Reassessing the health impacts of trade and investment agreements: a systematic review of quantitative studies, 2016–20

Article (Published Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/105200/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Reassessing the health impacts of trade and investment agreements: a systematic review of quantitative studies, 2016–20

Pepita Barlow, Rujuta Sanap, Amandine Garde, L Alan Winters, Mzwandile A Mabhala, Anne-Marie Thow

To ensure a high level of health protection, governments must ensure that health and trade policy objectives are aligned. We conducted a systematic review of the health impacts of trade policies, including trade and investment agreements (TIAs), to provide a timely overview of this field. We systematically reviewed studies evaluating the health impacts of trade policies published between Jan 19, 2016, and July 10, 2020. Included studies were quantitative studies evaluating the impact of TIAs and trade policies on health determinants or outcomes. We evaluated methodological quality and performed a narrative synthesis. 21 of 28 067 articles identified via searches met our criteria. Methodologically strong studies found reduced child mortality, deteriorating worker health, rising supplies of sugar, ultra-processed food, tobacco, and alcohol supplies, and increased drug overdoses following trade reforms, compared with the time periods before trade reform. However, associations varied substantially across contexts and socioeconomic characteristics. Our findings show that trade policies, including TIAs, have diverse effects on health and health determinants. These effects vary substantially across contexts and socioeconomic groups. Governments seeking to adopt healthy trade policies should consider these updated findings to ensure that opportunities for health improvement are leveraged and widely shared, while harms are avoided, especially among vulnerable groups.

Introduction

Ensuring healthy lives for all individuals is central to global efforts to improve population health, reduce health inequalities, and achieve the 2030 Sustainable Development Goals. 1,2 To achieve these goals, WHO has called on governments to adopt a Health in All Policies approach that considers the health implications of policies outside of the health sector. 1 This perspective is particularly important for governments seeking to ratify trade policies, including trade and investment agreements (TIAs). TIAs set rules governing trade between states to promote cross-border trade. On Sept 20, 2020, 307 TIAs were in force globally. 1 TIAs are a mechanism of, and drive, globalisation and are often introduced in response to multiple political and economic changes, alongside other market-oriented reforms. 3

TIAs are not designed to influence population health. However, the many possible effects of TIAs on health are well established. 4,5 Potential consequences include improved child health due to income growth, reduced food insecurity as a result of food trade, and increased supplies of unhealthy commodities including tobacco, alcohol, and sugar-sweetened beverages (SSBs). 6,7 WHO, politicians, civil society, and academics have called for increased attention to the synergies and tensions between trade promotion and the protection and promotion of health and health equity. 4,5 Achieving this goal requires timely assessments of empirical evidence and the integration of findings from different disciplines.

Reviews of studies published up to 2016 identified associations between trade policies and harmful commodity sales, and called on scholars to examine a wider range of outcomes using methodological approaches that better account for concurrent economic and political changes. 8–11 Scholars have since examined additional outcomes and utilised quasi-experimental methods, which are suited to evaluating policies like TIAs which cannot be feasibly randomised. 12 It is, therefore, necessary to provide an updated evidence review. The aim of this systematic review is to examine studies from 2016 to 2020 evaluating changes.

Key messages

- We systematically reviewed high-quality studies published since 2016 assessing the effect of trade and investment agreements (TIAs) and related trade policies on a range of health outcomes and determinants.
- Methodologically strong studies found that TIAs and related trade policy reforms corresponded to reduced child mortality rates. However, these associations varied according to household and country characteristics.
- Trade policies and agreements were also associated with deteriorating worker health and rising rates of deaths from drug overdoses in regions heavily exposed to tariff changes within TIAs. In contrast, select health improvements were experienced among higher-skilled and socioeconomically advantaged workers.
- Strong studies also found that signing TIAs with the USA corresponded to increases in the supply, imports, and sales of ultra-processed foods, sugar-sweetened beverages, tobacco, alcohol, and sugar.
- TIAs have diverse effects on peoples’ opportunities for living long and healthy lives, both for better and for worse, and these effects vary substantially across contexts and socioeconomic groups. A Health in All Policies approach to trade negotiations appears necessary to ensure that the harms we identify are mitigated and that the health improvements we identify are realised and widely shared.
the effect of TIAs on the determinants of health and health outcomes.

Methods

Search strategy and selection criteria

We followed the procedures in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement set out by Moher and colleagues (figure 1; appendix pp 1–3). We searched Web of Science, Scopus, PubMed, Embase, Ovid, Global Health Online, EconLit, WestLaw, and Lexis on July 10, 2020, for studies assessing the impact of TIAs, and trade and investment policies that are common components of TIAs (eg, tariff changes), on health determinants and outcomes. We used various search terms (appendix p 4). We applied language and date restrictions to identify studies published in English from Jan 19, 2016 (the day after the previous search was completed), to July 10, 2020 (appendix p 2).

Studies were eligible for inclusion if they were quantitative empirical studies evaluating the effect of TIAs, or a trade or investment policy that is typically incorporated within TIAs (eg, tariffs and quotas), on a health determinant or outcome (appendix p 5). Qualitative studies were excluded as our aim was to quantify policy effects. Full-text eligibility assessment was performed by RS. PB independently assessed the eligibility of a sample of records (n=82) to ensure consistency in applying the exclusion criteria. We reviewed cited studies within included studies and consulted topic experts to identify additional articles (n=2).

Data extraction and synthesis

Two team members extracted the data and assessed risk of bias of included papers (RS and PB). The following information was obtained from each study following a predefined plan: study title, authors, journal, publication year, research question, study design, countries analysed, treatment and comparison groups, data sources, variable measurement, mediating or moderating variables, covariates, data analysis methods, results, and conclusions. We assessed scientific quality and risk of bias using the Effective Public Health Practice Project Quality Assessment Tool for Quantitative Studies. Methodological components and aggregated scores were categorised into three levels: strong, moderate, or weak (appendix p 6). We further analysed co-citation patterns. Co-citation patterns capture the extent to which sources are cited together by other documents and is a proxy for whether insights from different fields are being acknowledged collectively (appendix pp 7–9).

Data synthesis was performed after data extraction and quality rating. A meta-analysis was not possible due heterogeneity of methods and measures studied. We therefore conducted a thematic analysis of included studies, with a greater weight given to studies with higher quality scores than those with lower quality scores. Note that risk of bias across studies could arise due to selective reporting and publication bias.

Results

Our searches identified 28067 articles. After excluding duplicates and ineligible articles, we included 21 studies (figure 1; table). We searched Web of Science, Scopus, PubMed, Embase, Ovid, Global Health Online, EconLit, WestLaw, and Lexis on July 10, 2020, for studies assessing the impact of TIAs, and trade and investment policies that are common components of TIAs (eg, tariff changes), on health determinants and outcomes. We used various search terms (appendix p 4). We applied language and date restrictions to identify studies published in English from Jan 19, 2016 (the day after the previous search was completed), to July 10, 2020 (appendix p 2).

Studie...
<table>
<thead>
<tr>
<th>Country or countries</th>
<th>Years</th>
<th>Trade policy exposure</th>
<th>Outcome measure(s)</th>
<th>Outcome category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Son (2020)(^\text{22})</td>
<td>South Korea</td>
<td>2007–11, 2012–15</td>
<td>Korea-US FTA</td>
<td>Binary indicator of whether a drug approved in the USA was available in Korea; number of years between the US approval date and availability date on the Korean market</td>
</tr>
<tr>
<td>Panda (2020)(^\text{8})</td>
<td>30 LMICs in sub-Saharan Africa</td>
<td>2000–08</td>
<td>African Growth and Opportunity Act</td>
<td>Binary indicator of whether a mother’s child had died before their first birthday or not</td>
</tr>
<tr>
<td>Barlow (2020)(^\text{36})</td>
<td>65 LMICs</td>
<td>1996–2015</td>
<td>Tariff rate</td>
<td>Government spending on health care and services per capita, in US$</td>
</tr>
<tr>
<td>Barlow et al (2020)(^\text{36})</td>
<td>132 LMICs and HICs</td>
<td>2014–17</td>
<td>KOF index of tariff and non-tariff trade policy liberalisation</td>
<td>Binary indicators of whether an individual experienced moderate or severe food insecurity, based on an eight-point questionnaire</td>
</tr>
<tr>
<td>Fan et al (2020)(^\text{5})</td>
<td>China</td>
<td>1993–2011</td>
<td>WTO accession</td>
<td>Binary indicator of whether an individual has experienced illness or injury in the past 4 weeks or otherwise</td>
</tr>
<tr>
<td>Cowling et al (2020)(^\text{2})</td>
<td>10 LMICs and HICs with US FTAs</td>
<td>2002–16</td>
<td>US FTAs</td>
<td>Per capita sales of foods and beverages, in kg, grouped into three categories: ultra-processed, processed ingredients, minimally processed, and baby food</td>
</tr>
<tr>
<td>Schram (2020)(^\text{9})</td>
<td>16 LMICs and HICs with Australian FTAs</td>
<td>1988–2016</td>
<td>Australian FTAs</td>
<td>Volume of imports of alcohol products from Australia, binary indicator of whether the country imports any alcohol from Australia</td>
</tr>
<tr>
<td>Pierce and Shott (2020)(^\text{8})</td>
<td>USA</td>
<td>1990–2013</td>
<td>US Permanent Normal Trade Relations bill</td>
<td>Deaths per 100 000 inhabitants, in each county, disaggregated by cause, gender, and age group</td>
</tr>
<tr>
<td>Adjaye-Gbewonyo et al (2019)(^\text{6})</td>
<td>22 LMICs</td>
<td>1991–2010</td>
<td>Nominal Rate of Assistance to agricultural products that are considered tradable</td>
<td>Height-for-age BMI Z scores, weight-for-height BMI Z scores, and weight-for-age BMI Z scores</td>
</tr>
<tr>
<td>Werner et al (2019)(^\text{8})</td>
<td>6 LMICs in Central America</td>
<td>1990–2010</td>
<td>Dominican Republic-Central America FTA</td>
<td>Imports of meats, cereals, processed vegetables, oils, and sweetened beverages; share of household expenditure on food and beverages; and index of food price changes across principal food categories compared with general price inflation</td>
</tr>
<tr>
<td>Boysen et al (2019)(^\text{3})</td>
<td>101 LMICs</td>
<td>2007–13</td>
<td>Tariff rate</td>
<td>Prevalence of obesity, measured as the proportion of the adult population who were 18 years or older with a BMI ≥30 kg/m²; prevalence of underweight, measured as the percentage of the adult population who were 18 years or older with a BMI ≤19 kg/m²</td>
</tr>
<tr>
<td>Unar-Munguia et al (2019)(^\text{8})</td>
<td>Mexico</td>
<td>1961–2013</td>
<td>North American FTA</td>
<td>Per capita supply of sugar and sweeteners, in kcal per day; sugar and sweetener supply as a percentage of daily per capita food supplies</td>
</tr>
<tr>
<td>Cowling et al (2019)(^\text{2})</td>
<td>47 LMICs, UMICs, and HICs</td>
<td>1980–2013</td>
<td>WTO accession</td>
<td>Per capita supply, in g or kg, per year, of tobacco, alcohol, fruits and vegetables, nuts, seeds and legumes, seafood, red meats and animal fats, sugars, starches, and edible oils</td>
</tr>
<tr>
<td>Barlow (2018)(^\text{1})</td>
<td>36 LMICs</td>
<td>1963–2005</td>
<td>Wacziarg and Welch’s(^\text{1}) dichotomous indicator of trade liberalisation</td>
<td>Number of newborn babies per 1000 livebirths who died before age 5 years</td>
</tr>
<tr>
<td>Barlow et al (2018)(^\text{1})</td>
<td>Canada</td>
<td>1978–2006</td>
<td>Canada-US FTA</td>
<td>Per capita supply of caloric sweeteners including high-fructose corn syrup, in kcal per day; per capita supply of total sugars and sweeteners, in kcal per day</td>
</tr>
<tr>
<td>Olper et al (2018)(^\text{1})</td>
<td>41 LMICs</td>
<td>1960–2010</td>
<td>Wacziarg and Welch’s(^\text{1}) dichotomous indicator of trade liberalisation</td>
<td>Number of newborn babies per 1000 livebirths who died before age 5 years</td>
</tr>
</tbody>
</table>

(Table continues on next page)
two used binary indicators of trade liberalisation; two used composite measures of trade liberalisation; and one analysed a proxy for agricultural trade subsidies.

We discuss the studies in detail, grouped by outcome. Seven studies measured the direct effects of policies on health outcomes, of which four assessed child health outcomes (child mortality and nutrition); two examined workers’ health outcomes; and one assessed nutritive health among adults (overweight and obesity). 13 studies assessed indirect effects via changes to health determinants, including two on health care and access to medicines. 11 assessed non-communicable disease risks, with six focused on diets and food environments.

Turning first to child mortality, three strong documented decreases in child mortality following trade liberalisation or TIA ratification were recorded.8,34,37 One study analysing the effect of the African Growth and Opportunity Act in 2000–08, a US trade act affecting 30 sub-Saharan African countries, found that being born after the implementation of the act reduced the probability of infant and neonatal deaths by approximately 9–12%. The largest reductions were in countries with large exports of agricultural goods and mineral ores, in children who lived rurally, and in children whose mothers were uneducated and worked in agriculture or manual labour. Barlow34 further assessed the relationship between trade liberalisation and country-level child mortality rates in 36 low-income and middle-income countries (LMICs) in 1963–2005, and documented “no universal association” between these variables, with post-liberalisation changes in child mortality varying by about 40% across liberalisation episodes. Olper and colleagues37 similarly found that rates of child mortality varied substantially following liberalisation reforms.

<table>
<thead>
<tr>
<th>Country or countries</th>
<th>Years</th>
<th>Trade policy exposure</th>
<th>Outcome measure(s)</th>
<th>Outcome category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barlow et al (2017)34</td>
<td>Canada 1985-2000 North American FTA</td>
<td>Total supply of calories per capita, per day; imports of processed foods to Canada from the USA, in $; and US foreign direct investment in the Canadian food and beverage sector, in $</td>
<td>NCD risks: diets and food environment</td>
<td></td>
</tr>
<tr>
<td>Mendez Lopez et al (2017)37</td>
<td>44 LMICs 2003-14 Tariff rate</td>
<td>Per capita sales of sugar-sweetened beverages, in $; total imports of sugar-sweetened beverages, in $</td>
<td>NCD risks: diets and food environment</td>
<td></td>
</tr>
<tr>
<td>Ofa and Gani (2017)39</td>
<td>11 Pacific Island countries 2003-13 WTO membership, tariff rate</td>
<td>Per capita imports of processed foods, in kg, from each trade partner</td>
<td>NCD risks: diets and food environment</td>
<td></td>
</tr>
<tr>
<td>Baker et al (2016)37</td>
<td>Peru and Bolivia 1990–2013 US–Peru FTA</td>
<td>Per capita foreign direct investment inflows, in $; per capita soft drink imports, in L, and annual growth rate therein, in %; per capita sales of soft drinks, in litres, and annual growth rate therein, in %; and the volumes of sugar from soft drinks, in kg, and annual growth rate therein, in %</td>
<td>NCD risks: diets and food environment</td>
<td></td>
</tr>
</tbody>
</table>

BMI=body-mass index. FTA=free trade agreement. GDP=gross domestic product. HICs=high-income countries. LMICs=low-income and middle-income countries. NCD=non-communicable disease. UMICs=upper-middle-income countries. WTO=World Trade Organization.
Two strong studies assessed the relationship between trade policy and health outcomes related to nutrition, including in children. Adjaye-Gbewonyo and colleagues analyzed tariffs and subsidies, which can distort agricultural prices and are captured in the Nominal Rate of Assistance (NRA). The authors found that an increase in 5-year average NRAs was associated with improved child height-for-age and weight-for-age Z scores. Improvements were greatest among children with at least one parent earning wages in agriculture. Boysen and colleagues modeled the links between import tariffs on highly processed foods and the prevalence of both obesity and underweight among adults, finding that in middle-income countries in sub-Saharan Africa, a 1-00% increase in the tariff differential (larger tariffs on processed vs unprocessed foods) corresponded to a 0.18% decrease in obesity prevalence.

A further two strong studies assessed the effect of tariff changes on workers’ health. Fan and colleagues assessed changes in work-related injuries due to increased working hours as a result of expanding trade following China’s World Trade Organization (WTO) accession. The authors calculated exposure to changes in tariffs on inputs used by manufacturing firms, and found a 1.00 SD reduction in tariff exposure was associated with a 0.27 SD (7.6%) increase in the probability of reporting an illness or injury. However, tariff exposure correlated with a reduced probability of reporting illness or injuries among high-skilled workers and workers with the highest educational attainment. Pierce and Schott analyzed changing county-level mortality rates in the USA due to import competition with China, which affected local employment rates. The authors compared mortality rates among US counties with different degrees of exposure to imports affected by the removal of uncertainty over tariffs. They found that moving from the 25th percentile to the 75th percentile of increased exposure was associated with an increase in the annual mortality rate from drug overdoses of two to three deaths per 100,000 people in each year after the policy.

12 studies evaluated the effects of TIAs and trade liberalization policies on non-communicable disease risk factors. Studies of strong quality showed that implementing US free trade agreements (FTAs) was associated with increased supply and sales of ultra-processed foods and sugars. For example, one study found that supply and apparent consumption of high-fructose corn syrup tripled in Canada after a 5% import tariff was abolished as part of the 1994 North American FTA. Another study found that the Canada–US FTA in 1989 was followed by a 170 kcal/person per day increase in the number of calories in the Canadian food supply. However, there were three exceptions to a general pattern of increased availability of harmful foods. One study found that, following accession to WTO, member states experienced immediate increases in the domestic supply of fruits and vegetables of 55 g/person per day on average, compared with non-member countries. WTO membership was not associated with changes in supplies of red meats or edible oils, and changes in sugar availability were inconsistent across models. Another study identified a 122% increase in Peruvian soft-drink production after the US–Peru FTA, although overall sales of SSBs did not increase.

We identified one strong study which assessed the relationship between cross-sector trade liberalisation and food security and found that in high-income countries, liberalisation corresponded to reduced food insecurity, whereas in low-income countries, households in the lowest-income group were more likely to report food insecurity where trade policy was more liberal. A study of the Dominican Republic also found that consumers faced increasing household food expenditures following the Dominican Republic–Central America FTA.

Three studies of mixed methodological quality identified effects of alcohol and tobacco associated with TIAs or trade liberalization policies. Schram and colleagues found that implementing an FTA with Australia corresponded with a 65% increase in the share of Australian alcoholic beverage imports in partner countries’ total alcoholic beverage import supply. Cowling and colleagues further identified increases in the mean supply of tobacco per year (6.2%) and alcohol per year (3.6%) following WTO accession, compared with non-members. A further study by Appau and colleagues found mixed effects of trade liberalisation on tobacco investments and supply in sub-Saharan Africa, in 1990–2013. Finally, two studies rated as weak analyzed relationships between trade policy and outcomes related to health-care access and services. Son analyzed the...
association between the implementation of the Korea–US FTA and the time taken for new drugs approved in the USA to become available in Korea (the so-called drug lag). The study did not identify a statistically significant effect of the TIA on drug lag.22 A further study tested the hypothesis that tariff reductions correspond to declines in public-health expenditure via changes to government tax revenues. The authors found that tariff reductions corresponded to modest declines in government health expenditures in LMICs with a low capacity to levy alternative taxes, whereas health spending increased when countries had moderate to strong capacities to levy alternative taxes.23

Discussion

This systematic review has identified considerable variation in the estimated effect of TIAs on health and health determinants across outcomes, socioeconomic groups, and country contexts. Several studies showed that individuals with a higher level of education, higher-income groups, and individuals working in export sectors had health gains (eg, reduced food insecurity, reduced child mortality, and reduced injuries), whereas lower-income households, workers with a lower level of education, or workers in less competitive industries did not have these gains and had some health deteriorations (eg, injuries, drug overdoses).4,5,13,14 Improvements in aggregate child mortality rates and food insecurity were also apparent primarily in high-income and democratic countries, whereas some households in lower-income countries did not experience these benefits.4,14,15 TIAs were also associated with increases in the supply of alcohol and tobacco, and rising supply, imports, and sales of ultra-processed foods, SSBs, and sugars. Overall, a majority of included studies was rated as either strong (35%) or moderate (45%), and there was a moderately weak tendency for studies to cite studies published in journals in different disciplines.

The inclusion of new evidence from recent, high-quality, quasi-experimental studies in this field has generated new conclusions regarding the relationship between TIAs and health. First, in contrast to previous reviews, we identified studies examining a wide range of outcomes.16 We found that whether TIAs yielded changes that were beneficial or deleterious to health varied markedly according to the outcome studied.16 For example, some studies identified improvements in child health following TIA implementation, whereas other studies identified increased tobacco, sugar, and ultra-processed food sales following TIA implementation, especially US FTAs.16,24 Second, studies examined socioeconomic disparities and contextual differences in the effects of TIAs. For example, several studies documented associations between trade liberalisation and improvements in health or health determinants in relatively advantaged socioeconomic groups (eg, those with a higher level of education or those with higher income), whereas disadvantaged socioeconomic groups (ie, those with a lower level of education or those earning lower income) experienced harms.1,2,23 Each of these sources of heterogeneity shows that the nature, direction, and scale of TIAs and trade policy affect health determinants, and outcomes depend on the outcome under study, individual socioeconomic circumstances, and country context.

We acknowledge several limitations in this systematic review. First, meta-analysis was not feasible given the heterogeneity of methods, outcomes, and measures. Second, we restricted our analysis to quantitative studies. Qualitative studies have provided useful evidence on mechanisms underlying the effects of TIAs on health and health policy, including pressure to delay, change, or repeal various health policies to ensure alignment with trade obligations.3,4,5 Third, we measured transdisciplinary engagement using co-citation analysis, which might not fully capture the degree of interdisciplinary engagement. Fourth, our findings might not be fully representative due to publication bias.

For studies included in this Review, there were also methodological challenges. Researchers must necessarily rely on non-experimental observational analyses in the absence of feasible randomised experimentation of TIAs. Several studies exploited quasi-random trade policy assignment or exposure, or used other quasi-experimental methods to reconstruct counterfactual comparison units. Although these methods can address observed and sometimes unobserved confounding, they remain restricted in their capacity to account for all possible unknown factors (eg, coinciding policy changes).

There are also measurement challenges, even when stronger quasi-experimental designs are used. For example, some studies used sales indicators as proxy for consumption levels, and there are few cross-national comparative databases containing individual-level data. This challenge has limited studies’ capacity to link macro-level trade policy changes to individual outcomes and inequalities therein. Furthermore, researchers have typically focused their studies on a restricted range of outcomes associated with specific components of TIAs. Although this focus helped identify quasi-random exposure to trade policy, it precludes holistic assessments of the TIAs in question. Thus, although import competition from Chinese manufactures could be associated with drug overdoses as the USA liberalises trade with China, for example, there might be social benefits from expanding US service sector employment and exports to China that the same policy engenders.5

The findings and limitations of this systematic review identify important areas for future research on TIAs and health. There is a need for further improvements in cross-disciplinary engagement in this field to ensure future research tests hypotheses that appropriately integrate and advance research. There is also scope in this field for quasi-experimental studies to evaluate individual-level changes
to a wider range of outcomes (eg, tobacco, alcohol, and health-care access). Notably, we did not identify any studies assessing the effects of TIAs or trade liberalization policies on pollution and environment-related outcomes and pathways, although evidence elsewhere indicates possible effects. Further research is also needed to identify policy-relevant sources of heterogeneity in TIA effects, to the TIA modifications or concurrent interventions that might realise TIA benefits while preventing harms.

Taken together, the findings of this systematic review show that TIAs can have diverse effects on health, both for better and for worse, and these effects vary across contexts and socioeconomic groups. Our findings emphasise that, for any specific TIA, expected benefits (eg, economic growth) must be weighed against this evidence base and the varying effects of TIAs across socioeconomic groups that we identify. The effects of a TIA depend, at a minimum, on the provisions the TIA contains and the nature of the trade it affects. There should be no general statements about the effects of TIAs and no alternative to a detailed analysis of specific agreements.

Nonetheless, the evidence provided in this Review can inform national and global strategies to ensure health and trade policy goals are aligned, as we have identified how TIAs can create both opportunities and harms for health promotion. This evidence, in turn, supports a Health in All Policies approach to trade negotiations. There are opportunities for policy makers to align TIAs with health goals, such as reductions in child mortality. However, the adverse effects we identified (eg, on worker health) can have long-term, harmful consequences and can lead to rising health-care costs. Recognising the long-term economic effects of these harmful health consequences could provide an economic incentive for effective mitigation and could help to align the goals of trade policy making, which typically target economic outcomes, with health goals.

Action to raise the political priority and attention to health within trade policy will also be required. First, governance systems must ensure opportunities to protect and promote health are realised through cross-disciplinary engagement in trade policy scrutiny. Second, it might be fruitful to prevent adverse effects through changes to TIA design (eg, avoiding tariff reductions on unhealthy commodities) or policy mitigations (eg, increased access to social security). Third, reframing TIA evaluations using a human rights framework can draw attention to how the right to health under international law, including among children, can be either sustained or undermined by TIAs.

Contributors

PB, A-MT, AG, LAW, and MAM conceptualised the study and designed the methodology. RS conducted the literature searches, extracted the data, and conducted a preliminary analysis of the data. PB verified the literature searches, data extraction, and all data analysis. PB and RS wrote the initial draft of the paper. All authors reviewed and edited the final draft.

Declaration of interests

We declare no competing interests.

Acknowledgments

This work was supported by the UK Prevention Research Partnership (MR/S017535/1), which is funded by the British Heart Foundation, Cancer Research UK, Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Health and Social Care Research and Development Division (Welsh Government), Medical Research Council, National Institute for Health Research, Natural Environment Research Council, Public Health Agency (Northern Ireland), The Health Foundation, and Wellcome Trust. The funders had no role in the study design, data collection, data analysis, or writing of the report. All authors had full access to all the data and had final responsibility for the decision to submit for publication.

References

32 Unur-Munguia M, Flores EM, Colchero MA. Apparent consumption of caloric sweeteners increased after the implementation of NAFTA in Mexico. Food Policy 2019; 84: 103–10.

