University of Sussex
Browse
main.pdf (3.67 MB)

Non-Gaussianity in D3-brane inflation

Download (3.67 MB)
journal contribution
posted on 2023-06-10, 01:44 authored by Billy Marzouk, Alessandro Maraio, David SeeryDavid Seery
We update predictions for observables in the "delicate" D3/anti-D3 inflationary model on the conifold. We use a full CMB likelihood calculation to assess goodness-of-fit, which is necessary because in this model the zeta power spectrum often cannot be approximated as a power-law over observable scales. For the first time we are able to provide accurate forecasts for the amplitude of three-point correlations. In a significant portion of its parameter space the model follows Maldacena's single-field prediction fNL ~ -(5/12)(ns-1) if nt << 1. Therefore |fNL| is usually small when the power spectrum satisfies observational constraints. In a small number of cases the bispectrum is instead dominated by effects from rapid switching between angular minima. The resulting amplitudes are larger, but mostly with unacceptable spectral behaviour. In the most extreme case we obtain |fNLeq| ~ 75 at kt/3 = 0.002/Mpc. It has been suggested that the quasi-single field inflation ("QSFI") mechanism could produce significant 3-point correlations in this model. We do observe rare shifts in amplitude between equilateral and squeezed configurations that could possibly be associated with QSFI effects, but more investigation is needed to establish the full bispectrum shape. There is evidence of "shape" running between equilateral and squeezed configurations that may be inherited from the scale dependence of the spectrum. We explore the dependence of observables on discrete choices such as the truncation point of the potential. Our analysis illustrates the advantages of a standard format for information exchange within the inflationary model-building and testing community.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Journal of Cosmology and Astroparticle Physics

ISSN

1475-7516

Publisher

IOP Publishing

Volume

2022

Page range

1-71

Department affiliated with

  • Physics and Astronomy Publications

Research groups affiliated with

  • Astronomy Centre Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2021-11-15

First Open Access (FOA) Date

2023-02-10

First Compliant Deposit (FCD) Date

2021-11-12

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC