Differentiating between belief-indicative and status-indicative groups improves predictions of intergroup attitudes

Grigoryan, Lusine, Jones, Bethan H, Cohrs, J Christopher, Boehnke, Klaus and Easterbrook, Matthew J (2022) Differentiating between belief-indicative and status-indicative groups improves predictions of intergroup attitudes. Personality and Social Psychology Bulletin. ISSN 0146-1672

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/106316/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Differentiating between belief-indicative and status-indicative groups improves predictions of intergroup attitudes

Lusine Grigoryan¹², Bethan H. Jones¹, J. Christopher Cohrs³, Klaus Boehnke², and Matthew J. Easterbrook⁴

¹ Ruhr University Bochum
² Jacobs University Bremen and University of Bremen, Bremen International Graduate School of Social Sciences (BIGSSS)
³ Philipps University Marburg
⁴ University of Sussex

Word count: 11150

Author Note

Lusine Grigoryan https://orcid.org/0000-0002-2077-1975; Klaus Boehnke https://orcid.org/0000-0002-5435-4037; Matthew Easterbrook https://orcid.org/0000-0002-9353-5957.

All materials, data, and syntax are available on the Open Science Framework platform: https://osf.io/2nrbm/.

Study 1 was supported by the Bremen International Graduate School of Social Sciences (BIGSSS), DFG project GSC263, #49619654. Studies 2 and 3 were supported by the German Science Foundation (DFG) individual grant #464524346.

Correspondence should be addressed to Lusine Grigoryan, Ruhr University Bochum, Faculty of Psychology, IB4/53, Universitätsstraße 150, 44801 Bochum, Germany, email: lusine.grigoryan@rub.de
Abstract

Ingroup bias is often treated as the default outcome of intergroup comparisons. We argue that the mechanisms of impression formation depend on what information people infer from groups. We differentiate between belief-indicative groups that are more informative of beliefs and affect attitudes through ingroup bias and status-indicative groups that are more informative of status and affect attitudes through a preference for higher status. In a cross-cultural factorial experiment ($N_{total} = 1,281$), we demonstrate that when information about targets’ multiple group memberships is available, belief-indicative groups affect attitudes via ingroup bias, whereas status-indicative groups—via preference for higher status. These effects were moderated by social-structural context. In two follow-up studies ($N_{total} = 451$), we develop and validate a measure of belief- and status-indicativeness of groups (BISI). BISI showed expected correlations with related constructs of entitativity and essentialism. Belief-indicativeness of groups was a better predictor of ingroup bias than entitativity and essentialism.

Keywords: ingroup bias, status, morality, beliefs, intersectional stereotyping
Differentiating between belief-indicative and status-indicative groups improves predictions of intergroup attitudes

Since the development of social identity theory (SIT; Tajfel & Turner, 1979), research on intergroup relations strongly relies on the phenomenon of ingroup bias (or favoritism)—the preference for own membership groups over outgroups—as the cognitive foundation of prejudice and discrimination (Hewstone et al., 2002). Preference for the ingroup has essentially become the default assumption of intergroup relations literature (Jost et al., 2004). Although ingroup bias is found across a wide range of conditions (Hewstone et al., 2002), there is considerable evidence that outgroup favoritism can occur under certain circumstances as well.

Three major theories in social psychology of prejudice—social identity (Tajfel & Turner, 1979), social dominance (Sidanius, 1993), and system justification theories (SJT; Jost & Banaji, 1994)—predict outgroup favoritism or at least weaker ingroup bias among low-status groups when status hierarchies are stable and there is intergroup consensus about the status relations (Jost et al., 2004; Rubin & Hewstone, 2004; Tajfel & Turner, 1979).

Importantly, Rubin and Hewstone (2004) note that “it is inappropriate to describe consensual discrimination in terms of ‘ingroup’ and ‘outgroup’ effects because self-categorization and ingroup identification play no part in determining this type of discrimination” (p. 826). Instead, consensual discrimination reflects a general preference for high-status groups.

This paper demonstrates that not only socio-structural characteristics, but also lay theories about the nature of social groups involved in intergroup comparison determine which of the two mechanisms—preference for the ingroup or preference for higher status—will be activated. This research goes beyond existing literature by establishing a link between a group typology based on the two-dimensional models of stereotypes (Abele et al., 2021) and modes of information processing and attitude formation. We differentiate between belief-
indicative groups, which are likely to induce ingroup bias, and status-indicative groups, which are likely to induce a preference for higher status. In three studies, we provide empirical support for this differentiation and its predictive validity.

Belief-Indicative and Status-Indicative Groups

Two fundamental dimensions of human perception largely determine how we perceive others: horizontal (warmth, communion, sociability, morality) and vertical (competence, agency, status) (Abele et al., 2021). Perceptions of warmth are linked to cooperative interdependence that promotes trust (Brewer, 1999), and perceptions of competence are linked to status (Fiske et al., 2002). Both dimensions provide evolutionarily significant information about individuals and groups (Fiske et al., 2007).

In a series of online and lab experiments, Koch and colleagues (2016) asked participants from USA and Germany to judge the similarity of a large sample of social groups. Two dimensions consistently emerged from this similarity judgments: A (agency or socio-economic success) and B (conservative vs. progressive beliefs). The dimension of warmth/sociability from the Big Two described above did not emerge as an independent dimension, but rather as the centrality function of A and B: groups that had average scores on A and B were seen as warmer than those that had extreme scores on A and B.

Building on this approach, we assume that inferences about groups’ status and beliefs are fundamental to structuring perceptions of social groups. We further argue that not all dimensions of social categorization are equally informative of group members’ status and beliefs and therefore certain dimensions of social categorization will produce more variation along the status axis (e.g., income), while other dimensions will produce more variation along the beliefs axis (e.g., religion). In short, we argue that different types of groups are better suited to provide information about either one or the other dimension. The existing typologies
of social groups (Lickel et al., 2000; Wilder & Simon, 1998), however, do not address this distinction.

We propose a typology that differentiates between belief-indicative and status-indicative groups, with belief-indicative groups being more informative for inferring their members’ beliefs, and status-indicative groups being more informative for inferring their members’ status. We further suggest that ingroup bias predominantly occurs when intergroup comparisons involve belief-indicative groups, whereas preference for higher status predominantly occurs when comparisons involve status-indicative groups. Finally, many social groups may be psychologically consequential, but provide little to no information as to their members’ beliefs or status in a given context. We refer to this third category as neutral groups and expect that they will have no effect on attitudes if information regarding other, more informative group memberships is present. We further provide a theoretical rationale for this typology.

