University of Sussex
Browse
Al-Abdullah, Bayan.pdf (3.26 MB)

Novel reversible text data de-identification techniques based on native data structures

Download (3.26 MB)
thesis
posted on 2023-06-10, 03:40 authored by Bayan Alabdullah
Technological development in today's digital world has resulted in the collection and storage of large amounts of personal data. These data enable both direct services and non-direct activities, known as secondary use. The secondary use of data can improve decision-making, service experiences, and healthcare systems. However, the widespread reuse of personal data raises significant privacy and policy issues, especially for health- related information; these data may contain sensitive data, leading to privacy breaches if compromised. Legal systems establish laws to protect the privacy of personal data disclosed for secondary use. A well-known example is the General Data Protection Regulation (GDPR), which outlines a specific set of rules for sharing and storing personal data to protect individual privacy. The GDPR explicitly points to data de-identification, especially pseudonymization, as one measure that can help meet the requirements for the processing of personal data. The literature on privacy preservation approaches has largely been developed in the field of data anonymization, where personal data are irreversibly removed or obfuscated and there is no means by which to recover an individual's identity if needed. By contrast, pseudonymization is a promising technique to protect privacy while enabling the recovery of de-identified data. Significantly, many existing approaches for pseudonymization were developed long before the GDPR requirements were established, and so they may fail to satisfy its provisions. Therefore, it is worthwhile to offer technical solutions to preserve privacy while supporting the legitimate use of data. This thesis proposes a novel de-identification system for unstructured textual data, known as ARTPHIL, that generates de-identified data in compliance with the GDPR requirement for strong pseudonymization. The system was evaluated using 2014 i2b2 testing data. The proposed system achieved a recall of 96.93% in terms of detecting and encrypting personal health information, as specified under guidelines provided by the Health Insurance Portability and Accountability Act (HIPAA). The system used a novel and lightweight cryptography algorithm E-ART to encrypt personal data cost-effectively and without compromising security. The main novelty of the E-ART algorithm is the use of the reflection property of a balanced binary tree data structure as substitution method instead of complex and multiple iterations. The performance and security of the proposed algorithm were compared to two symmetric encryption algorithms: The Advanced Encryption Standard and Data Encryption Standard. The security analysis showed comparable results, but the performance analysis indicated that E-ART had the shortest ciphertext and running time with comparable memory usage, which indicates the feasibility of using ARTPHIL for delay-sensitive or data-intensive applications

History

File Version

  • Published version

Pages

223.0

Department affiliated with

  • Informatics Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2022-05-25

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC