Fearn — Diamond LightSource (DLS), Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.;

\ orcid.org/0000-0003-5529-7863

\subsection*{Daniel Akinbosede — Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.}

\subsection*{Stephen Hare — Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K.}

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.orglett.2c02996

\subsection*{Author Contributions}

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

\subsection*{Notes}

The authors declare no competing financial interest.

\2Deceased December 2021.

\section*{ACKNOWLEDGMENTS}

EPSRC, EP/P026990/1 (S.H.H., J.S.), and the Royal Thai Government (S.S.) are thanked for funding.

\section*{DEDICATION}

In memory of Dr. Stephen Hare. A fabulous colleague, scientist, and teacher.

\section*{REFERENCES}

