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We present new νμ → νe, νμ → νμ, ν̄μ → ν̄e, and ν̄μ → ν̄μ oscillation measurements by the NOvA
experiment, with a 50% increase in neutrino-mode beam exposure over the previously reported results. The
additional data, combined with previously published neutrino and antineutrino data, are all analyzed using
improved techniques and simulations. A joint fit to the νe, νμ, ν̄e, and ν̄μ candidate samples within the

3-flavor neutrino oscillation framework continues to yield a best-fit point in the normal mass ordering and

the upper octant of the θ23 mixing angle, with Δm2
32 ¼ ð2.41� 0.07Þ × 10−3 eV2 and sin2 θ23 ¼ 0.57þ0.03

−0.04 .
The data disfavor combinations of oscillation parameters that give rise to a large asymmetry in the rates of
νe and ν̄e appearance. This includes values of the charge parity symmetry (CP) violating phase in the
vicinity of δCP ¼ π=2 which are excluded by > 3σ for the inverted mass ordering, and values around
δCP ¼ 3π=2 in the normal ordering which are disfavored at 2σ confidence.

DOI: 10.1103/PhysRevD.106.032004

I. INTRODUCTION

We report new measurements of neutrino oscillation
parameters using neutrino and antineutrino data from the
NOvA experiment. The data includes a 50% increase in
neutrino-mode beam exposure over the previously reported
results [1]. We perform a joint fit to νμðν̄μÞ → νeðν̄eÞ and
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νμðν̄μÞ → νμðν̄μÞ oscillations utilizing improvements in the
analysis of these data.
Numerous experiments [2–10] corroborate the paradigm

in which three neutrino-mass eigenstates (ν1, ν2, ν3) mix to
form the three flavor eigenstates (νe, νμ, ντ). The mixing
can be expressed by the unitary matrix, UPMNS, named for
Pontecorvo, Maki, Nakagawa, and Sakata. UPMNS can be
parametrized by three mixing angles (θ12, θ23, θ13) along
with a phase (δCP) that, if different from 0 or π, indicates
violation of charge parity (CP) symmetry. Neutrino mixing
gives rise to oscillations from one flavor state to another,
dependent on the mixing parameters and the mass split-
tings (Δm2

ij ≡m2
i −m2

j ).
Using the definition of ν1 as having the largest νe

contribution, it has been established that Δm2
21 is positive,

and therefore, the ν2 mass eigenstate is heavier than ν1.
However, the sign of the larger mass splitting, Δm2

32, is
unknown. If this term is positive, then the third mass
eigenstate is the heaviest, and the mass ordering is labeled
as the normal ordering (NO) (also referred to as normal
hierarchy). The alternative is referred to as inverted order-
ing (IO) (or inverted hierarchy). Knowing the mass order-
ing would constrain models of neutrino masses [11–15] and
could aid in the resolution of the Dirac or Majorana nature
of the neutrino [16,17].
The mass ordering affects the rates of νμ → νe and

ν̄μ → ν̄e oscillations when neutrinos travel through the
Earth as compared to a vacuum. Coherent forward scatter-
ing on electrons in the Earth’s crust enhances the rate of
νμ → νe oscillations and suppresses ν̄μ → ν̄e for the NO
while the enhancement and suppression is reversed for the
IO. This matter effect [18] changes the oscillation proba-
bilities for NOvA by ∼20%. Depending on the value of δCP
and the mass ordering itself, NOvA may be able to exploit
the resulting neutrino-antineutrino asymmetry to measure
the sign of Δm2

32 and thus determine the mass ordering.
NOvA also has sensitivity to δCP, which will increase the

νμ → νe oscillation probability if sin δCP is positive and
suppress oscillations if negative (the effect is reversed for
antineutrinos). Additionally, a nonzero value of sin δCP
would identify the neutrino sector as a source of CP
violation which is central to some explanations of the
matter-antimatter asymmetry observed based on leptogen-
esis [19–23]. Since a measurement of both the mass
ordering and δCP rely on a comparison of νe and ν̄e
appearance, certain combinations of δCP and mass ordering
will be degenerate with others for NOvA’s oscillation
baseline.
Finally, the angle θ23 largely determines the coupling of

the νμ and ντ states to the ν3 mass state. In the case of
maximal mixing, θ23 ¼ π=4, νμ and ντ couple equally to ν3
[24], which suggests a μ − τ symmetry. If nonmaximal, θ23
could lie in the upper octant (UO, θ23 > π=4) or lower
octant (LO, θ23 < π=4) with a stronger νμ or ντ coupling,

respectively. Current measurements of θ23 are near maxi-
mal mixing [1,6,7], but significant uncertainties remain
making it the least precisely measured mixing angle.
Here, we reanalyze the data taken in the antineutrino-

mode beam from June 29, 2016, to February 26, 2019, with
an exposure of 12.5 × 1020 protons on target (POT)
delivered during 321.1 s of integrated beam-pulse time.
These data are combined with an increased, and reanalyzed,
neutrino-mode beam exposure of 13.6 × 1020 POT from
555.3 s of integrated beam-pulse time recorded between
February 6, 2014, to March 20, 2020. During these periods,
the proton source achieved an average power of 650 kW,
and a peak hourly-averaged power of 756 kW.
In addition to the increased neutrino-mode beam expo-

sure, this analysis introduces various improvements that
will be described in detail in the following sections. There
are changes to the underlying neutrino interaction simu-
lation, particle propagation, and detector response models.
The reconstruction uses a new clustering algorithm and
expands the use of neural networks. Furthermore, the near-
to-far extrapolation method has been expanded to further
constrain the FD predictions, which also reduces the impact
of systematic uncertainties on the analysis by up to 9%
as compared to the previous method. Finally, we have
improved some systematic uncertainties and introduced
new ones associated with the above changes.

II. THE NOvA EXPERIMENT AND SIMULATIONS

NOvA observes νμðν̄μÞ → νeðν̄eÞ appearance and
νμðν̄μÞ → νμðν̄μÞ disappearance oscillations using two
functionally-identical tracking calorimeters [25] deployed
in Fermilab’s NuMI beam [26]. Charged particle tracking is
accomplished via PVC cells filled with a mineral oil-based
liquid scintillator [27]. The cells are 6.6 cm × 3.9 cm in
cross section and are oriented in alternating vertical and
horizontal planes to achieve 3D reconstruction. The 290 ton
near detector (ND) is located 100 m underground and
∼1 km from the production target. The main body of the
ND is followed by a muon range stack where the active
planes are interleaved with steel plates. The 14 kton far
detector (FD) is located at Ash River, Minnesota, ∼810 km
from the source. Being located on the surface with a modest
rock overburden, the FD receives a cosmic-ray flux of
130 kHz. This analysis benefits from an updated simulation
of the geometries of the detectors and their surroundings
that more accurately reflects the surrounding rock compo-
sition and detectors as built.
Both detectors are centered 14.6 mrad off the beam axis

and receive a narrow-band neutrino flux peaked at 1.8 GeV.
Magnetic focusing horns are used to select the sign of the
neutrino parents, producing a 93% (92%) pure νμ (ν̄μ) beam
between 1 GeV–5 GeV. The majority of contamination is
due to “wrong-sign” neutrinos (i.e., ν̄μ in a νμ selected beam
and vice versa). The neutrino flux delivered to the detectors
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is calculated using GEANT4-based simulations of particle
production and transport through the beamline components
[26,28] reweighted to incorporate external measurements
using the package to predict the flux (PPFX) [29–48].
Neutrino interactions are simulated using a custom

model configuration of GENIE 3.0.6 [49,50] tuned to external
and NOvA ND data.1 In this configuration, charged-current
(CC) quasielastic (QE) scattering is simulated using the
model of Nieves et al. [53], which includes the effects of
long-range nucleon correlations calculated according to the
random phase approximation (RPA) [53–55]. The CCQE
axial vector form factor is a z-expansion parametrization
tuned to neutrino-deuterium scattering data [56]. CC
interactions with two nucleons producing two holes
(2p2h) are given by the IFIC València model [57,58].
The initial nuclear state is represented by a local Fermi gas
in both the QE and 2p2h models, and by a global relativistic
Fermi gas for all other processes. Baryon resonance (RES)
and coherent pion production are simulated using the
Berger-Sehgal models with final-state mass effects taken
into account [59,60]. Deep inelastic scattering (DIS) and
nonresonant background below the DIS region are
described using the Bodek-Yang model [61] with hadro-
nization simulated by a data-driven parameterization [62]
coupled to PYTHIA [63]. Bare nucleon cross sections for
RES, DIS, and nonresonant background processes are
tuned by GENIE to neutrino scattering data. Final-state
interactions (FSI) are simulated by the GENIE hN semi-
classical intranuclear cascade model in which pion inter-
action probabilities are assigned according to Oset et al.
[64] and pion-nucleon scattering data.
The 2p2h and FSI models in this GENIE configuration are

adjusted to produce a NOvA-specific neutrino interaction
model tune. The 2p2h model is fit to νμ CC inclusive
scattering data from the NOvA ND. Inspired by Gran et al.
[65], this 2p2h tune enhances the base model as a function
of energy and momentum transfer to the nucleus and is
applied to all CC 2p2h interactions for both the neutrino
and antineutrino beams. The parameters governing π� and
π0 FSI are adjusted to obtain agreement with πþ on 12C
scattering data [66–72].
The propagation of final-state particles through the

detectors is simulated by an updated version of GEANT4

(v10.4) [73], which provides the input for the detector

response simulation [74]. In addition, a custom patch to
the new version implements an exact calculation of the
density effect correction to the Bethe equation using
Sternheimer’s method [75] as opposed to the approximate
parametrization used previously (a 1% or less change to the
muon range and energy lost in dead material).
The absolute energy scale for both detectors is calibrated

using the minimum ionizing portion of stopping cosmic-ray
muon tracks [76]. The calibration procedure is now applied
separately to the data in shorter time periods to account for
an observed 0.3% decrease in detected light per year.

III. RECONSTRUCTION AND SELECTION

The first stage of reconstruction is to group hits, which
are measurements of deposited energy in a cell above a
preset threshold, into single-neutrino-interaction events.
This clustering, performed based on hit proximity in time
and space, now uses a new method that reduces the rate of
misclustered hits in the high-occupancy environment of the
ND [77]. Misclustering had previously led to differences in
data-MC selection efficiency, which are now reduced to the
subpercent level. The other reconstruction techniques
remain unchanged from the previous analysis [1].
For each event, initial selections are applied to ensure

basic data quality. Additionally, events are required to be
sufficiently far from the edges of the detector such that
energy is not lost to exiting final-state particles, and so
entering background events are not selected as signals.
These containment criteria have been reoptimized for this
analysis due to changes in the geometry model and hit
grouping algorithm, but follow the same outline as
described in Ref. [1].
A convolutional neural network, CNNevt [78], is used to

classify neutrino event candidates into νe CC, νμ CC, NC,
or cosmogenic background. The network is trained using
simulated calibrated hits that have been clustered into
single neutrino interactions, as well as cosmogenic data.
Scores from CNNevt are used to create two nonoverlapping
samples of either inclusive νμðν̄μÞ CC or νeðν̄eÞ CC
candidate events. Updates to this algorithm provide
improved performance and decreased dependency on
calorimetric energy, the dominant source of systematic
uncertainty in the results presented here. This is achieved
by scaling up or down the energy of all hits while training
the CNN. The scale factors used are drawn on an event-by-
event basis from a normal distribution with a 1σ range from
0.9–1.1 [79]. This training procedure reduced the influence
of calibration uncertainties on CNNevt classification deci-
sions to a negligible level.
Effective rejection of cosmogenic backgrounds at the

FD is paramount due to the significant flux of cosmic-ray
particles it receives. A new CNN, trained to identify
cosmogenic backgrounds has been introduced, is applied
in parallel to cosmic-identifying boosted decision trees
(BDTs). The BDTs have been trained on samples selected

1Neutrino interactions in this analysis were inadvertently
simulated with event kinematics of GENIE configuration
N18_10j_00_000 but integrated rates with configuration
N18_10j_02_11a. These two configurations have the same model
set and differ only in the tune of the resonant, nonresonant
background, and DIS free nucleon cross sections, where the
N18_10j_00_000 tune used inclusive neutrino scattering data and
the N18_10j_02_11a tune used 1π and 2π production in addition
to the inclusive neutrino scattering data [51,52]. The predicted far
detector event spectra generated using N18_10j_02_11a are
consistent with the predictions used in this measurement within
the systematic uncertainties.
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to contain signal-like cosmogenic particles. Together the
CNN and BDTs reduce the cosmic contamination in the
selected samples to < 5%, a total reduction of six orders of
magnitude, comparable to the previous analysis. For fully
contained νe events, the BDT replaces the previous cosmic
rejection method, which directly used reconstructed posi-
tion and kinematic event information.
Neutrino energy, Eν, is determined using different

methods for the νe and νμ CC candidate events. The
energies of νe CC candidates are parametrized using a
quadratic function determined from a 2D fit to the
simulated electromagnetic (EM) and hadronic calorimetric
energies (EEM and Ehad respectively). The two components
produce different detector responses and are separated
using a third CNN classifier that identifies EM-like hit
clusters within the event with the remaining clusters being
classified as hadronic [80]. For νμ CC candidates, Eν is the
sum of the muon energy, determined by the track length,
and the total calorimetric energy of the hadronic system,
Ehad. The muon is identified with a BDT that utilizes track
length, multiple Coulomb scattering, and energy deposi-
tion, while the hadronic system is taken as all hits not
associated with the muon track.
The selection criteria and energy estimation techniques

were developed based on ND beam and FD cosmic data,
along with simulated samples prior to inspecting the FD
beam data distributions. The algorithms were trained
separately on neutrino and antineutrino beam modes due
to differences in beam purity and interactions.
The sensitivity of the oscillation fit is enhanced by

splitting the fully contained νe and ν̄e CC, “core”, samples
into low- and high-purity bins, based on the scores output
by CNNevt. At the FD, the νeðν̄eÞ selection efficiency for
signal events in the core sample is 54% ð64%Þ.2 To further
increase the efficiency of the FD sample, a “peripheral”
selection is included, consisting of events that fail the
containment or cosmic rejection requirements but pass
more strict selection criteria on the cosmic BDT and
CNNevt. This sample increases the total νeðν̄eÞ selection
efficiency to 63% ð75%Þ2 but is included only as an
integrated rate in the oscillation fits due to possible energy
bias caused by particles leaving the detector. Properties of
these subsamples are summarized in Table I.
For νμ CC candidates, the position and amplitude of the

oscillation maximum in the FD energy spectra are strongly
dependent on Δm2

32 and θ23, respectively. To maximize the
sensitivity to these parameters, the candidates are divided

into four equally populated samples based on the hadronic
energy fraction, Efrac ¼ Ehad=Eν, which is correlated with
energy resolution and background contamination as sum-
marized in Table I. Sensitivity is further increased by using
variably-sized Eν bins for these samples.

IV. NEAR-TO-FAR EXTRAPOLATION

This analysis extracts oscillation parameters using data-
driven predictions of the FD spectra largely derived from
high-statistics measurements in the ND. The νμðν̄μÞ dis-
appearance and νeðν̄eÞ appearance signal spectra in the FD
are predicted using the spectra of νμðν̄μÞ CC candidate
events in the ND (Fig. 1(a)). The procedure begins with
reweighting the simulation to obtain agreement with the
data in each reconstructed Eν bin of the ND νμðν̄μÞ CC
candidate samples. Predicted rates of NC, νe CC, and ν̄e CC
interactions in the samples (< 0.5% total) are taken directly
from the simulation and subtracted. The wrong-sign com-
ponent of the samples (2.9% and 10.5% in the neutrino and
antineutrino beams respectively) is also taken directly from
the simulation. The resulting corrected νμ þ ν̄μ CC recon-
structed Eν spectra are transformed to true Eν using the
simulation. The spectra are then multiplied by the appro-
priate far-to-near ratios of the simulated samples in bins
of true Eν. This step accounts for beam divergence,
differences in selection efficiency and acceptance between
the two detectors, and the differences in the νμ and νe cross
sections. Oscillation probabilities are applied to yield the
predicted disappearance or appearance signal spectra in
true Eν at the FD. Matter effects are included in the
oscillation probability calculations, with the Earths crust
density assumed to be uniformly 2.84 g=cm3 [81]. Finally,
the predicted spectra are converted back to recon-
structed Eν.
To reduce potential bias and the impact of uncertainties

from the neutrino interaction model, the extrapolation to

TABLE I. FD energy resolution (res.) and purity2, in the
selected energy ranges (0 GeV–5 GeV for νμ and 0 GeV–
4 GeV for νe), for the subsamples used in the near-to-far
extrapolation and oscillation fits. Efrac for the νμ samples is
defined in the text. The νeðν̄eÞ peripheral is a rate-only sample,
therefore, Eν is not determined.

Sample bins Energy res. Sample purity

νeðν̄eÞ Core, Low CNNevt 14.1% (13.7%) 51% (36%)
Core, High CNNevt 9.4% (8.9%) 79% (69%)

Peripheral � � � 57% (43%)
Combined 10.7% (8.8%) 69% (58%)

νμðν̄μÞ 1 (lowest Efrac) 7.8% (8.5%) 99% (99%)
2 9.2% (8.9%) 99% (99%)
3 10.4% (9.7%) 97% (98%)

4 (highest Efrac) 11.5% (10.2%) 92% (95%)
Combined 9.1% (8.2%) 96% (98%)

2The FD sample efficiency, purity, and energy resolution are
based on the simulated event samples at the determined best-fit
point. Energy resolution is defined as the root-mean-square of the
distribution: 1 − Ereco

ν =Etrue
ν . Wrong-sign events are treated as

background for the νeðν̄eÞ CC samples and signal for the νμðν̄μÞ
CC samples. For the efficiency calculations, the denominator is
the number of true signal interactions in the detector with no other
selection criteria applied.
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predict the disappearance and appearance signals is per-
formed using variables in addition to Eν. As in the previous
analysis, the extrapolations for the disappearance samples
are done separately in each reconstructed hadronic energy
fraction range (as given in Table I), enabling neutrino
interaction processes that occur in different inelasticity
regions to be constrained independently. In this analysis,
the extrapolations for both disappearance and appearance
samples are additionally performed separately in bins of
reconstructed transverse momentum, pT, of the final-state
charged lepton. The smaller transverse extent of the ND
leads to lower acceptance at higher pT in the ND than in the
FD (Fig. 2), which results in the extrapolated predictions
being sensitive to the modeling of the pT -dependence of
the neutrino interactions. Extrapolating in bins of pT
reduces this sensitivity by enabling the ND data to con-
strain the pT -dependence. In the ND samples, the pT bins
divide each Eν bin into three equal populations for the
extrapolation, and the resulting FD predictions are summed
over the pT bins for the oscillation fit.
Background spectra at the FD are also predicted using

data-driven techniques. Cosmogenic backgrounds in both
the appearance and disappearance samples are estimated
using FD data collected outside the NuMI beam time
window. Beam-induced backgrounds in the appearance
samples are primarily CC interactions from the irreducible
νe þ ν̄e component of the beam, with contributions from
misidentified NC and νμ þ ν̄μ CC interactions. The FD
spectra for these backgrounds are predicted using the spectra

of νeðν̄eÞ CC candidate events in the ND (Fig. 1(b)). Since
the relative event rate between the ND and FD is different
for the background components, the relative contribution
of the different background components in the data needs to
be estimated. In neutrino beam-mode these estimates are
data-driven [77,83] while they are taken directly form the
simulation in antineutrino-beam mode.

V. SYSTEMATIC UNCERTAINTIES

The impacts of systematic uncertainties are evaluated by
varying the simulation via event reweighting or simulating
alternative event samples and repeating the extrapolation
procedure. Uncertainties associated with the neutrino flux,
neutron modeling, and detector calibrations are unchanged
from the previous analysis [1].
Detector calibration uncertainties remain dominant

and are driven by a 5% uncertainty in the calorimetric
energy scale. Additionally, a new time-dependent calibra-
tion uncertainty is included to account for any residual
differences remaining after performing the calibration over
shorter time periods as mentioned previously.
Neutrino interaction model uncertainties are evaluated

using the event reweighting framework in GENIE with
additional uncertainties constructed by NOvA as follows.
Uncertainties on CCQE RPA, low-Q2 RES suppression,
2p2h, and nonresonant and incoherent Nπ production are
established for the new model set using methods similar to
those in Ref. [84]. Pion FSI uncertainties are based on
comparisons to πþ on 12C scattering data [66–72] and prior
studies using an alternative neutrino interaction generator
[85]. Uncertainties on the νeðν̄eÞ CC cross section relative
to the νμðν̄μÞ CC cross section due to radiative corrections
and possible second-class currents are unchanged from
previous analyses [83].
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FIG. 1. Reconstructed neutrino energy spectra for the (a) ND νμ
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As in the previous analysis, uncertainties are included
that are detector specific or account for differences between
the ND and FD; the detector masses, beam exposures,
kinematic acceptances, beam-induced pileup, νe CC selec-
tion in the ND, and cosmogenic backgrounds in the FD.
The improved hit clustering algorithm reduces pileup
effects in the ND, decreasing uncertainties for the asso-
ciated data-MC selection efficiency differences. An uncer-
tainty for kinematic acceptance differences between the
detectors was overestimated in the previous analysis and is
subdominant in this analysis after correction. Extrapolating
in pT bins would have substantially reduced the effect of
this uncertainty even if left uncorrected.
Uncertainties arising from the custom light model are

assigned based on comparison to a more robust response
model that was not fully incorporated into the simulation
for this analysis. This model is constrained by a sample of
ND proton candidates in addition to the muon sample used
previously. Differences in the detector response between
the proton and muon samples also provide a data-driven
uncertainty on the relative production of Cherenkov and
scintillation light in the model.
Quantities affected by lepton reconstruction uncertain-

ties include the muon energy scale and lepton angle. The
muon energy scale uncertainty now includes a detector
mass uncertainty with a component that is uncorrelated
between the detectors, plus a correlated component
accounting for the Fermi density effect and muon range
differences across models. Extrapolating in pT bins intro-
duces a dependence on the reconstructed lepton angle for
which a 10 mrad uncorrelated uncertainty is applied.
Figure 3 shows the impact of the systematic uncertainties

on the measurement of sin2 θ23, Δm2
32, and δCP as evaluated

at the determined best-fit point. The extrapolation method
significantly reduces the impact of the detector correlated
beam flux and neutrino interaction model uncertainties.

