University of Sussex
Browse
s00429-021-02358-w.pdf (1.36 MB)

Dissecting whole-brain conduction delays through MRI microstructural measures

Download (1.36 MB)
journal contribution
posted on 2023-06-10, 02:18 authored by Matteo Mancini, Qiyuan Tian, Qiuyun Fan, Mara Cercignani, Susie Y Huang
Network models based on structural connectivity have been increasingly used as the blueprint for large-scale simulations of the human brain. As the nodes of this network are distributed through the cortex and interconnected by white matter pathways with different characteristics, modeling the associated conduction delays becomes important. The goal of this study is to estimate and characterize these delays directly from the brain structure. To achieve this, we leveraged microstructural measures from a combination of advanced magnetic resonance imaging acquisitions and computed the main determinants of conduction velocity, namely axonal diameter and myelin content. Using the model proposed by Rushton, we used these measures to calculate the conduction velocity and estimated the associated delays using tractography. We observed that both the axonal diameter and conduction velocity distributions presented a rather constant trend across different connection lengths, with resulting delays that scale linearly with the connection length. Relying on insights from graph theory and Kuramoto simulations, our results support the approximation of constant conduction velocity but also show path- and region-specific differences.

History

Publication status

  • Published

File Version

  • Published version

Journal

Brain Structure and Function

ISSN

1863-2653

Publisher

Springer

Issue

8

Volume

226

Page range

2651-2663

Event location

Germany

Department affiliated with

  • BSMS Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2022-01-14

First Open Access (FOA) Date

2022-01-14

First Compliant Deposit (FCD) Date

2022-01-14

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC