Robust min-max model predictive vehicle platooning with causal disturbance feedback

Zhou, Jianshan, Tian, Daxin, Sheng, Zhengguo, Duan, Xuting, Qu, Guixian, Zhao, Dezong, Cao, Dongpu and Shen, Xuemin (2022) Robust min-max model predictive vehicle platooning with causal disturbance feedback. IEEE Transactions on Intelligent Transportation Systems. pp. 1-20. ISSN 1524-9050

[img] PDF (© 2022 IEEE) - Accepted Version
Download (7MB)


Platoon-based vehicular cyber-physical systems have gained increasing attention due to their potentials in improving traffic efficiency, capacity, and saving energy. However, external uncertain disturbances arising from mismatched model errors, sensor noises, communication delays and unknown environments can impose a great challenge on the constrained control of vehicle platooning. In this paper, we propose a closed-loop min-max model predictive control (MPC) with causal disturbance feedback for vehicle platooning. Specifically, we first develop a compact form of a centralized vehicle platooning model subject to external disturbances, which also incorporates the lower-level vehicle dynamics. We then formulate the uncertain optimal control of the vehicle platoon as a worst-case constrained optimization problem and derive its robust counterpart by semidefinite relaxation. Thus, we design a causal disturbance feedback structure with the robust counterpart, which leads to a closed-loop min-max MPC platoon control solution. Even though the min-max MPC follows a centralized paradigm, its robust counterpart can keep the convexity and enable the efficient and practical implementation of current convex optimization techniques. We also derive a linear matrix inequality (LMI) condition for guaranteeing the recursive feasibility and input-to-state practical stability (ISpS) of the platoon system. Finally, simulation results are provided to verify the effectiveness and advantage of the proposed MPC in terms of constraint satisfaction, platoon stability and robustness against different external disturbances.

Item Type: Article
Additional Information: © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Schools and Departments: School of Engineering and Informatics > Engineering and Design
SWORD Depositor: Mx Elements Account
Depositing User: Mx Elements Account
Date Deposited: 04 Mar 2022 10:17
Last Modified: 04 Mar 2022 11:13

View download statistics for this item

📧 Request an update