A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth

Sun, Dan, Zhu, Liuhong, Guo, Le, Wang, Shaoli, Wu, Qingjun, Crickmore, Neil, Zhou, Xuguo, Bravo, Alejandra, Soberón, Mario, Guo, Zhaojiang and Zhang, Youjun (2022) A versatile contribution of both aminopeptidases N and ABC transporters to Bt Cry1Ac toxicity in the diamondback moth. BMC Biology, 20 (1). a33 1-16. ISSN 1741-7007

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (3MB)


Biopesticides and transgenic crops based on Bacillus thuringiensis (Bt) toxins are extensively used to control insect pests, but the rapid evolution of insect resistance seriously threatens their effectiveness. Bt resistance is often polygenic and complex. Mutations that confer resistance occur in midgut proteins that act as cell surface receptors for the toxin, and it is thought they facilitate its assembly as a membrane-damaging pore. However, the mechanistic details of the action of Bt toxins remain controversial.

We have examined the contribution of two paralogous ABC transporters and two aminopeptidases N to Bt Cry1Ac toxicity in the diamondback moth, Plutella xylostella, using CRISPR/Cas9 to generate a series of homozygous polygenic knockout strains. A double-gene knockout strain, in which the two paralogous ABC transporters ABCC2 and ABCC3 were deleted, exhibited 4482-fold resistance to Cry1A toxin, significantly greater than that previously reported for single-gene knockouts and confirming the mutual functional redundancy of these ABC transporters in acting as toxin receptors in P. xylostella. A double-gene knockout strain in which APN1 and APN3a were deleted exhibited 1425-fold resistance to Cry1Ac toxin, providing the most direct evidence to date for these APN proteins acting as Cry1Ac toxin receptors, while also indicating their functional redundancy. Genetic crosses of the two double-gene knockouts yielded a hybrid strain in which all four receptor genes were deleted and this resulted in a > 34,000-fold resistance, indicating that while both types of receptor need to be present for the toxin to be fully effective, there is a level of functional redundancy between them. The highly resistant quadruple knockout strain was less fit than wild-type moths, but no fitness cost was detected in the double knockout strains.

Our results provide direct evidence that APN1 and APN3a are important for Cry1Ac toxicity. They support our overarching hypothesis of a versatile mode of action of Bt toxins, which can compensate for the absence of individual receptors, and are consistent with an interplay among diverse midgut receptors in the toxins’ mechanism of action in a super pest.

Item Type: Article
Keywords: ABC transporters, Bacillus thuringiensis, CRISPR/Cas9, GPI-anchored proteins, Plutella xylostella, Receptor redundancy, Toxin action, ATP-Binding Cassette Transporters, Animals, Bacillus thuringiensis, Bacillus thuringiensis Toxins, Bacterial Proteins, CD13 Antigens, Endotoxins, Hemolysin Proteins, Insect Proteins, Insecticide Resistance, Larva, Moths
Schools and Departments: School of Life Sciences > Biochemistry
SWORD Depositor: Mx Elements Account
Depositing User: Mx Elements Account
Date Deposited: 29 Apr 2022 13:52
Last Modified: 29 Apr 2022 14:00
URI: http://sro.sussex.ac.uk/id/eprint/105573

View download statistics for this item

📧 Request an update