Belief-Indicative Groups

From an evolutionary standpoint, groups that have clear group boundaries and normative regulations facilitate intragroup cooperation and trust, making ingroup interactions less costly and giving rise to ingroup bias (Brewer & Caporael, 2006). Such groups are likely to be perceived as meaningful units, that is, to have high entitativity. Perceived group entitativity is associated with stronger prejudice (Agadullina & Lovakov, 2018). Group entitativity, however, is not sufficient to predict which groups will elicit prejudice: Intimacy groups (e.g., family) have high entitativity but do not usually give rise to intergroup phenomena, whereas social categories that have relatively low entitativity (e.g., nation) do (Hamilton et al., 2004).

If group entitativity is not a sufficient criterion for identifying groups that elicit ingroup bias, then what is? We argue that *the extent to which a group signals its members’*
beliefs, moral values, and worldviews determines whether ingroup bias will occur. Morality is the primary dimension that positively differentiates the ingroup from outgroups (Leach et al., 2007) and moral traits dominate both individual (Goodwin et al., 2014) and group perception (Brambilla et al., 2012). Worldview conflict was identified as a consistent predictor of prejudice across target groups (Brandt & Crawford, 2019) and morality-based groups were shown to elicit more prejudice than non-morality-based groups (Haidt et al., 2003; Parker & Janoff-Bulman, 2013; Weisel & Böhm, 2015). Finally, similarity in beliefs was found to be a much stronger predictor of cooperation than similarity in agency (A. Koch et al., 2020). Groups based on religious beliefs, political ideology, and cultural background would be typical examples of this type of social group. We refer to such groups as belief-indicative and hypothesize that membership in such groups affects attitudes through preference for the ingroup (H1).

Status-Indicative Groups

Whereas belief-indicative groups can signal their members’ trustworthiness through perceptions of belief similarity, those groups that provide information about members’ standing in the societal hierarchy signal competence (Cuddy et al., 2008). The extent to which a group signals its members’ status and competence determines whether preference for higher status will occur. From an evolutionary standpoint, competence is attractive, because, by associating and cooperating with the most competent partners, individuals can increase their own access to resources and acquire knowledge from the best available sources (Chapais, 2015; Henrich & Gil-Whiteb, 2001). Several studies found a consistent preference for higher-status others on dimensions of education, occupation, and income (Horwitz & Dovidio, 2017; Kuppens et al., 2018), irrespective of participants’ own standing in these hierarchies (Grigoryan, 2020a; Hainmueller & Hopkins, 2015). We refer to such groups as
status-indicative and hypothesize that membership in such groups affects attitudes through preference for higher status (H2).

Contextualizing the Typology

Belief- and status-indicative qualities of groups are context-bound. Perceptions of groups as belief- or status-indicative emerge from the intergroup dynamics in a specific cultural and historical setting. These perceptions are linked to the utility of a categorization dimension for differentiating people into groups based on their differences in either status or beliefs. Consequently, any categorization dimension that serves these functions can be belief- or status-indicative, and when the function of a certain categorization dimension changes, perceptions of belief- and status-indicativeness would change as well. For example, religion would be perceived as belief-indicative in most societies, but the belief-indicativeness of religion would likely be higher in societies with an ongoing religious conflict.

In real life, belief- and status-indicative qualities of groups are often confounded. For example, ethnic groups can be considered belief-indicative, as they reflect their members’ cultural background, which encompasses cultural worldviews and beliefs. However, stable ethnic hierarchies are found in many countries (Hagendoorn, 1995). Preference for higher-status outgroups is found among ethnic minorities in various contexts (Dunham et al., 2014), particularly in implicit attitudes (Jost, 2019). Largely because access to power (education, jobs, money) has been historically restricted for members of minority groups, minority status on belief-indicative dimensions (and sometimes neutral, such as gender) and lower position in a societal hierarchy often go hand in hand (e.g., Williams et al., 2016). Hence, we propose, outgroup favoritism towards belief-indicative groups results from the perceivers’ assumptions about the minority groups’ membership in status-indicative groups. Supporting this claim, studies that independently manipulate both membership in belief-indicative (e.g., ethnicity, religion) and status-indicative (e.g., education, occupation) groups find ingroup preference
exclusively on belief-indicative dimensions and preference for higher status exclusively on status-indicative dimensions (Grigoryan, 2020b; Hainmueller & Hopkins, 2015). However, this does not mean that membership in one group cannot affect how membership in another group is being perceived.

Perceptions of belief- and status-indicativeness and their consequences for impression formation can certainly be affected by the intersection of different social categories. Intersectionality (Crenshaw, 1989), as applied in psychological research, describes the consequences of belonging to multiple social categories (Cole, 2009), with a special focus on how these group memberships interact in non-additive ways in shaping stereotypes and attitudes (e.g., Kang & Chasteen, 2009; Remedios et al., 2011; Wilson et al., 2017). First, information about an individual’s multiple group memberships can affect the perceived informativeness of specific categories. For example, gender can indicate both status (Eagly & Wood, 1982) and beliefs (J. W. Koch, 2000), but when more informative categories are available (e.g., job titles), participants do not rely on gender to make such inferences (Eagly & Wood, 1982). The well-established factors that affect category use, such as category accessibility (Bruner, 1957), perceiver goals (van Knippenberg & Dijksterhuis, 2000), and normative and comparative category fit (Oakes, 1987), are likely to also predict how informative a category is perceived to be for a given situation, person, and judgment (see also Petsko et al., 2022; Petsko & Bodenhausen, 2020 for a discussion of intersectional stereotyping). Second, information about one group membership can change the meaning and the interpretation of another: for example, the importance of status in evaluations can change depending on whether a target belongs to the ingroup or an outgroup on a belief-indicative dimension. Different combinations of group memberships can give rise to new stereotypes that are not a simple combination of stereotypes about each group (Hampton, 1997).

Relations to Other Constructs and Typologies
Stereotypes. The APA dictionary defines stereotypes as “a set of cognitive generalizations (e.g., beliefs, expectations) about the qualities and characteristics of the members of a group or social category.” (VandenBos, 2007). Belief- and status-indicativeness (BISI) of groups can be seen as a special case of descriptive stereotypes: as stereotypes, they are cognitive generalizations and can be used to draw inferences about a person from their membership in a group. However, unlike most stereotypes, BISI do not apply to a person or a group of people but to dimensions of social categorization. For example, people would have very different stereotypes about the “poor” and the “rich”, but both groups would be seen as similarly indicative of status. While stereotypes typically describe characteristics associated with specific groups, BISI describe variance that exists in these stereotypes along a certain dimension of social stratification. To say that religion is informative of beliefs is to say that, in a given society, there exist at least two religious groups with different belief-stereotypes associated with them. Stereotypes can encompass a wide range of characteristics about groups, spanning from status and morality to appearance and food preference. BISI are narrower in that regard and are closely linked to the function of dividing society into groups based on a certain criterion. If the function of a categorization dimension is to describe differences in the groups’ position in the societal hierarchy, the groups on this dimension will be seen as indicative of status; if the function is to describe differences in the groups’ norms and beliefs, the groups will be seen as indicative of beliefs.

Principal dimensions of prejudice. Taking a data-driven approach, Bergh & Brandt (2021) identified three principal dimensions of prejudice in the USA: prejudice against marginalized groups, prejudice against privileged/conservative groups, and prejudice against unconventional groups. These dimensions overlap with our proposed typology in differentiating groups along the status dimension (privileged vs. marginalized) and the beliefs dimension (unconventional). Prejudice in this study was operationalized as a negative attitude
towards the group compared to all other groups, rather than as ingroup bias. Our approach complements this dimensional approach to prejudice by allowing to disentangle the qualitatively different mechanisms that lead to prejudice: ingroup bias versus preference for higher status.

Entitativity and essentialism. Entitativity is the perceived “group-ness” of a social unit (Campbell, 1958). Conceptualizations of essentialism vary widely, but, put simply, essentialism reflects a perception of social categories as having some underlying “essence” (Haslam et al., 2000). The two concepts are closely related: Haslam et al. (2000) conceptualized entitativity and natural kind-ness as two dimensions of essentialist beliefs. Like BISI, entitativity and essentialism describe properties of social categories that have implications for impression formation, stereotyping, and prejudice. We would expect different relationships between entitativity/essentialism and belief- and status-indicativeness of groups across different components of entitativity/essentialism. General perceptions of groupness, as well as perceptions of similarity and common fate would be expected to positively correlate with belief-indicativeness, but not with status-indicativeness. Informativeness of groups, on the other hand, would be expected to correlate similarly with both belief- and status-indicativeness. Whereas perceived entitativity and essentialism can be considered dmore distal predictors of prejudice, belief-indicativeness of groups is a more proximal one and should be more closely linked to ingroup bias.

Identity clusters. The proposed typology parallels findings in social identity research. In a factor analysis of ratings of the relative importance of various identities to the self-concept, Easterbrook et al. (2020) distinguish three clusters of groups: sociocultural (e.g., ethnicity, religion), which parallels belief-indicative groups; socioeconomic (e.g., education,
income), which parallels status-indicative groups; and basic demographics (age, gender), which would correspond to the neutral groups in the current typology.

Overview of the studies

We conduct a cross-cultural factorial survey experiment (Study 1) where participants evaluate fictitious persons described through their membership groups. The factorial experiment allows us to disentangle the effects of the target person’s various group memberships on perceivers’ attitudes, and to test the predictions regarding the two distinct mechanisms underlying preference for belief-indicative and status-indicative groups. In a follow-up (Study 2), we develop a measure to directly assess belief and status inferences people make from different group memberships. Finally, we further validate the typology and the proposed measure by demonstrating the link between perceived belief-indicativeness of groups and ingroup bias, as well as the associations of belief- and status-indicativeness with the related constructs of essentialism and entitativity (Study 3). All materials, data, and syntax are available on the Open Science Framework platform: https://osf.io/2nrbm/. We report all manipulations, measures, and exclusions in the studies.

Study 1: Two Routes from Groups to Attitudes

We conducted a factorial survey experiment in four countries to identify the unique impact of different group memberships on attitudes depending on the group type and context. This study aimed to test the two core hypotheses presented in the introduction: We expected that belief-indicative groups will affect attitudes via preference for the ingroup (H1) and status-indicative groups will affect attitudes via preference for higher status (H2).

Method

Design
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

12

Factorial survey is an experimental technique implemented in a survey format. Participants are presented with vignettes representing situations or objects (here—descriptions of people). The characteristics of these stimuli systematically vary on several dimensions (here—group memberships), and participants evaluate the stimuli, necessarily making trade-offs between the dimensions (Auspurg & Hinz, 2015). Factorial surveys allow investigating causal mechanisms without compromising external validity (Jasso, 2006).

We selected four countries with extreme scores on acceptance of cultural diversity (ACD) and inequality: Australia for high ACD and low inequality, Armenia for low ACD and low inequality, Brazil for high ACD and high inequality, and India for low ACD and high inequality. We expected the effects of group memberships on attitudes to differ across countries with high vs. low ACD and inequality. Due to page limits, we report the details of country selection and the results of country-level analyses in the SI.

We aimed for a balance between cultural sensitivity and theoretical and empirical comparability when selecting dimensions and categories for inclusion in the experiment. To select culturally relevant dimensions, we interviewed ten or eleven experts on intergroup relations, mainly university professors, in each country (see Grigoryan et al., 2022 for details). Based on the results of expert interviews, eight dimensions of social categorization were included in the main study in all four countries, and one additional dimension per country that experts found uniquely relevant in that country. The dimensions included in all countries are age, gender, ethnicity, religion, place of residence (rural/urban), education, occupation, and income. The country-specific dimensions are English language proficiency in Australia, sexual orientation in Armenia, political views in Brazil, and caste in India. Table S1 presents the levels of each variable for each country.
We used a D-efficient fractionalized design with orthogonal main effects for vignette sampling. D-efficient designs are the best way to ensure a balanced representation of all vignette levels in the sample and orthogonality of vignette dimensions (Dülmer, 2007). We sampled 30 vignettes from the vignette universe in each country, excluding the implausible combinations (e.g., being a professional and poor in Brazil). We split the sampled vignettes into three sets of 10 vignettes to avoid participant fatigue. We used SAS Enterprise software (SAS Institute Inc., Cary, 2011) for vignette sampling. The D-efficiency coefficients for the designs varied between 92.55 and 98.02, providing sufficient power to identify the effects of vignette dimensions on attitude in all four countries (Auspurg & Hinz, 2015). The vignette setup is presented in Table S2.

Procedure and measures

The study was conducted online. All participants gave informed consent. The study did not require approval by the ethical review board as per national regulations and university guidelines. Participants were randomly assigned to one of the three versions of the questionnaire, which differed only by vignette sets. The questionnaire started with the ten vignettes presented in a randomized order. The group memberships within each vignette were always presented in the same order, since evidence suggests that order effects have little to no impact on judgments in factorial survey experiments with design parameters similar to ours (Auspurg & Jäckle, 2017; Düval & Hinz, 2020). Example of a vignette: "A young Tamil man. He lives in a capital city. He is a Muslim. He belongs to a Scheduled Caste. He studied up to high school and is currently unemployed. He is rich." (India). Attitude was measured with three items: "I like this person", "I respect this person", and "I want to engage with this person" (Cronbach's α varied from .81 to .92 in four countries).
We collected information on participants’ sociodemographic background on all variables manipulated in the vignettes. Response categories were matched to the labels used in the vignettes, enabling us to code whether the participant and each evaluated target shared a group membership on each of the dimensions.

To measure belief dissimilarity, we asked: “How compatible or incompatible are moral values and beliefs of the groups listed below with the values and beliefs of the groups that you belong to?” Participants rated outgroups on each of the dimensions on a scale from 1 – Absolutely incompatible to 6 – Absolutely compatible. The scores were reverse coded to reflect belief dissimilarity. The questionnaire included additional measures that are reported on the project’s OSF page and in Grigoryan et al. (2022).

Participants

We used non-probabilistic quota sampling to represent all the social groups mentioned in the vignettes. Following Maas and Hox (2005) recommendations, we aimed for 100 participants per questionnaire version to achieve sufficient power for multilevel regression analysis, i.e. 300 participants per country (100 x 3 questionnaire versions). Additionally, following Auspurg and Hinz’s (2015) recommendations, we aimed for at least 5 participants per questionnaire version from each subgroup, i.e., 15 participants per group.

Data collection was conducted by the survey company Lightspeed in Australia, Brazil, and India and by the Turpanjian Center for Policy Analysis in Armenia. We reached the desired sample size for 100 out of 103 sampled groups. The total sample size was $N = 1,281$ ($N_{AU} = 359$, $N_{AR} = 311$, $N_{BR} = 282$, $N_{IN} = 329$). With ten vignette evaluations per

1 Lightspeed does not have a panel in Armenia.
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

participant, the effective sample size was $N = 12,810$ observations. We did not exclude any observations. The sample details are presented in Table S3.

Analytical strategy

The independent variables are target’s gender, age, ethnicity, religion, place of residence (urban/rural), occupation, education, and income, plus language in Australia, sexual orientation in Armenia, political views in Brazil, and caste in India. Group memberships on these dimensions are the levels of IVs and attitude towards the vignette person is the DV. As vignettes are nested within respondents, we used multilevel regression models for all analyses. ICC indicated that substantial proportion of variance in attitudes was at the level of individuals: 33% in Armenia (AR), 63% in India (IN), and 64% both in Australia (AU) and Brazil (BR). We coded whether each participant-target pair belonged to the same group on each of the dimensions. We then tested regression models in each country, predicting attitude towards the vignette person from the vignette dimensions, in- vs. outgroup membership on each dimension, and respondent characteristics.

To test H1 and H2, we classified the groups as either belief-indicative, status-indicative, or neutral. We classified religion, ethnicity, and the country-specific dimensions of sexual orientation and political views as belief-indicative; education, occupation, income, and the India-specific dimension of caste as status-indicative; and age, gender, rural/urban, and the Australia-specific dimension of English language proficiency as neutral. The groups classified as neutral can potentially be informative of both status and beliefs if no other information is available. However, when more informative group memberships are present

2 We classified sexual orientation as a belief-indicative group, because public discourse in most countries frames sexual orientation as a moral issue (Jayaratne et al., 2006), even more so in countries like Armenia, where questions of gender identity and sexual orientation are still a taboo.
Belief-Indicative and Status-Indicative Groups

(e.g., religion for beliefs and income for status), we expect people to rely less on these categories. The effects of ingroup membership along belief-indicative dimensions on attitude tested H1 and the effects of status-indicative dimensions on attitude tested H2. To further test whether ingroup bias occurs predominantly between belief-indicative groups (H1), we created an aggregated dataset with the country-specific estimates of strength of ingroup bias (regression slope of ingroup membership on attitude) on each dimension, aggregated mean belief dissimilarity on that dimension, and group type (N=36).

Results

Belief-Indicative vs. Status-Indicative Groups

Ingroup bias in belief-indicative groups. The country-specific multilevel models predicting attitudes towards the vignette person are reported in Tables S4.1–S4.4. The strongest ingroup bias was observed on the dimensions classified as belief-indicative: sexual orientation (AR: $b = 0.72, SE = .07, p < .001$), political views (BR: $b = 0.27, SE = .03, p < .001$), religion (AU: $b = 0.14, SE = .03, p < .001$; AR: $b = 0.17, SE = .05, p < .001$; BR: $b = 0.20, SE = .03, p < .001$; IN: $b = 0.20, SE = .04, p < .001$), and ethnicity (AR: $b = 0.17, SE = .07, p = .012$; IN: $b = 0.07, SE = .03, p = .006$). Figure 1 shows the distribution of the strength of ingroup bias and belief dissimilarity by group type in the aggregated sample of effect sizes. Participants showed a consistent preference for the ingroup only for belief-indicative groups ($M_b = 0.20, SD = 0.2$), supporting H1. The mean effect of ingroup membership on attitude was close to zero for both neutral ($M_b = 0.01, SD = 0.04$) and status-indicative ($M_b = -0.01, SD = 0.05$) groups. Group type significantly predicted strength of ingroup bias ($F(2, 33) = 11.7, p < .001, \eta^2 = 0.42$).

Figure 1

Ingroup Bias and Belief Dissimilarity by Group Type
Note. In the “Ingroup bias” plot, the unit of analysis is the regression estimate \((b)\) of the effect of ingroup membership on attitude on one dimension in one country. For the “Belief dissimilarity” plot, the unit is the mean aggregate belief dissimilarity score on one dimension in one country (6-point scale).

Supporting our theorizing, perceived belief dissimilarity was higher between belief-indicative groups \((M = 3.56, SD = 0.93)\) compared to neutral \((M = 2.63, SD = 0.2)\) and status-indicative groups \((M = 2.92, SD = 0.4)\), a significant difference \((F(2, 33) = 7.9, p = .002, \eta^2 = 0.32)\). Group type and belief dissimilarity together explained 74% of variance in strength of bias. Belief dissimilarity fully mediated the link between group type and bias \((b = 0.14, 95\% \text{ CI } [0.07, 0.23], p < .001)\), accounting for 77% of the total effect.

Preference for higher status in status-indicative groups. Although status-indicative groups did not produce ingroup bias, they affected attitudes via preference for higher status. Supporting H2, participants evaluated targets with lower levels of education (vs. holding a university degree) more negatively (AU: \(b = -0.13, SE = .03, t(3108) = -4.94, p < .001\); AR: \(b = -0.11, SE = .05, t(2745) = -2.07, p = .039\); BR: \(b = -0.01, SE = .04, t(2540) = -0.30, p = .764\); IN: \(b = -0.23, SE = .05, t(2853) = -4.14, p < .001)\). Similarly, unemployed targets were evaluated more negatively than professionals (AU: \(b = -0.22, SE = .03, t(3107) = -7.49, p < .001\); AR: \(b = -0.77, SE = .05, t(2745) = -15.36, p < .001\); BR: \(b = -0.09, SE = .05, t(2539) = -1.71, p = .088\); IN: \(b = -0.22, SE = .05, t(2844) = -4.75, p < .001)\). The effect of income showed strong cross-country variability. Participants preferred rich over poor targets.
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

in Australia and Armenia (AU: $b = -0.12, SE = 0.03, t(3105) = -4.43, p < .001$; AR: $b = -0.13, SE = 0.04, t(2745) = -3.08, p = .002$), but poor over rich in Brazil and India (BR: $b = 0.15, SE = 0.04, t(2539) = 3.91, p < .001$; IN: $b = 0.07, SE = 0.03, t(2844) = 2.08, p = .038$). Only caste in India had no significant effect on attitude (Scheduled caste vs. Forward caste: $b = -0.04, SE = 0.03, t(2847) = -1.21, p = .228$).

The effects of status-indicative dimensions (education, occupation, and income) were stronger in more equal countries (Australia, Armenia), and ingroup bias on the dimension of ethnicity, but not religion, was stronger in countries with lower ACD (Armenia, India). We elaborate on these country-level differences in the SI.

Discussion

We demonstrated that targets’ group memberships can affect attitudes via two distinct routes: preference for the ingroup occurred for those groups that were indicative of their members’ beliefs and values (e.g., religion), and preference for higher status occurred for the groups that were indicative of their members’ standing in the societal hierarchy (e.g., occupation). These effects were further moderated by social-structural characteristics. We found weaker ethnic bias in countries with higher acceptance of diversity, although this effect did not generalize to religious bias. Preference for higher status for status-indicative groups (education, occupation, income) was stronger in more equal countries.

One important limitation of our approach is that although we employ a design that allows an intersectional analysis of attitude formation, we do not make use of this design feature. As we argued in the introduction, dimensions of social categorization can interact with each other in shaping attitudes. We do not present such analysis here. The use of orthogonal main effects design in this study means that some higher-order interactions are confounded and cannot be tested. However, with careful theorizing and additional tests of
data suitability to ensure that the specific interactions of interest can be tested, these data can be used in future studies to test such interactions. For example, information about the target’s level of education could have a stronger positive effect on attitude when the candidate is an ethnic majority vs. minority group member (e.g., see Di Stasio & Heath, 2019).

The strength of factorial survey experiments is in their ability to disentangle the effects of different variables that might be confounded in real life. However, this design feature also presents a challenge when applied to social group memberships. Different combinations of groups memberships would be perceived as more or less realistic, which could affect participants’ judgements. Following best practices in factorial survey research (Auspurg & Hinz, 2015), we discussed these implausible group combinations with local experts in each country prior to data collection and excluded combinations that seemed too unrealistic. Nevertheless, many atypical combinations remained, to not defeat the purpose of the experimental design. Future studies could ask participants directly how strange or unusual the described person is to account for this variation. Asking participants to list, in an open-ended question, their thoughts about the described person would further help to capture stereotypes that emerge from different combinations of group memberships.

The main limitation of Study 1 is the absence of a direct measure of belief- and status-indicativeness of groups. We relied on the research team’s knowledge of each cultural context to classify the groups as belief-indicative, status-indicative, or neutral. However, as mentioned in the introduction, the perceptions of groups’ belief- and status-indicativeness are context-bound and, therefore, it is important to obtain estimates of the groups’ belief- and status-indicativeness directly from participants in these countries. To address this limitation, we conducted a follow-up study. We selected two countries that are most distant from each other on the dimensions used for country selection in Study 1 and, for feasibility, where the
study could be conducted in the same language: Australia (high ACD, low inequality) and India (low ACD, high inequality).

Study 2: Measuring Belief- and Status-Indicativeness of Groups

To validate the proposed typology, we developed a measure to assess belief and status inferences people make from different group memberships. To develop the items, we relied on existing measures of warmth/beliefs and competence/agency dimensions of social cognition (Abele et al., 2016; Fiske et al., 2002; A. Koch et al., 2016). We aimed to test (1) the reliability of the new measure in two countries, (2) whether the three hypothesized clusters of belief-indicative, status-indicative, and neutral groups emerge from the data and (3) whether these clusters agree with our classification of groups in Study 1.

Method

Participants

To ensure sufficient power for multilevel CFA, we aimed to recruit 150 participants in each country (Hox & Maas, 2001; T. Koch et al., 2015). Australian participants were recruited on the online survey platform Prolific and compensated with £1.9 for their time. Prolific does not operate in India, therefore Indian participants were recruited via Amazon MTurk crowdsourcing platform and compensated with $2 for their time. As a quality control, we asked participants at the end of the questionnaire if their responses were careless and should be excluded from the analysis; participants were assured that their compensation would not depend on their response to this question. After excluding participants who did not reside in either Australia or India and those who indicated that their responses should be excluded, the effective sample size was \(N = 148 \) in both countries. Sample characteristics are presented in Table S6 of the SI.

Procedure and Measures
To measure the type of information inferred from group memberships, we developed a scale based on the operational definitions of the belief- and status-indicative groups. Table 1 presents operational definitions of the constructs and the items designed to measure them. The instruction was adapted for each of the categories included in Study 1. In both countries, we asked about gender, age, ethnicity, religion, place ("the size of the town they are from"), education, occupation, and income. Additionally, we included the country-specific dimensions of English language proficiency in Australia and caste in India, and the two country-specific dimensions from Armenia and Brazil. We matched countries with similar levels of acceptance of cultures diversity, asking about sexual orientation in India and about political views in Australia. This resulted in a total of ten groups in each country.

Additionally, participants reported their socio-demographic background as in Study 1. The questionnaire included other exploratory measures that are reported on the project’s OSF page. The study was not preregistered. It was conducted online and took on average 10 minutes to complete. The study was approved by the ethical committee of the Psychology department at Ruhr University Bochum.

Results

We first tested the reliability of the BISI measure and then conducted a cluster analysis to see if the three types of groups emerge from the data.
Table 1

The measure of belief- and status-indicativeness of groups (BISI)

<table>
<thead>
<tr>
<th>Construct</th>
<th>Operational definition</th>
<th>Instructions/Scale</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belief-indicative groups (BI)</td>
<td>Belief-indicative groups are groups that signal their members’ moral beliefs, values, and worldviews.</td>
<td>Imagine the only thing you know about someone is their [group: e.g., gender]. What can you tell about this person? All items are answered on a 5-point scale from 1 – “You cannot tell at all” to 5 – “You can tell for sure”, with a labeled middle category 3 – “You can tell to some extent”.</td>
<td>Can you tell what kind of values this person has?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Can you tell what kind of moral beliefs this person has?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Can you tell how trustworthy this person is?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[replaced in the follow-up study with: “Can you tell whether this person’s values and beliefs are similar to your own?”]</td>
</tr>
</tbody>
</table>
| Status-indicative groups (SI) | Status-indicative groups are groups that signal their members’ status in the societal hierarchy. | Can you tell how successful this person is? Can you tell if this person has high or low status in the society? Can you tell how competent this person is? | Note: See SI for the final version of the scale in English and German.

Scale Reliability

The measures were administered for ten different groups in each country, creating a multilevel data structure, where group evaluations are nested within respondents. We therefore tested two multilevel CFA models, one for each country, with group evaluations (Level 1, \(N = 1480\)) nested within respondents (Level 2, \(N = 148\)). Two correlated latent factors (BI and SI) were represented by three items each. The factor loadings and model fit indices are presented in Table S7 of the SI. All items significantly loaded on the respective latent factor in the expected direction (all \(\beta s > .40\)) on both levels. Model fit indices indicated that the model was a good fit to the data (AU: CFI = .966, TLI = .936, RMSEA = .085; IN:
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

23

CFI = .996, TLI = .992, RMSEA = .019). Partial metric and scalar invariance of the scale was established across countries and target groups, with only the “trust” item showing significant variability in loadings (see SI, Table S8).

In Australia, the two constructs were orthogonal ($r = .04, p = .207$), whereas in India they correlated positively ($r = .65, p < .001$), suggesting that groups that were considered informative of their members’ status in India were also seen as informative of their members’ beliefs. Indian participants in general perceived various social groups to be more informative of their members’ beliefs ($M_{IN} = 3.66, SD_{IN} = 1.02, M_{AU} = 1.83, SD_{AU} = 0.93, t(2931) = -51.3, p < .001, d = 1.88$) and status ($M_{IN} = 3.70, SD_{IN} = 0.96, M_{AU} = 1.98, SD_{AU} = 1.04, t(2938) = -46.5, p < .001, d = 1.71$) than did Australian participants.

Group Evaluations: Cluster Analysis

To test whether the three types of groups emerge from the data, we conducted a k-means cluster analysis with Euclidean distance as a similarity measure. We scaled the BI and SI measures before running the analysis (Milligan & Cooper, 1988). We determined the optimal number of clusters based on the within-cluster sums of squares using the *factoextra* (Kassambara & Mundt, 2020) package in R. As Fig. 2 indicates, three clusters emerged in both countries.

Figure 2
The optimal number of clusters in group evaluations

The three-cluster solution explained 92.7% of variance in the Australian sample and 87.8% of variance in the Indian sample. The cluster means showed a good fit of the data to the proposed typology: the groups in the first cluster with low scores on both dimensions can be described as neutral (cluster means: $\text{BI}_{\text{AU}} = -.31$, $\text{SI}_{\text{AU}} = -.41$, $\text{BI}_{\text{IN}} = -.13$, $\text{SI}_{\text{IN}} = -.16$), groups in the second cluster with high BI and low SI scores can be described as belief-indicative (cluster means: $\text{BI}_{\text{AU}} = .87$, $\text{SI}_{\text{AU}} = -.35$, $\text{BI}_{\text{IN}} = .08$, $\text{SI}_{\text{IN}} = -.05$), and groups in the third cluster with high SI and low BI can be described as status-indicative (cluster means: $\text{BI}_{\text{AU}} = -.06$, $\text{SI}_{\text{AU}} = .93$, $\text{BI}_{\text{IN}} = .10$, $\text{SI}_{\text{IN}} = .25$).

Figure 3

Clusters of groups by levels of belief- and status-indicativeness in Australia and India
As Fig. 3 shows, the classification of groups into clusters was largely in line with our post-hoc classification in Study 1. In both countries, income, education, and occupation fell into the status-indicative cluster, religion into the belief-indicative cluster, and gender and place into the neutral cluster. As expected, political views were in the belief-indicative cluster, close to religion. We also observed a few deviations. Ethnicity was in the belief-indicative cluster in India, but not in Australia, which is consistent with Study 1, where we found significant ethnic ingroup bias in India, but not in Australia. Note, however, that both studies use self-reports, and the fact that we did not detect ethnic bias in Australia could simply reflect socially desirable responding or other limitations associated with self-report measures. Although age was among the neutral groups in Australia, it was seen as moderately informative of people’s beliefs in India. Finally, sexual orientation and caste were seen as neutral in India, contrary to expectations.

Discussion

We developed a measure to assess belief and status inferences people make from group memberships. The measure showed good reliability in two markedly different cultural contexts. Three clusters of groups emerged from the data, corresponding to the proposed typology: groups primarily informative of their members’ beliefs, groups primarily informative of their members’ status, and neutral groups that were not very informative of either beliefs or status. The evaluations of specific social groups largely confirmed our post-hoc classification in Study 1. Out of 20 groups studied across the two samples, classification of 16 groups matched our classification in Study 1 and only four deviated from our expectations. This suggests that with some knowledge of a given cultural context, researchers can anticipate which groups will be perceived as belief- or status-indicative, or neutral. However, this classification is malleable, and groups can shift from one cluster to another.
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

26

dependning on context and time. This finding further highlights the importance of having a direct measure to assess inferences that people make from social groups at a given time and place.

In Study 1, relying on a post-hoc classification of groups to belief- and status-indicative, we showed that ingroup bias predominantly emerges for belief-indicative, but not status-indicative groups. In Study 2, we demonstrated that belief- and status-indicativeness of groups can be reliability assessed and that our post-hoc classification largely overlaps with participants’ perceptions of groups. In Study 3, we test whether this newly developed measure is predictive of the strength of ingroup bias.

Study 3: Linking Belief- and Status-Indicativeness of Groups to Ingroup Bias

We tested the link between perceptions of belief- and status-indicativeness of groups and ingroup bias. The preregistered hypothesis (https://osf.io/rtv48) was that the more indicative of its members’ beliefs a group is perceived to be, the stronger perceivers’ ingroup bias will be (H1). We additionally tested how the BISI dimensions are related to essentialist beliefs and entitativity, and whether belief-indicativeness of groups is predictive of bias over and above entitativity and essentialism.

Method

The study was conducted in Germany. As in Study 1, we first identified salient social groups in Germany, using the strategy suggested by Koch et al. (2016). We asked participants to name 40 social groups that spontaneously come to their minds. Sixty-eight people completed the questionnaire, 72% women and 26% men, 19 to 67 years old (M=27.5, SD=9). Participants mentioned 2,369 groups in total. The groups were then assigned to the relevant

3 Deviations from the preregistered protocol, as well as additional analyses in line with the preregistration protocol are reported in the SI.
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

categorization dimensions and type of group based on classification by Lickel et al. (2000): intimacy groups, social categories, task groups, and loose associations. As the focus of the current study is on social categories, only those are included in the main study. Ten most frequently mentioned categories were included\(^4\): occupation, political affiliation, religion, income, age, ethnicity, gender, place of residence (East vs. West Germany), sexual orientation, and education.

Participants

As in Study 2, given the nested data structure, we recruited 150 participants to have sufficient power for multilevel CFA and regression analysis. The study was hosted on Qualtrics and the link to the survey was distributed via social media platforms and among the students of Ruhr University Bochum. Students received one credit point for participation. A total of 176 participants completed the questionnaire. Twenty-one of them were excluded as they failed more than two of the five attention checks. The final sample size was \(N = 155\).

