Thakur, Abhinay, Kumar, Ashish, Kaya, Savaş, Marzouki, Riadh, Zhang, Fan and Guo, Lei (2022) Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings, 12 (10). 1459 1-49. ISSN 2079-6412
![]() |
PDF
- Published Version
Available under License Creative Commons Attribution. Download (4MB) |
Abstract
Metallic materials are among the most crucial engineering materials widely utilized as biomaterials owing to their significant thermal conductivity, mechanical characteristics, and biocompatibility. Although these metallic biomedical implants, such as stainless steel, gold, silver, dental amalgams, Co-Cr, and Ti alloys, are generally used for bone tissue regeneration and repairing bodily tissue, the need for innovative technologies is required owing to the sensitivity of medical applications and to avoid any potential harmful reactions, thereby improving the implant to bone integration and prohibiting infection lea by corrosion and excessive stress. Taking this into consideration, several research and developments in biomaterial surface modification are geared toward resolving these issues in bone-related medical therapies/implants offering a substantial influence on cell adherence, increasing the longevity of the implant and rejuvenation along with the expansion in cell and molecular biology expertise. The primary objective of this review is to reaffirm the significance of surface modification of biomedical implants by enlightening numerous significant physical surface modifications, including ultrasonic nanocrystal surface modification, thermal spraying, ion implantation, glow discharge plasma, electrophoretic deposition, and physical vapor deposition. Furthermore, we also focused on the characteristics of some commonly used biomedical alloys, such as stainless steel, Co-Cr, and Ti alloys.
Item Type: | Article |
---|---|
Keywords: | Dental/Oral and Craniofacial Disease, Bioengineering, Regenerative Medicine |
Schools and Departments: | School of Engineering and Informatics > Engineering and Design |
SWORD Depositor: | Mx Elements Account |
Depositing User: | Mx Elements Account |
Date Deposited: | 17 Oct 2022 08:49 |
Last Modified: | 17 Oct 2022 09:00 |
URI: | http://sro.sussex.ac.uk/id/eprint/108501 |
View download statistics for this item
📧 Request an update