Five-axis contour error control based on spatial iterative learning

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/103769/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Five-axis contour error control based on spatial iterative learning

Jiangang Li, Senior Member, IEEE, Zhiyang You, Yanan Li*, Senior Member, IEEE, Enming Miao and Ruijie Yue

Abstract—In this paper, a contour error control strategy based on spatial iterative learning control (sILC) is developed for repetitive processing of five-axis computer numerical control (CNC) machine tools. A curve approximation method with an adaptive moving window is developed to achieve accurate tool position and orientation contour error estimation, and a five-axis contour error control strategy based on sILC is proposed. The compensation method is derived using an sILC algorithm to modify the geometric reference path instead of modifying the controller. The experimental results show that the proposed control strategy reduces contour errors of five-axis CNC machine tools, and it outperforms the traditional tracking error control.

Note to Practitioners—This paper aims to propose an effective five-axis contour error control scheme. At present, most of the five-axis contour error control methods rely on the modification of the controller, which is not allowed in commercial CNC systems. Therefore, we propose a five-axis contour error compensation algorithm based on sILC, which modifies the system’s reference path. Experimental results show that the proposed method can reduce the five-axis contour errors, while maintaining the machining efficiency.

Index Terms—Five-axis contour error estimation, spatial iterative learning control, five-axis contour error control

I. Introduction

Five-axis computer numerical control (CNC) machine tools are widely used in the processing of complex curved components in industries such as aerospace and marine. Achieving high-speed, high-precision contour control is one of the important goals of these applications. Due to fact such as mismatches of multiple axes, a contour error between the desired path and actual path is found to be inevitable at the tool tip. In recent decades, researchers have done lots of research in order to reduce the contour error [1], [2], [3].

One method to reduce the contour error is through reducing the single-axis tracking error, i.e. tracking control. Designing a controller to improve tracking accuracy is a common control problem in many fields [4], [5], [6], [7]. A sliding mode controller was introduced in [8], which reduced the tracking error of each axis when external disturbances such as friction and cutting force exist. For dismissing the adverse influences of cutting, friction force and parameter uncertainties, a closed-loop pole configuration controller with disturbance elimination was proposed in [9]. [10] presented a tracking error pre-compensation method based on feedforward friction compensation, which effectively improved the tracking accuracy of a single feed axis. However, in multi-axis machining, reducing the tracking error does not necessarily reduce the contour error [11], [12], and in some cases, it may even increase the contour error [1]. Therefore, the contour error control method is investigated to directly reduce the contour error during the machining process. [13] estimated the contour error using the linear relationship between the tracking errors, and designed a variable gain cross-coupling controller, thereby improving the estimation accuracy of some nonlinear trajectory contour error. [14] used the second-order Taylor series expansion to estimate the contour error as the shortest distance from the actual position to the desired path, and designed a controller based on closed-loop position control and cross-coupling control. [15] designed a contour error controller based on speed compensation with the idea of cross-coupling control.

Iterative learning control (ILC) has been successfully applied in many fields [16], [17], [18], [19]. It has been used for repetitive processing of CNC machine tools, which enables the controllers to learn information from previous iterations and update control inputs until the required accuracy is achieved. [20] proposed a contour error control method that combines cross-coupled ILC and single-axis ILC. [21] proposed command-based iterative learning control (cILC), which updated input commands without changing the original control structure. [22] proposed a contour error control method based on spatial iterative learning control (sILC), which transformed the tracking error in the time domain to the contour error in the spatial domain.

Five-axis machine tool is currently widely used in industry because of its flexibility [23], [24], where five-axis contour control is developed to reduce the machining error. [25] designed a double sliding mode controller to effectively reduce the five-axis contour errors. [26] considered the geometric characteristics of the five-axis
tool path with smooth corners to compensate for the contour errors in real time. [27] combined the proposed contour error estimation algorithm based on the three-point arc approximation with the contour error controller. [28] proposed to shape the trajectory to suppress residual vibration so as to compensate for the contour errors. [29] used the idea of model predictive control (MPC) to adjust the position point, retaining the axis speed and acceleration constraints. [30] proposed a command-based ILC for contour error control of five-axis machine tools. [31] proposed an off-line gain adjustment (OGA) method to reduce the contour error in five-axis machining.

In this article, five-axis contour error control based on spatial iterative learning is proposed to improve the repeated machining accuracy of five-axis NC systems. Compared with the above works, this study proposes a contour error estimation method based on the actual five-axis contour error definition [32] and a new five-axis contour error control strategy based on sILC. The reason for choosing the definition of actual contour error is that the iterative control is carried out in an off-line manner, and the contour error compensation depends on the modification of the reference position based on the desired position, rather than the actual position. Compared with the control method of modifying the controller parameters, the method of modifying the path can preserve the stability of the system and is applicable to most of the off-the-shelf systems. Compared with [28] that also modifies the reference path, we supplement the control of the tool orientation contour error. Different from [30] that also used ILC to control contour error, our sILC considers spatial nature of the contour error, and its convergence and stability will be proved. Finally, we compare the tracking error control with our sILC, whose superiority will be demonstrated by experimental results. We summarize three contributions of this work as follows:

1) A curve approximation method with an adaptive moving window is presented to achieve accurate tool position and orientation contour error estimation.

2) A five-axis contour error control strategy based on sILC is proposed to effectively control contour errors of five axes.

3) The comparative experiments using the tracking control and the contour control proposed in this article are implemented to verify the effectiveness of the proposed method.

In the second section, we improve a five-axis contour error estimation algorithm; in the third section, we describe the geometric reference path modification method based on sILC, and theoretically prove its convergence and stability; in the fourth section, we design comparative experiments using a five-axis machine tool to verify the effectiveness of the proposed method; finally, the fifth section summarizes this work.

II. Five-axis Contour Error Estimation

In five-axis CNC systems, the contour error includes the tool tip position error and tool orientation error. Both of these two errors will have a significant effect on the machining accuracy of the workpiece, so it is necessary to accurately estimate them.

For this purpose, an improved definition of five-axis contour errors is proposed in this paper based on [32], as illustrated in Fig. 1. \((P_d, O_d) \) are respectively the tool tip position and orientation coordinates on the desired path; \((P_c, O_c) \) are respectively the tool tip position and orientation coordinates on the actual path; \(P_c \) is the point closest to the desired position \(P_d; O_c \) is the tool orientation corresponding to the point \(P_c \) on the actual path; \(e_p \) is the tracking error; \(\varepsilon_p \) is the tool tip position contour error; and \(\varepsilon_o \) is the tool orientation contour error (the tool orientation contour error is regarded as the angle deviation between the tool axis vector \(O_c \) and the tool axis vector \(O_d \)).

![Fig. 1: Schematic diagram of five-axis contour error definition](image)

A. Tool Tip Position Contour Error Estimation

For the estimation of the tool tip position contour error, we search the closest point and calculate the tool tip foot point of the contour error vector. The specific estimation process is introduced as follows.

For any desired trajectory in space, the actual positions can be obtained after running of the CNC machine tool. As shown in Fig. 2, \(P_{t+i}, i \in [-3, 3] \) forms the desired path and \(P_{a+i}, i \in [-3, 3] \) forms the actual path. First, we search the actual position point \(P_a \) closest to the desired position point \(P_d \), and regard it as a temporary search point.

Then, we use a moving window to determine the search range around the temporary search point. If the moving window size is fixed, the above search method may not be applicable to the contour error estimation at the large curvature area on the path. As illustrated in Fig. 3, although \(|\overrightarrow{P_d P_a'}| < |\overrightarrow{P_d P_a}| \) where \(P_f, P_t \) are two points on the actual path, the contour error should be estimated as \(|\overrightarrow{P_d P_a}| \). To address this issue, a numerical algorithm based on an adaptive moving window is designed to search two
actual position points closest to the desired one. The time window size is set as \(n = \frac{\|P_aP_d\|}{P_aP_{a-1}} \). Then, according to the size of the moving window, the actual position point \(P_{a+j} \in [P_{a-n}, P_{a+n}] \) closest to the desired one \(P_d \) is found.

\[O \rightarrow \theta \rightarrow \epsilon \]

Fig. 2: Desired path and actual path for a five-axis machine tool

![Diagram showing desired path and actual path for a five-axis machine tool.](image)

Fig. 3: Illustration of wrong search at a large curvature area of the path

With \(P_{a+j} \), tool position contour error foot point \(P_c \) can be calculated. By connecting \(P_{a+j} \) with \(P_{a+j+1} \) and \(P_{a+j-1} \) respectively, two straight lines with lengths \(L_1 = \|P_{a+j-1}P_{a+j}\| \), \(L_2 = \|P_{a+j}P_{a+j+1}\| \) are obtained. Fig. 4 shows the line with \(L_1 \), while the line with \(L_2 \) is similar and thus omitted.

![Diagram showing calculation of tool position contour error foot point.](image)

With \(\|P_{a+j-1}P_d\|, \|P_dP_{a+j}\| \) and \(\|P_{a+j-1}P_{a+j}\| \) available, the values of angles \(\alpha_1 \) and \(\alpha_2 \) can be calculated by the vector angle formula. And then the coordinates of the foot point \(P_c \) can be obtained. To determine the foot point \(P_c \) of the line, we need to discuss the situations as follows:

Case 1: If \(\alpha_1 < 90^\circ \) or \(\alpha_2 < 90^\circ \), there is a foot point \(P_c \) on the line so that

\[
\begin{align*}
P_c &= P_{a+j} + \frac{|P_{a+j}P_d|}{|P_{a+j-1}P_{a+j}|}P_{a+j-1}P_d \\
&= P_{a+j} + \frac{|P_{a+j}P_d|}{|P_{a+j-1}P_{a+j}|}P_{a+j-1}P_{a+j}
\end{align*}
\]

Then, the coordinate of the foot point \(P_c \) can be calculated as

\[
P_c = P_{a+j-1} + \frac{|P_{a+j-1}P_d|}{|P_{a+j-1}P_{a+j}|}P_{a+j-1}P_{a+j}
\]

Case 2: If \(\alpha_1 = 90^\circ \) or \(\alpha_2 = 90^\circ \), then the foot point is \(P_{a+j-1} \) or \(P_{a+j} \).

Case 3: If \(\alpha_1 > 90^\circ \) and \(\alpha_2 > 90^\circ \), there is no foot point on the line.

If there are two foot points on both the lines with \(L_1 \) and \(L_2 \), then the foot point with a shorter distance to \(P_d \) is selected; if there is a foot point on only one line, then \(P_c \) is the foot point on this line; if there is no foot point on either \(L_1 \) or \(L_2 \), then \(P_{a+j} \) is regarded as \(P_c \).

With \(P_c \) found, the distance from \(P_d \) to \(P_c \) is calculated, which is the estimated tool tip position contour error \(\epsilon_p \).

B. Tool Orientation Contour Error Estimation

For a five-axis CNC machine tool, the machining contour of the workpiece is determined not only by the tool tip position but also by the tool orientation. Therefore, it is important to accurately estimate the orientation contour error, as explained in this section. Particularly, the tool orientation contour error is defined as the angle deviation between the tool axis vector at the tool tip foot point \(P_c \) and the desired tool axis vector in this paper. First, the position contour error estimation method in the previous subsection is used to find the tool axis vector \(O_c \) at the corresponding tool tip foot point \(P_c \). Then, with the given desired tool axis vector \(O_d \), we can calculate the tool orientation contour error \(\epsilon_o \), if the coordinates of the vector \(O_c \) are known, as shown in Fig. 5.

![Diagram showing estimation of tool orientation contour error.](image)

Mathematically, the tool axis vector \(O_c \) of the tool tip foot point \(P_c \) is calculated as follows:

\[
\begin{align*}
\vec{O}_{temp} &= \vec{O}_{a+j-1} + \frac{|P_{a+j-1}P_d|}{|P_{a+j-1}P_{a+j}|}(\vec{O}_{a+j-1} + \vec{O}_{a+j}) \\
\vec{O}_c &= \frac{\vec{O}_{temp}}{|\vec{O}_{temp}|}
\end{align*}
\]
where O_{a+j-1}, O_{a+j} are the tool axis vector coordinates corresponding to P_{a+i-1}, P_{a+i} on the actual path of the machine tool. Finally, the tool orientation contour error can be calculated as follows:

$$
\varepsilon_o = \arccos \frac{O_c \cdot \hat{O}_d}{|O_c||\hat{O}_d|}
$$

(4)

III. Spatial Iterative Learning Control

After obtaining two estimated contour errors, we design a contour error controller in this section. First, we present the overall control system. Then, we analyze its kinematics and dynamics models, based on which we develop a contour error compensation method by modifying the reference path using sILC.

A. Overall Control System

The control framework of the five-axis CNC machine tool is shown in Fig. 6, which includes four main modules. The first module reads the G code and generates the corresponding output-axis motion; the second module processes the collected data and uses the kinematics model and contour error estimation model to obtain the tool tip contour error and the tool orientation contour error; the third module reduces the contour error by updating the reference path; and the last module evaluates the performance of the CNC system in terms of contour error and reduces it iteratively until the requirement is met.

In the following, we will mainly focus on the kinematics and dynamics modeling, and based on that we will introduce the proposed sILC. It is noteworthy that the contour error is a concept in the spatial domain, so different from the ILC design in the time domain [30], our contour error controller will be developed in the spatial domain. As a result, the geometric reference path is modified to reduce the contour error.

B. Kinematics Modelling Analysis

Consider the kinematics model of a five-axis CNC machine tool as follows:

$$
x(t) = \psi(q)
$$

(5)

where $x(t) \in \mathbb{R}^6$ is the position/orientation coordinate of actual position point P_a in Cartesian space and $q \in \mathbb{R}^5$ is the coordinate in axis space. By differentiating (5) with reference to time, we can get:

$$
\dot{x}(t) = J(q)\dot{q}
$$

(6)

where $\dot{x}(t)$ is the velocity of actual position point P_a in Cartesian space and $J(q) \in \mathbb{R}^{6x5}$ is the Jacobian matrix. By further differentiating (6), we can get

$$
\ddot{x}(t) = J(q)\ddot{q} + J(q)\dot{q}
$$

(7)

\ddot{x} is the acceleration of actual position point P_a in Cartesian space, \dot{q} is the velocity and \ddot{q} is the acceleration in axis space.

Remark 1: Compared with [22], $x(t) \in \mathbb{R}^6$ includes not only the position but also the orientation. Moreover, the method in [22] only analyzes the dynamics model, while the method in this paper needs to combine kinematics and dynamics models for analysis.

C. Dynamics Modelling Analysis

The dynamics model of a CNC system in axis space can be described as follows:

$$
M(q)\ddot{x} + B(q, \dot{q})\dot{x} + F(q) = u + d
$$

(8)

where u is the control input and d is the unknown disturbance applied by the environment. $M(q), B(q)$ and $F(q)$ are the inertia, coefficients of viscous friction and coulomb friction, respectively.

(6) and (7) can be substituted into the dynamic model (8), so that we have the dynamic model of the five-axis CNC machine tool in Cartesian space, as shown below:

$$
M(q)\ddot{x} + B(q, \dot{q})\dot{x} + F(q) = u + d
$$

(9)

with $J^+(q)$ the pseudo inverse of $J(q)$.

Remark 2: Different from the case with a two or three axes as in [22], we need to introduce the pseudo inverse to establish the relationship between the axis space and Cartesian space.

According to [33], there are two properties:

- Property 1: Matrix $M(q)$ is symmetric and positive definite.

- Property 2: Matrix $2B(q, \dot{q}) - \dot{M}(q)$ is a skew-symmetric matrix, which satisfies $\dot{\xi}^T(2B(q, \dot{q}) - \dot{M}(q))\xi = 0, \forall \xi \in \mathbb{R}^6$.

Assumption 1: It is assumed that the unknown disturbance from the environment is $d = -\theta$, satisfying $\theta(s) = \theta(s - S)$, where s represents the displacement increment in the repetitive motion and S is the total length of a desired path in one iteration.

The designed controller consists of two parts, namely $u = u_1 + u_2$, where we use u_1 to compensate for the dynamics of the system as below:

$$
u_1 = M\ddot{x}_e + B\dot{x}_e + F
$$

(11)

where \ddot{x}_e is defined as an auxiliary variable, as follows:

$$
\ddot{x}_e = \ddot{x}_d - L\varepsilon, \varepsilon = x - x_d
$$

(12)

where x_d represents the coordinate of the desired position point P_d, ε is the position error and L is defined as a positive definite matrix. The other part of the controller u_2 is defined as follows:

$$
u_2 = -K [\dot{\varepsilon} + L(x - x_r)] = -K[e_o + L(x_d - x_r)]
$$

(13)

where $e_o = \dot{\varepsilon} + L\varepsilon$, x_r represents the coordinate of the reference position point P_r, and K is the position control loop gain.
By combining (9), (11) and (13), we have

\[M \dot{e}_v(t) + (B + K)e_v(t) = -KL(x_d - x_r) + d \] \hspace{1cm} (14)

From (14), it can be found that if the disturbance \(d\) is 0, when the desired reference position \(x_r\) is equal to the desired one \(x_d\), then \(e_v\) will converge to 0, further leading to \(\varepsilon = 0\). However, in practice, the disturbance \(d\) is generally not 0, so the reference position \(x_r\) needs to be adjusted so that the right half of (14) becomes 0 to achieve \(\varepsilon = 0\).

D. Time Domain To Spatial Domain Conversion

As we know, the contour error is a concept in space, but the dynamics model in (14) is in the time domain, so it needs to be converted to the spatial domain. Since time is previously defined as \(t\) and the movement increment is \(s\), we link them using the speed along the desired path \(v = \frac{ds}{dt}\). Therefore, we can get

\[\frac{d}{dt} = \frac{d}{ds} \frac{ds}{dt} = \frac{d}{ds}v \] \hspace{1cm} (15)

To facilitate the following analysis, we define spatial differentiation as

\[\nabla = \frac{d}{ds} \] \hspace{1cm} (16)

Then, by converting the model of error dynamics in (14) to the spatial domain, we can get a spatial error dynamics model as follows:

\[Mv \nabla e_v(s) + (B + K)e_v(s) = -KL[x_d(s) - x_r(s)] + d \] \hspace{1cm} (17)

where \(e_v(s)\) is the error in the spatial domain including the defined contour error \(\varepsilon(s) = x(s) - x_d(s)\). Therefore, minimization of \(e_v(s)\) can lead to minimization of the contour error, which can be achieved through the reference modification method described in the following subsection.

E. Reference Modification Method

According to (17), the contour error \(\varepsilon(s)\) can converge to 0 when \(KL(x_d-x_r) = d\). Therefore, in the \(i\)-th iteration \(x_r\) can be designed as below:

\[x_{r,i}(s) = x_d(s) + \frac{1}{KL} \hat{\theta}_i \] \hspace{1cm} (18)
which is equivalent to
\[x_{r,i}(s) = x_{r,i-1}(s) + \frac{1}{KL} \delta \theta_i \] (19)
where \(\hat{\theta}_i \) represents the estimate of \(\theta_i \) and will be updated iteratively as below:
\[\delta \theta_i = \hat{\theta}_i - \hat{\theta}_{i-1} = \alpha \varepsilon_{v,i}(s) \] (20)
where \(\alpha \) is a positive scalar and represents the learning rate.

According to (17) and (18), in the \textit{i}-th iteration we can get the error model as below:
\[Mv \nabla e_{v,i} + (B + K)e_{v,i} = \hat{\theta}_i \] (21)
where \(\hat{\theta}_i = \hat{\theta}_i - \hat{\theta}_i \). Furthermore, we can get
\[M \nabla e_{v,i} + \frac{1}{v} Be_{v,i} + \frac{1}{v} Ke_{v,i} = \frac{1}{v} \hat{\theta}_i \] (22)
From (22), it is easy to find that if \(\hat{\theta}_i = 0 \) then \(e_{v,i} \rightarrow 0 \) and thus \(\varepsilon \rightarrow 0 \) which means that the contour error can converge to 0. Therefore, updating \(\hat{\theta}_i \) aims at minimizing \(\hat{\theta}_i \), which can be achieved by minimizing the cost function as below:
\[J_e(s) = \frac{1}{2} \int_{s-S}^{s} \frac{1}{av} \hat{\theta}_i^2(\tau) d\tau \] (23)
Accordingly, when the following cost function \(J_e(s) \) is minimized, the contour error is minimized:
\[J_e(s) = \frac{1}{2} v c \hat{\theta}_i M e_{v,i} \] (24)
Therefore, we consider to combine \(J_e(s) \) and \(J_e(s) \). Then we have
\[J = J_e + J_e \] (25)
that will decrease as the number of iterations increases.

F. Convergence analysis

Considering the spatial derivative of \(J_e(s) \), we will get
\[\nabla J_e(s) = e_{v,i}^T M \nabla e_{v,i} + \frac{1}{v} e_{v,i}^T M e_{v,i} \] (26)
where we use the skew-symmetry property, i.e. \(e_{v,i}^T M e_{v,i} = 2v \hat{\theta}_i \). Considering (20), the above equation can be rewritten as
\[\nabla J_e(s) = e_{v,i}^T (M \nabla e_{v,i} + \frac{1}{v} Be_{v,i}) \] (27)
Then, the difference between \(J_e(s) \) of two consecutive iterations should be considered as below:
\[\Delta J_e = J_e(s) - J_e(s - S) = 1 \int_{s-S}^{s} \frac{1}{v} \hat{\theta}_i \hat{\theta}_i \] (28)
where we calculate
\[\frac{1}{v} \hat{\theta}_i \hat{\theta}_i - \frac{1}{v} \hat{\theta}_i \hat{\theta}_i = (\frac{1}{v} \hat{\theta}_i \hat{\theta}_i) \hat{\theta}_i - \frac{1}{v} \hat{\theta}_i \hat{\theta}_i = (\frac{1}{v} \hat{\theta}_i \hat{\theta}_i) \hat{\theta}_i - \frac{1}{v} \hat{\theta}_i \hat{\theta}_i \] (29)
which will lead to
\[J_i = 1 \int_{s-S}^{s} \frac{1}{v} \hat{\theta}_i e_{v,i} d\tau \] (30)
From (27), the variation of \(J_e(s) \) can be obtained as follows:
\[\Delta J_e = \int_{s-S}^{s} \frac{1}{v} e_{v,i}^T \hat{\theta}_i e_{v,i} d\tau \] (31)
By considering (30) and (31), we have
\[\Delta J = \Delta J_e + \Delta J_e \leq - \int_{s-S}^{s} \frac{1}{v} e_{v,i}^T \hat{\theta}_i e_{v,i} d\tau \] (32)
Because \(K \) is a positive scalar, we will get \(\Delta J \leq 0 \).
By (32), it has shown that, when increasing the number of iterations for \(s \in [0, S] \), the function \(J \) does not increase. Thus, if we can show that \(J \) is bounded in the first iteration, we will prove the boundedness of \(J \), i.e., \(J_{i=1} < \infty \).
We can consider the spatial derivative of \(J_{i=1} \) as below
\[\nabla J_{i=1} = \nabla J_e + \nabla J_e \] (33)
According to (32), we have
\[\nabla J_{i=1} \leq - \frac{1}{v} e_{v,i}^T K e_{v,i} \leq 0 \] (34)
Therefore, we integrate \(\nabla J_{i=1} \) from 0 to \(s \) and will obtain
\[J_{i=1} - J_{i=1}(0) \leq 0 \] (35)
It is known that \(e_{v,i}(0) \) and \(M \) are bounded, so according to (24) we can deduce that \(J_e(0) \) is also bounded. Since \(\theta \) is initialized as 0 before the first iteration and true values of parameters \(\theta \) and the displacement \(S \) are bounded, \(J_i(0) \) is bounded. Thus, we can get that \(J_{i=1}(0) \) is bounded, and so \(J_{i=1} \) can be inferred to be bounded.
Finally, according to (32), we get
\[\Delta J \leq - \int_{s-S}^{s} \frac{1}{v} e_{v,i}^T \hat{\theta}_i e_{v,i} d\tau \] (36)
From the above inequality, we can obtain
\[J - J_{i=1} \leq - \int_{s-S}^{s} \frac{1}{v} e_{v,i}^T \hat{\theta}_i e_{v,i} d\tau \] (37)
which will lead to
\[J_{i=1} \geq \int_{s-S}^{s} \frac{1}{v} e_{v,i}^T \hat{\theta}_i e_{v,i} d\tau \] (38)
Because \(J_{i=1} \) is bounded, we can get the conclusion that \(\| e_{v,i} \| \to 0 \) when the iteration number \(i \to \infty \).
and the resolution of the encoder of the rotating shaft is 32768p/r. On the control panel, the sampling frequency is 500Hz. The input of CNC machine tool is G code with G01, and it collects the reference and actual position data of each axis.

We use the following two error indicators to evaluate the effectiveness of the five-axis contour error control strategy:

1) $\varepsilon_{\text{max}} = \max |\varepsilon(s)|$, the maximum (MAX) absolute value of the two contour errors over the whole path for transient contouring performance evaluation.

2) $\varepsilon_{\text{rms}} = \sqrt{\frac{\sum_{n=1}^{N} \varepsilon^2(n)}{N}}$, the root mean square (RMS) value of the two contour errors $\varepsilon(s)$ for steady-state performance evaluation.

We use (20), (21) and (22) to update the reference path with a fixed learning rate α.

B. Experimental Results

![Fig. 8: Three-dimensional saddle surface path](image)

1) Contour Error Compensation on Saddle Surface Path: The saddle surface path shown in Fig. 8 is used in the first experiment. First, we use tracking error control to reduce contour error. When the default feed rate is 1000mm/min and $\alpha = 0.5$, the compensated reference path is converted into G code through the inverse kinematics and sent to the CNC machine tool. The contour error estimation result is shown in Fig. 9, showing that the tracking error control can effectively reduce the contour error.

It can be seen from Tab. I that after multiple iterations of compensation for the contour error, the MAX value of the tool tip position contour error is reduced from 8.656µm to 2.628µm, which is reduced by 69.64%; the RMS value of the tool tip position contour error is reduced from 5.380µm to 0.830µm, which is reduced by 84.57%; the MAX value of the tool orientation contour error is reduced from 3.29×10^{-3}rad to 3×10^{-3}rad, which is reduced by 90.88%; and the RMS value of tool orientation contour error is reduced from 2.993×10^{-4}rad to 7.043×10^{-6}rad, which is reduced by 97.65%.

Then, we implement the contour error control based on sILC proposed in this paper. With the default feed rate 1000mm/min and the iterative learning rate $\alpha = 0.5$, the experimental result is shown in Fig. 10. From Fig. 10(a), it is shown that after the first iteration, the tool tip position contour error and the tool orientation contour error have been significantly reduced, and after 7 iterations, the tool
Contour error (rad)

<table>
<thead>
<tr>
<th>Contour error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>2.5</td>
</tr>
<tr>
<td>3.5</td>
</tr>
</tbody>
</table>

Contour error (rad)

<table>
<thead>
<tr>
<th>Contour error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

Fig. 9: Tool tip position contour error (a) and tool orientation contour error (b) under tracking error control. 0, ..., 7 stand for the iteration number.

Fig. 10: Tool tip position contour error (a) and tool orientation contour error (b) under contour error control. 0, ..., 7 stand for the iteration number.

Compared with tracking error control, the results show the sILC control method performs better in contour error control, as further illustrated in Fig. 11.

2) Contour Error Compensation on Butterfly Path: Since the saddle surface path is relatively simple, the second experiment is designed with a more complex butterfly path. This path is based on the NURBS curve and projected onto the saddle surface to generate a five-axis butterfly tool path as shown in Fig. 12. In this case, we

set the default feed rate to 1500 mm/min and the iterative learning rate \(\alpha = 0.5 \).

The results of tracking error control are presented in Fig. 13. Moreover, Tab. II shows that after multiple iterations of compensation for the contour error, the MAX value of the tool tip position contour error is reduced from 8.656 \(\mu \)m to 2.399 \(\mu \)m, which is reduced by 72.29%; the RMS value of the tool tip position contour error is reduced from 5.380 \(\mu \)m to 0.755 \(\mu \)m, which is reduced by 85.97%; the MAX value of the tool orientation contour error is reduced from 3.29 \(\times \) 10\(^{-4}\) rad to 2.512 \(\times \) 10\(^{-5}\) rad, which is reduced by 92.36%; and the RMS value of tool orientation contour error is reduced from 2.993 \(\times \) 10\(^{-4}\) rad to 6.845 \(\times \) 10\(^{-6}\) rad, which is reduced by 97.71%.

The proposed contour error control method is verified, whose performance is illustrated in Fig. 14. Moreover, Tab. II shows that after multiple iterations of compensation for the contour error, the MAX value of the tool tip position contour error is reduced from 49.633 \(\mu \)m to 36.992 \(\mu \)m, which is reduced by 25.47%; the RMS value of the tool tip position contour error is reduced from 26.664 \(\mu \)m to 2.591 \(\mu \)m, which is reduced by 90.28%; the MAX value of the tool orientation contour error is reduced from 7.45 \(\times \) 10\(^{-4}\) rad to 4.45 \(\times \) 10\(^{-4}\) rad, which is reduced by 40.27%; and the RMS value of tool orientation contour error is reduced from 3.139 \(\times \) 10\(^{-4}\) rad to 3.782 \(\times \) 10\(^{-5}\) rad, which is reduced by 87.95%.

Then, the proposed contour error control method is verified, whose performance is illustrated in Fig. 14. Moreover, Tab. II shows that after multiple iterations of compensation for the contour error, the MAX value of the tool tip position contour error is reduced from 49.633 \(\mu \)m to 15.376 \(\mu \)m, which is reduced by 69.02%; the RMS value of the tool tip position contour error is reduced from 26.664 \(\mu \)m to 2.591 \(\mu \)m, which is reduced by 90.28%; the MAX value of the tool orientation contour error is reduced from 7.45 \(\times \) 10\(^{-4}\) rad to 4.45 \(\times \) 10\(^{-4}\) rad, which is reduced by 40.27%; and the RMS value of tool orientation contour error is reduced from 3.139 \(\times \) 10\(^{-4}\) rad to 3.782 \(\times \) 10\(^{-5}\) rad, which is reduced by 87.95%.

Fig. 13: Initial control error (a) and final control error (b) with sILC tracking error control and ILC contour error control.
reduced from 26.664μm to 0.896μm, which is reduced by 96.64%; the MAX value of the tool orientation contour error is reduced from 7.45 × 10^{-4}rad to 2.59 × 10^{-4}rad, which is reduced by 65.23%; and the RMS value of tool orientation contour error is reduced from 3.139 × 10^{-4}rad to 1.285 × 10^{-5}rad, which is reduced by 95.91%.

Furthermore, we compare the final performance of the two control methods, as illustrated in Fig. 15. From the comparison results, it can be seen that the control method proposed in this paper has better performance in control of both tool tip position contour error and tool orientation contour error.

3) Machining Efficiency: It is usually argued that high-speed and high-precision are two conflicting objectives, i.e. high-speed is achieved at the cost of low-precision and vice versa. In this section, we present preliminary experimental results to demonstrate that the proposed learning control strategy may resolve this issue and can realize high-speed, high-precision control.

With other settings kept the same as in the above experiments, we increase the feed rate to 3000mm/min (F3000) and the iterative learning rate α to 0.5. The tool tip position contour error and tool orientation contour error are compensated separately. After 6 iterations, we can get the final result as shown in Fig. 16.

The contour errors with the feed rate 1500mm/min without compensation (F1500) is also presented for comparison. In order to compare the performance in two conditions more clearly, the MAX and RMS values of the contour errors are summarized in Tab. III.

From Fig. 16 and Tab. III, it can be seen that after 6 iterations of learning control, the MAX value of tool tip position contour error is reduced by 26.98% compared with the MAX value tool tip position contour error with F1500 but without compensation. The RMS value of tool tip position contour error is reduced by 88.19%, the MAX value of tool orientation contour error is reduced by 18.06%, and the RMS value of tool orientation contour error is reduced by 84.94%. It is important to note that
Table II: Contour error comparison with two control methods for butterfly path

<table>
<thead>
<tr>
<th></th>
<th>$\varepsilon_{p,MAX}/\mu m$</th>
<th>$\varepsilon_{p,RMS}/\mu m$</th>
<th>$\varepsilon_{o,MAX}/rad$</th>
<th>$\varepsilon_{o,RMS}/rad$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial error</td>
<td>49.633</td>
<td>26.664</td>
<td>7.45×10^{-4}</td>
<td>3.139×10^{-4}</td>
</tr>
<tr>
<td>Error with ILC tracking error control</td>
<td>36.992</td>
<td>2.591</td>
<td>4.45×10^{-4}</td>
<td>3.782×10^{-5}</td>
</tr>
<tr>
<td>Error with sILC contour error control</td>
<td>15.376</td>
<td>0.896</td>
<td>2.59×10^{-4}</td>
<td>1.285×10^{-5}</td>
</tr>
</tbody>
</table>

Table III: Contour error comparison with F1500 and F3000

<table>
<thead>
<tr>
<th></th>
<th>$\varepsilon_{p,MAX}/\mu m$</th>
<th>$\varepsilon_{p,RMS}/\mu m$</th>
<th>$\varepsilon_{o,MAX}/rad$</th>
<th>$\varepsilon_{o,RMS}/rad$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1500</td>
<td>49.633</td>
<td>26.664</td>
<td>7.45×10^{-4}</td>
<td>3.139×10^{-4}</td>
</tr>
<tr>
<td>F3000</td>
<td>36.244</td>
<td>3.149</td>
<td>6.104×10^{-4}</td>
<td>4.727×10^{-5}</td>
</tr>
</tbody>
</table>

Fig. 14: Tool tip position contour error (a) and tool orientation contour error (b) of a butterfly path under contour error control. 0, ..., 6 stand for the iteration number.

Fig. 15: Tool tip position contour error (a) and tool orientation contour error (b) of a butterfly path after compensation by two control methods.

these reductions of contour errors are achieved with the machining efficiency doubled. Therefore, the proposed control strategy provides a solution for high-speed, high-precision machining, instead of finding a trade-off between efficiency and machining accuracy.

V. Conclusion

In this work, we analyze the characteristics of five-axis machine tools, and propose a five-axis contour error compensation strategy based on spatial iterative learning control (sILC). Then we consider the kinematics and dynamics of the five-axis machine tool, and theoretically prove the stability and convergence of the proposed compensation strategy. Finally, we verify the proposed compensation strategy by using a BC type five-axis CNC machine tool and compare the control result with the tracking error iterative learning control. The experimental results show that the contour error control method based on sILC can significantly reduce the five-axis tool tip position contour error and tool orientation contour error, while it maintains the machining efficiency. The method proposed in this article is an off-line control method, which can only be applied to repetitive machining tasks. For a new trajectory, the proposed method needs a new sILC process to achieve the control effect, making it time-consuming. Neural network is widely utilized for dynamics modeling and has been successfully applied in various
fields [35], [36], [37], [38]. In the future work, we will use neural network to establish the model of the machine tool, and then the proposed method will be applied to this model rather than the physical machine tool. This will greatly reduce the processing time if the accuracy of the model is high, and lead to online learning that is preferable for non-repetitive tasks.

References

S. Ge, T. H. Lee, and C. J. Harris, Adaptive Neural Network Control of Robotic Manipulators. WORLD SCIENTIFIC, 1998.

Enming Miao received the M.S. and Ph.D. degrees from the Hefei University of Technology, China, in 1999 and 2004, respectively. He is a professor in Mechanical Engineering and Automation at Chongqing University of Technology, Chongqing, China. He serves as the special Professor of Chongqing Bayu scholars and the Discipline Leader of Chongqing. He has published two monographs and more than 150 papers, obtained nine inventions and drafted 4 provincial and ministerial local standards. His research interests include precision control technology and robust modeling technology of intelligent manufacturing, functional measurement and control technology of numerical control equipment, remote operation and maintenance of equipment and accuracy theory.

Jiangang Li received the BEng, MEng, and PhD degrees from the Xi’an Jiaotong University, China, in 1999, 2002, and 2005, respectively. From 2007 to present, he has been an Associate Professor in control science and engineering with the School of Mechanical Engineering and Automation, Harbin Institute of Technology Shenzhen, China. From 2015 to 2016, he has been a Visiting Associate in computing and mathematical sciences with the California Institute of Technology. His general research interests include high speed and high performance control system design, motion control and motion planning.

Yan Li (S’10-M’14-SM’21) received the BEng and MEng degrees from the Harbin Institute of Technology, China, in 2006 and 2008, respectively, and the PhD degree from the National University of Singapore, in 2013. Currently he is a Senior Lecturer in Control Engineering with the Department of Engineering Design, University of Sussex, UK. From 2015 to 2017, he was a Research Associate with the Department of Bioengineering, Imperial College London, UK. From 2013 to 2015, he was a Research Scientist with the Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore. His general research interests include human-robot interaction, robot control and control theory and applications.

Ruijie Yue received the BEng degree from the Harbin Institute of Technology Weihai, Shandong, China, in 2020. She is currently working towards the MEng degree in the Harbin Institute of Technology Shenzhen, China. Her research interests include motion control and high-performance control system design.