Majority of the participants (79\%) were women. Age varied between 19 and 62 years old, \(M_{age} = 27, SD = 10\). Most participants (75\%) were students. Majority (72\%) had a high school qualification, 21\% had a tertiary degree (BA, MA, or PhD), 4.5\% completed vocational training, and only 2.6\% did not complete high school. In terms of subjective income, 46\% believed their monthly income was below the average in Germany, 38\% – about average, and 16\% – above average. The participants came predominantly from West German states (96\%) and were politically left leaning (74\% were “very” or “slightly” liberal). Most participants (86\%) identified as German, 4\% identified as Turkish, 1\% as Russian, and

\(^4\) Migration status was the 6\(^{th}\) most frequently mentioned category, but we decided to exclude it to have a relatively balanced representation of different group types, while limiting the number of categories to 10.
9% mentioned other ethnic groups. Majority (63%) identified as Christian, 28% as atheist/agnostic, 7% as Muslim.

Procedure and measures

Participants gave informed consent and confirmed that they live in Germany and speak German.

BISI. Ten groups were evaluated using the BISI scale as in Study 2. The groups were presented in a randomized order. We made one modification to the scale: in Study 2, the trust item had a weaker loading on the latent construct compared to the other two items in Australia and was not invariant across countries. Since trust can be based both on belief inferences (trust-benevolence) and competence inferences (trust-credibility, Gansen, 1994), we reasoned that trust might be the outcome of belief and status inferences rather than part of them. In Study 3, we added one additional item to the scale to test whether it performs better: “Can you tell whether this person’s values and beliefs are similar to your own?” The scale performed better with the new item ($CFI = .996$, $TLI = .993$, $RMSEA = .032$, $SRMR_{within} = .045$, $\beta_{within} = .86$) compared to the trust item used earlier ($CFI = .944$, $TLI = .896$, $RMSEA = .109$, $SRMR_{within} = .134$, $\beta_{within} = .37$). Therefore, we use the revised version of the scale in all calculations. The final version of the scale in English and German is presented in the SI.

Entitativity. Participants rated the same ten groups on three entitativity items from Blanchard et al. (2020). Example item: “The members of this group are a unit”, $\alpha = .88$.

Essentialism. We used the Essentialist Beliefs scale (Bastian & Haslam, 2006) which consists of three subdimensions: biological basis (e.g., “The kind of person someone is can be largely attributed to their genetic inheritance”, $\alpha = .83$), discreteness (e.g., “A person either has a certain attribute or they do not”, $\alpha = .66$), and informativeness (e.g., “When getting to know a person it is possible to get a picture of the kind of person they are very quickly”),
α = .70). The scale also performed well as a unidimensional measure of essentialist beliefs (α = .81).

Feeling thermometer scales were completed for several groups on each dimension. For example, for the dimension of political orientation, participants rated “liberals” and “conservatives” and for gender, “men”, “women”, and “non-binary persons”. Participants also reported their socio-demographic background on each of the dimensions⁵. To get a measure of ingroup bias, we calculated a difference score, subtracting the average of all outgroup evaluations on the feeling thermometer from the ingroup evaluation.

Results

We first performed a cluster analysis to test whether the three types of groups emerge from the data. As in Study 2, three clusters emerged, explaining 90% of variance in group evaluations. Fig. 4 illustrates the distribution of groups by clusters.

⁵ Due to a technical error, the questionnaire did not include a question about participants’ sexual orientation, so the score for ingroup bias was calculated for 9 out of 10 groups.
Next, we tested whether the strength of ingroup bias differed by group type. As Fig. 5 demonstrates, belief-indicative groups elicited stronger ingroup bias ($M=19.5, SD=25$) than neutral ($M=10.4, SD=20$) or status-indicative ($M=10, SD=18.5$) groups, a significant difference ($F(2, 1343) = 28, p < .001, \eta^2 = .04, 95\% CI [.02, .06]$). This was the case even though we had a highly educated sample, which conflated preference for the ingroup with preference for higher status in the estimates of ingroup bias for status-indicative groups.
We predicted that the more indicative of beliefs a group is perceived to be, the stronger is the ingroup bias (H1). To test this prediction, we ran a multilevel regression model with group evaluations nested within respondents, predicting ingroup bias from standardized BI and SI scores. As predicted, the more participants perceived a group to be indicative of its members’ beliefs, the stronger preference for the ingroup they showed ($b = 6.2$, $SE = 0.5$, $t(1321) = 11.6$, $p < .001$). An increase of one standard deviation in the BI score was related to a 6-point increase in the difference between the ingroup and the outgroup evaluations on a 100-point feelings thermometer. As expected, SI did not predict ingroup bias ($b = -0.9$, $SE = 0.5$, $t(1259) = -1.8$, $p = .077$).

Finally, we tested how BISI relates to essentialism and entitativity. Essentialist beliefs are an individual-level variable, we therefore aggregated the BISI scores at the level of individuals to test this association. Essentialism correlated positively with both BI ($r = .25$, $p < .001$) and SI ($r = .25$, $p < .001$). The strongest correlations were with informativeness subscale ($r_{BI} = .30$ and $r_{SI} = .26$, see Table S9), which supports the construct validity of the BISI scale. Unlike essentialism, entitativity was measured for each of the ten groups. Entitativity correlated with BI ($r = .36$, $p < .001$), but not with SI ($r = -.01$, $p = .535$), further supporting our theorizing. Table 2 reports the estimates of a multilevel model predicting...
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

ingroup bias from BI, SI, entitativity, and individual-level essentialism. Only entitativity and BI predicted stronger ingroup bias. The effect of BI was twice as strong as that of entitativity: 1 SD increase in BI was associated with a 5.3 increase on a 100-point feeling thermometer versus a 2.6 increase for a 1 SD increase in entitativity. Controlling for socio-demographic variables did not change the size or the significance of these effects (see Table S10).

Table 2

Estimates of a multilevel model predicting ingroup bias from BISI and entitativity

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>SE</th>
<th>95% CI</th>
<th>t (df)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>13.14</td>
<td>0.98</td>
<td>[11.2, 15.1]</td>
<td>13.3</td>
<td>.< .001</td>
</tr>
<tr>
<td>Belief-indicativeness (BI)</td>
<td>5.2</td>
<td>0.58</td>
<td>[4.1, 6.4]</td>
<td>9.1</td>
<td>< .001</td>
</tr>
<tr>
<td>Status-indicativeness (SI)</td>
<td>-0.66</td>
<td>0.49</td>
<td>[-1.6, 0.3]</td>
<td>-1.3</td>
<td>.179</td>
</tr>
<tr>
<td>Entitativity</td>
<td>2.56</td>
<td>0.64</td>
<td>[1.3, 3.8]</td>
<td>4.0</td>
<td>< .001</td>
</tr>
<tr>
<td>Essentialist Beliefs</td>
<td>0.75</td>
<td>0.99</td>
<td>[-1.2, 2.7]</td>
<td>0.8</td>
<td>.448</td>
</tr>
</tbody>
</table>

General discussion

We propose and validate a typology of social groups that integrates two distinct and equally fundamental mechanisms through which information about others’ group memberships affects attitudes towards them: preference for the ingroup and preference for higher status. The differentiation between belief-indicative and status-indicative groups goes beyond the existing typologies (e.g., Lickel et al., 2000; Wilder & Simon, 1998) in that it focuses on differences in the type of information a social category provides to a perceiver, helping to clarify the mechanisms of impression formation and predict under which circumstances one or the other mechanism will be activated.

Our findings demonstrate that when information about others’ multiple group memberships is present, the influence of group membership on the attitude is conditioned by the type of the group. Groups that were indicative of the person’s beliefs affected attitudes
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

33

primarily via ingroup bias, whereas groups indicative of the person’s status affected attitudes primarily via preference for higher status. We further showed that these inferences about beliefs and status can be reliably measured and that group evaluations form the three theorized clusters of belief-indicative, status-indicative, and neutral groups. Finally, we tested the predictive validity of this typology and the newly developed measure and demonstrated that the more indicative a group is perceived to be of its members’ beliefs, the stronger the ingroup bias. The link between belief-indicativeness and bias was twice as strong as that of entitativity.

Importantly, although groups can be classified as belief-indicative or status-indicative, this classification is malleable. For example, evidence from South Africa shows that race functions as a status-indicative group in contexts with extreme racial disparities (Dunham et al., 2014). Racial categorization itself can be affected by status cues (Freeman et al., 2011). Similarly, social class can function as a belief-indicative group in contexts with high economic inequality, as our findings from India indicate. Social context is what saturates social groups with meaning.

Limitations and Future Directions

We find consistent evidence in support of our hypotheses in seven samples from five countries. These countries, however, are not representative of the world’s population. Moreover, the three studies varied in how well they represented the sampled subpopulations from each country. Study 1 had the most balanced sample due to quota sampling approach, whereas Studies 2 and 3 used convenience samples that over-represented some subgroups, while under-representing others. The sample of Study 3 was particularly skewed towards young, educated, and liberal participants. Although the results in any of the studies did not change when controlling for demographic variables, the predominance of majority and
higher-status groups in the sample can still be problematic. For example, ingroup bias on belief-indicative dimensions could be either weaker (Bettencourt et al., 2001) or stronger (Scheepers et al., 2006) if more members of minority groups were included. An over-representation of higher-status groups on status-indicative dimensions could inflate the estimates of preference for higher status. Future studies would benefit from sampling an equal number of participants from majority and minority, as well as higher- and lower-status groups to test the universality, robustness, and the size of the effects found here. Studies that exclusively sample minority or lower-status groups would also be valuable, to balance out the over-reliance of social psychology on majority and higher-status samples (Henrich et al., 2010; Roberts et al., 2020).

This paper serves as an initial “proof of concept”, leaving several unanswered questions that future studies can tackle. How do belief- and status-indicative groups interact in impression formation? Most likely, these effects are non-additive and the perception of one group can change depending on membership in another (e.g., see discussion on intersectionality in the introduction). Under which circumstances do groups become indicators of either beliefs or status? How do these perceptions shift over time and across situations? Under which conditions are the two dimensions orthogonal and when are they not? What are the implications of this non-orthogonality? Does perceived informativeness of groups go hand in hand with higher cultural tightness and higher prejudice? And how do our findings generalize to face-to-face interactions where the visibility and salience of different group memberships vary? Field studies, experimental data with artificial groups, and cross-cultural data with greater contextual variation can help address these questions.

Our findings also suggest some avenues for advancing prejudice reduction interventions. The majority of prejudice reduction models—e.g., intergroup contact
BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

(Pettigrew, 1998), group norm theory (Crandall et al., 2002), common ingroup identity (Gaertner et al., 1993)—target prejudice towards a specific group (Paluck & Green, 2009). The secondary transfer effect of intergroup contact usually extends to similar, but not dissimilar outgroups (Harwood et al., 2011). Based on our findings, an intervention designed to increase general tolerance to belief dissimilarity might be more efficient in reducing bias in relation to a wider range of social groups.

Conclusion

We proposed and validated a typology of social groups, differentiating between belief-indicative groups that signal their members’ values, beliefs, and worldviews, and status-indicative groups that signal their members position in the societal hierarchy. We showed that intergroup comparisons involving belief-indicative groups result in ingroup bias, whereas those involving status-indicative groups result in preference for higher status. We further demonstrated that socio-structural context shapes the way these group memberships affect attitudes.

This information-based approach brings together various lines of research, offering an integrative framework for the study of intergroup attitudes. It links the evolutionary-driven fundamental dimensions of social perception (Abele et al., 2021; A. Koch et al., 2016) to mechanisms of attitude formation from social identity (Tajfel & Turner, 1979), social dominance (Sidanius & Pratto, 1999), and system justification theories (Jost, 2019). By incorporating the type of information people infer from different group memberships into the studies of intergroup relations, we can make better, more contextualized predictions about intergroup attitudes and behavior.
Belief-indicative and status-indicative groups

36

References

https://doi.org/10.3389/fpsyg.2016.01810

https://doi.org/10.1111/bjso.12256

https://doi.org/10.1177/0049124115591016

https://doi.org/10.1016/j.jesp.2005.03.003

https://doi.org/10.1037/pspi0000360

BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

37

BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

38

https://doi.org/10.1177/0049124106292367

Düval, S., & Hinz, T. (2020). Different Order, Different Results? The Effects of Dimension Order in Factorial Survey Experiments. _Field Methods, 32_(1), 23–37._
gender stereotypes about social influence. *Journal of Personality and Social
Psychology, 43*(5), 915–928. https://doi.org/10.1037/0022-3514.43.5.915

Easterbrook, M. J., Kuppens, T., & Manstead, A. S. R. (2020). Socioeconomic status and the
https://doi.org/10.1111/bjso.12334

Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition:
https://doi.org/10.1016/j.tics.2006.11.005

Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype
content: Competence and warmth respectively follow from perceived status and
https://doi.org/10.1037//0022-3514.82.6.878

https://doi.org/10.1371/journal.pone.0025107

common ingroup identity model: Recategorization and the reduction of intergroup bias.
https://doi.org/10.1080/14792779343000004

BELIEF-INDICATIVE AND STATUS-INDICATIVE GROUPS

42

157–174. https://doi.org/https://doi.org/10.1207/S15328007SEM0802_1

https://doi.org/10.1016/j.jesp.2011.05.015