In contrast, energy calibration and uncorrelated uncertain-
ties that reflect ND-FD differences are less constrained
by extrapolation. Figure 3 also shows the impact of
uncertainties for extrapolation with and without pT bins.
Extrapolating in pT bins reduces the interaction model
uncertainty by 10%–30%, and the total systematic uncer-
tainty by up to 9%. Detector calibration, detector response,
and neutron modeling uncertainties that affect the recon-
structed energy of the recoiling hadronic system, which is
correlated with pT, are more modestly reduced. The
extrapolation in bins of pT depends on reconstructed lepton
kinematics and results in a marginal increase in the
associated uncertainties.

VI. RESULTS

The extrapolated predictions of the FD spectra are
recomputed for varying oscillation parameters and com-
pared to data using a Poisson negative log-likelihood ratio,
−2 lnL. The best-fit parameters minimize −2 lnL. The
following solar and reactor neutrino experiment constraints
are used: Δm2

21 ¼ 7.53 × 10−5 eV2, sin2 θ12 ¼ 0.307, and
sin2 θ13 ¼ 0.0210� 0.0011 [86]. The parameters Δm2

32,
sin2 θ23, and δCP are varied without constraints while the 64
systematic uncertainties are assigned penalty terms equal to
the square of the number of standard deviations by which
they vary from their nominal values. The value of sin2 θ13 is
allowed to float similarly. Feldman-Cousins’ unified
approach [87,88] is used to determine the confidence
intervals for the oscillation parameters. All significances
given, or plotted, are FC-corrected values. The fitted
parameters not shown are profiled over.
Figure 4 shows the energy spectra of the νμ CC, ν̄μ CC, νe

CC, and ν̄e CC candidates recorded at the FD. The distri-
butions are compared to the oscillation best-fit expectations.
Table II summarizes the total event counts and estimated

Detector Calibration

Neutron Uncertainty

Neutrino Interaction Model

Near-Far Differences

Detector Response

Lepton Reconstruction

Beam Flux

Total Syst. Unc.

0.02− 0.00 0.02

23θ2Uncertainty in sin

0.02− 0.00 0.02

 )2 eV-310× ( 32
2mΔUncertainty in 

0.2− 0.0 0.2

π / 
CP

δUncertainty in 

 Bins
T

Without p  Bins
T

With p

FIG. 3. Systematic uncertainties on sin2 θ23,Δm2
32, and δCP evaluated at the best-fit point. Detector calibration uncertainties, which are

less constrained by extrapolation, are dominant for all three oscillation parameters. Uncertainties for extrapolation with (orange) and
without (red) pT bins are shown for comparison. The statistical uncertainties (not shown) are [−0.033, 0.022] for sin2 θ23, [−0.055,
0.043] (×10−3 eV2) for Δm2

32, and [−0.87, 0.21] for δCP.
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compositions of the selected samples. The CC candidate
event samples recorded at the FD include 211 (105) observed
νμðν̄μÞ → νμðν̄μÞ events and 82 (33) νμðν̄μÞ → νeðν̄eÞ can-
didate events. The latter νeðν̄eÞ appearance sample has an
estimated background of 26.8þ1.6

−1.7 (14.0þ0.9
−1.0 ).

This analysis determines a best-fit in the normal mass
ordering and upper θ23 octant (significance of 1.0σ
and 1.2σ, respectively), where −2 lnL ¼ 173.55 for
175 degrees of freedom (p-value of 0.705). The data
disfavor combinations that lead to a strong asymmetry in
the rate of νe versus ν̄e appearance; therefore, the inverted
mass ordering with δCP ¼ π=2 is excluded at more than 3σ
and the normal mass ordering with δCP ¼ 3π=2 is disfa-
vored at 2σ confidence. However, owing to the degener-
acies, the 90% confidence level allowed regions cover all
values of δCP given permutations of mass ordering and
octant. Thus, the current data do not exhibit a preference
concerning CP conservation versus violation. Table III
shows the best-fit parameter values for each choice of
θ23 octant and mass ordering.
Figure 5 compares the 90% confidence level contours

for Δm2
32 and sin2 θ23 with those of other experiments

[89–92].3 Allowed regions in sin2 θ23 and δCP are shown
in Fig. 6 and are compared with a recent best fit from
T2K [89].3

As shown in Fig. 6(a), the T2K best-fit point is in the NO
but lies in a region that NOvA disfavors. However, some
regions of overlap remain. Figure 6(b) shows that for IO,
the T2K allowed region at 90% confidence level is entirely
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FIG. 4. Reconstructed neutrino energy spectra for the FD (a) νμ
CC and (b) νe CC samples with the neutrino-mode beam on top
and antineutrino-mode beam on the bottom [82]. The νμ CC Efrac

subsamples have been combined. The νe CC low and high
CNNevt, and peripheral subsamples are shown.

TABLE II. Event counts at the FD, both observed and predicted
at the best-fit point (see Table III).

Neutrino beam Antineutrino beam

νμ CC νe CC ν̄μ CC ν̄e CC

νμ → νμ 201.1 1.7 26.0 0.2
ν̄μ → ν̄μ 12.6 0.0 77.2 0.2
νμ → νe 0.1 59.0 0.0 2.3
ν̄μ → ν̄e 0.0 1.0 0.0 19.2
Beam νe þ ν̄e 0.0 14.1 0.0 7.3
NC 2.6 6.3 0.8 2.2
Cosmic 5.0 3.1 0.9 1.6
Others 0.9 0.5 0.4 0.3
Signal 214.1þ14.4

−14.0 59.0þ2.5
−2.5 103.4þ7.1

−7.0 19.2þ0.6
−0.7

Background 8.2þ1.9
−1.7 26.8þ1.6

−1.7 2.1þ0.7
−0.7 14.0þ0.9

−1.0
Best fit 222.3 85.8 105.4 33.2
Observed 211 82 105 33

TABLE III. Summary of oscillation parameter best-fit results
for different choices of the mass ordering (normal or inverted) and
upper or lower θ23 octant (UO, LO), along with the FC corrected
significance (in units of σ) at which those combinations are
disfavored. Full uncertainties are given in [82].

Normal order Inverted order

Parameter UO LO UO LO

Δm2
32ð10−3 eV2Þ þ2.41� 0.07 þ2.39 −2.45 −2.44

sin2 θ23 0.57þ0.03
−0.04 0.46 0.56 0.46

δCPðπÞ 0.82þ0.27
−0.87 0.07 1.52 1.41

Rejection significance – 1.1σ 0.9σ 1.1σ
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FIG. 5. The 90% confidence level region for Δm2
32 and sin

2 θ23,
with the FC corrected allowed region and best-fit point for NOvA
[82] superposed on contours from other experiments [89–92].3

3While this paper was in its final internal review, an updated
analysis was published by the T2K collaboration [93]. Compared
to Ref. [89], the dataset remains unchanged and the same
approach is used. The conclusions drawn from the comparisons
of the contours remains unchanged.
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contained within the corresponding NOvA allowed region.
This outcome reflects in part the circumstance that T2K
observes a relatively more pronounced asymmetry in νe
versus ν̄e oscillations.

Although each experiment reports a mild preference
for NO, it has been suggested that a joint fit of the two
experiments might converge on an IO solution [94]. Some
authors have also explored the possibility that the
differences in the νμ → νe and ν̄μ → ν̄e rates seen by the
experiments are explained by additional nonstandard mat-
ter effects [95,96].
In conclusion, we have presented improved measure-

ments of oscillation parameters Δm2
32, sin

2 θ23, and δCP,
including an expanded data set and enhanced analysis
techniques with respect to previous publications. These
measurements continue to favor the normal mass ordering
and upper octant of sin2 θ23, as well as values of the
oscillation parameters that do not lead to a large asymmetry
in νμ → νe and ν̄μ → ν̄e oscillation rates.
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