The investigation of diabetes in people living with HIV: a systematic review

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/102804/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
The investigation of diabetes in people living with HIV: A Systematic Review.

Harriet Daultrey¹, Elaney Youseff², Juliet Wright¹, Kevin Davies¹, Ali J. Chakera², Tom Levett¹.

¹ Brighton and Sussex Medical School,
² Brighton and Sussex University Hospital.

Corresponding author: Harriet Daultrey. H.daultrey@nhs.net

Word Count:
Abstract: 250 words.
Manuscript: 3875 words.

Conflicts of interest disclosures: nil.

Bulleted statement: 97 words

“what is already known?”
• Diabetes appears to be more common in people living with HIV (PLHIV).
• There is not an internationally agreed screening method for diabetes in PLHIV.
• Studies have suggested HbA1c to be falsely low in PLHIV.

“what this study has found?”
• OGTT is the most commonly used marker of glycaemia to diagnose diabetes and HbA1c to monitor diabetes.
• Not all studies follow WHO diagnostic criteria to diagnose diabetes.
• Studies suggest a discrepancy around the accuracy of HbA1c in PLHIV.

“what are the clinical implications of the study?”
• Future studies are required diagnosing diabetes using WHO criteria, and providing individual participant data on HbA1c and glucose, to address screening for diabetes in PLHIV.

Acknowledgements:

We would like to acknowledge the support from the Brighton and Sussex NHS Library Knowledge Service. The librarian Tom Roper who offered support with the literary search.
Abstract

Aims
HbA1c is reported to underestimate glycaemia in people living with HIV (PLHIV). There is not an internationally agreed screening method for diabetes. The primary aim was to identify which tests are performed to diagnose and monitor diabetes in PLHIV. Secondary aims were to identify if prevalence or incidence of diabetes differs according to marker of glycaemia and how figures compare in PLHIV compared to people without.

Methods
Electronic databases were searched for studies investigating diabetes in PLHIV, not pregnant, aged ≥18 years. Narrative analysis and descriptive statistics were used to describe which markers of glycaemia, and their frequency, were employed in the diagnosis and monitoring of diabetes in PLHIV. Diagnostic studies provided prevalence or incidence of diabetes.

Results
Forty-five of 1028 studies were included. Oral glucose tolerance test (OGTT), fasting glucose (FG), HbA1c and Fructosamine were used to investigate diabetes. Twenty-seven studies described diagnosing diabetes, 14 using OGTT, 12 FG, 7 HbA1c. All 18 studies monitoring diabetes used HbA1c. Prevalence ranged from 1.3-26% and incidence 2.9-12.8%. Studies using glucose and HbA1c reported HbA1c to diagnose fewer people with diabetes, monitoring studies found HbA1c to underestimate glycaemia levels. Controlled studies demonstrate diabetes was more common in PLHIV.

Conclusion
OGTT was used most frequently to diagnose diabetes, and HbA1c to monitor known diabetes. Prevalence and incidence varied depending on marker of glycaemia used. Studies reported a discrepancy in accuracy of HbA1c in PLHIV, to address this, well-designed, prospective studies, providing individual-level data on HbA1c levels and an additional marker of glycaemia in PLHIV are needed.

Key words
Diabetes, HIV, HbA1c, OGTT, Fasting glucose, diagnosis, monitoring.
Introduction

Current HIV care has progressed from managing disease related complications to the chronic care of long term conditions, such as diabetes, hypertension and cancer. Life expectancy for people living with HIV significantly improved with the development of antiretroviral therapies (ART).(1) Following the publication of the START trial in 2015(2), The World Health Organisation (WHO) announced a “treat all” recommendation; advising ART commencement at diagnosis irrespective of CD4 count.(3)

ART is often associated with the development of diabetes, though a recent meta-analysis found insufficient evidence of cause and effect(4) with studies suggesting the development of diabetes in people living with HIV follow more traditional risk factors.(5) The prevalence figures of type 2 diabetes in people living with HIV reported in the literature is highly varied.(6) A recent study in London presents an alarming figure of approximately 1 in 3 people living with HIV having pre-diabetes or established type 2 diabetes, with the authors urging for improvements in screening for diabetes.(7)

In order to screen for diabetes, the British HIV Association (BHIVA) recommend an annual HbA1c for all people living with HIV aged 40 years and over.(8) Contrasting BHIVA, the American Diabetes Association (ADA)(9,10) and European AIDS Society (EACS) do not advocate performing HbA1c and suggest a fasting glucose instead. This conflicting guidance stems from a series of studies identifying HbA1c to be falsely low in people living with HIV.(11–13)

The aim of this systematic review was to identify which tests are performed to both diagnose and monitor diabetes in people living with HIV aged 18 years and older, and to identify whether there is a preferred test. Secondary aims were to identify if prevalence or incidence of diabetes differs according to marker of glycaemia used and see if this differs in people living with HIV compared to people without HIV. This will provide an evidence-based summary of the literature that may guide decision making for a population with an increased risk of developing diabetes but no consensus on how to screen for diabetes.

Research Design and Methods.

This systematic review was performed in accordance with PRISMA guidelines focusing on identifying articles that specified the markers of glycaemia used to diagnose/monitor diabetes in people living with HIV. The protocol was registered with PROSPERO (registration number CRD42019135745).

Data sources and search strategy

The search strategy was initially performed in April 2019 and repeated, using the same search terms, in November 2019. The databases used were MEDLINE, Embase and Cochrane with search terms and database appropriate medical subject headings. See appendix 1 for the search terms used.

Eligibility Criteria

Studies included for the systematic review needed to meet the following criteria: primary research published from 2010 onwards, investigating diabetes in study participants that were aged >18 years with a diagnosis of HIV, and not pregnant. Studies with a control cohort without HIV were also included. The limitation for year of publication from 2010 onwards was introduced aiming to capture articles using standardised methods for measuring HbA1c (the ADA introduced HbA1c as screening
tool for diabetes in 2010 and WHO in 2011, with further justification that the ADA base their
guidance, discouraging the use HbA1c for screening diabetes in people living with HIV, on an article
published in 2009(11) enabling the review to summarise studies from this date.

For those studies measuring prevalence/incidence of diabetes the article needed to specify which
marker of glycaemia and diagnostic criteria were used for diabetes. Where this was unclear, or the
diagnosis was based on use of diabetes medications or clinical records, the article was excluded.
Studies that monitored people already diagnosed with diabetes needed to specify the marker of
glycaemia used to assess diabetes control.

Single case reports, conference abstracts and review articles were excluded. Due to restricted
resources, articles included were limited to those written in English. Justification for article exclusion
are documented in figure 1.

Study selection

Two reviewers, HD and EY, independently screened all titles and abstracts according to the pre-
specified inclusion and exclusion criteria. Full text articles were retrieved for those deemed relevant
or requiring further clarification, HD and EY again reviewed independently. Any disagreement on
article inclusion was discussed with AJC. Reference list of excluded articles were searched for
additional articles for inclusion.

Data extraction

Data extraction was performed on a pre-designed form. Studies were separated into diagnostic
studies in those without known diabetes, providing prevalence or incidence, and monitoring studies
in those with previously diagnosed diabetes. Data collected included: author, year of publication,
number of participants with HIV, study design, study location, mean/median age, ethnicity of
participants, marker of glycaemia used. Authors were contacted where clarification of methods or
additional data were needed.

Risk of Bias and Quality Assessment of Included Studies.

Studies were assessed for risk of bias using the Newcastle Ottawa score(NOS).(14) The NOS enables
the assessment of the quality of data from non-randomised studies. It uses a star system judging a
study from three broad perspectives: i) selection of study groups, ii) comparability of groups, iii)
ascertainment of outcome of interest for cohort studies. The higher the score the higher the quality
of the study, with maximum possible score of 9. A modified version, as used by Modesti et al,(15)
was created for cross sectional studies in order to ensure an equivalent scoring system. HD and EY
assessed included studies independently with any disagreement discussed and resolved.

Data analysis

A narrative analysis was planned. Descriptive statistics were used to describe which tests of
glycaemia, and their frequency, were employed in the diagnosis and monitoring of diabetes in
people living with HIV. Diagnostic studies provided study population level prevalence or incidence of
diabetes. A random-effects meta-analysis was used to generate a pooled diabetes prevalence with
corresponding 95% confidence intervals for each marker of glycaemia where there were sufficient
studies. Stata version 15 (StataCorp, College Station, USA) was used for all analyses. Meta-analyses
and pooled prevalence are only presented for markers of glycaemia where heterogeneity was
sufficiently low, denoted by an I² score below 75, which was found for oral glucose tolerance test
only. Where I^2 scores were above 75, sensitivity analyses were performed using random effects meta-analysis with the Stata metaprop command. The analysis of subgroups to explain observed heterogeneity considered the following additional factors: age (< 40 or ≥40), gender predominance (male versus female), country of origin (Sub-Saharan Africa versus other region), and high versus low/middle income country. These factors did not account for the observed heterogeneity. Therefore, meta-analyses were not used for other markers of glycaemia.

In order to assess if a preferred marker of glycaemia was used in the literature studies providing individualised data were analysed assessing the sensitivity and specificity of diagnosing diabetes using HbA$_1c$.

Results

The literature review found a total of 1028 articles of which 152 duplicates were removed alongside 171 published before 2010. 705 titles and abstracts were screened of which 351 failed to meet inclusion criteria. 354 full text articles were reviewed plus an extra 3 identified via reference searching totalling 357. Following full text review 309 articles were excluded. The details of study selection are illustrated in figure 1. A total of 45 studies were included for final analysis.

Quality of studies

Appendix 5 shows the quality assessment for included studies using the NOS. The median score was low at 4 (IQR 3-4) maximum available was 9. Studies scoring low were due to lack of control group and the fact that diagnosis of diabetes was based on a retrospective review of the glycaemia.

Study characteristics

From the 45 studies included, 27 studies described diagnosing diabetes with 4 reporting incidence (displayed in Appendix 2) and 23 reporting prevalence (displayed in Appendix 3) in people living with HIV. 18 studies described monitoring previously diagnosed diabetes (displayed in Appendix 4). The following study designs were included: 22 cross-sectional; 18 cohort studies; 4 retrospective chart reviews and 1 surveillance data linkage study. Thirteen of the 45 studies included a control group of people without HIV.

Almost all global regions were represented in this review with the majority conducted in the USA (20 studies) and Sub-Saharan Africa (11 studies). The average age of all participants ranged from 32-59 years.

The cut-off points to diagnose diabetes were the same in all studies: fasting glucose (FG) ≥7mmol/L (≥126mg/dL); HbA$_1c$ ≥48mmol/mol (≥6.5%); Oral glucose tolerance test (OGTT) 0-minute glucose ≥7mmol/L (≥126mg/dL) and/or 120-minute glucose ≥11.1mmol/l (≥200mg/dL).

Markers of glycaemia used in studies to investigate diabetes.

Table 1 displays the frequency that markers of glycaemia used within the studies to investigate diabetes. OGTT is the preferred test to diagnose diabetes and HbA$_1c$ is the preferred test to monitor diabetes in those with a prior diagnosis.

Studies recording prevalence of diabetes according to marker of glycaemia

Appendix 3 describes the 23 studies recording prevalence of diabetes in 30,008 people living with HIV. Six measured HbA$_1c$, 10 FG and 13 OGTT, there was a large variation in prevalence of diabetes
reported between studies. The highest prevalence of diabetes was in people living with HIV in Cameroon at 26% (16) (diagnosis based on a single fasting glucose). The lowest prevalence recorded was 1.3% (17) (diagnosis based on the 2-hour glucose value during an OGTT) in people living with HIV in the USA.

Table 2 displays the prevalence figures in studies according to marker of glycaemia.

Oral glucose tolerance test

Thirteen studies used OGTT to diagnose diabetes. The reported prevalence ranged from 1.3%-13.3%. 4/13 studies (12,17–19) specified that diagnosis derived from only the 120-minute glucose value. The remaining 9 articles used the WHO definition with 0-minute glucose and or the 120-minute value (20–28). The lowest prevalence of diabetes was reported by Kosmiski et al (17) in the USA who diagnosed diabetes only on the 120 minute value. The highest prevalence reported by Idiculla et al (21) in India who used the traditional OGTT diagnostic criteria.

Meta-analysis was performed for the 9 studies using WHO definition for diabetes using OGTT, this generated a pooled prevalence of 4% (95%CI 2-5) as shown in figure 2. Heterogeneity was acceptable, with I^2 70%, but was not reduced by sensitivity analysis accounting for age, gender, economic status/country study.

HbA1c

Six studies used HbA1c (>48mmol/mol (6.5%)) to diagnose diabetes. The prevalence ranged from 0%-8.4%. Coelho et al (12) did not diagnose anyone with diabetes using HbA1c despite FG and OGTT identifying cases of diabetes within the same population. The highest prevalence of diabetes using HbA1c was 8.4% recorded by Faurholt-Jepsen et al (19) in Ethiopia in a younger population with mean age of 32.9 years.

Meta-analysis was attempted, estimating a pooled prevalence of 5% (95% CI 3-6), but heterogeneity was too high with I^2 85.3% and did not reduce with sensitivity analysis so is not described further.

Fasting glucose

Ten studies used FG to diagnose diabetes. The prevalence ranged from 3.2%-26%. The 10 studies did not follow the same diagnostic criteria using FG, 1 study used x2 FG values (S60) to diagnose diabetes, 1 used a 3-month average of values (29) and the remaining 8 used only 1 FG value.

Meta-analysis was attempted estimating a pooled prevalence of diabetes using FG in people living with HIV of 9% (95% CI 6-12). Heterogeneity was too high with I^2 90.2% that did not reduce with sensitivity analysis so is not described further.

Studies reporting prevalence of diabetes using more than one marker of glycaemia in people living with HIV.

Four studies used HbA1c and glucose to diagnose diabetes. One study compared HbA1c to OGTT (25), one compared HbA1c to FG (29) and two studies used OGTT, FG and HbA1c (12,19). Prevalence based on HbA1c was lower compared to another marker of glycaemia in three of the four studies. The remaining study by Faurholt-Jepsen et al reported highest prevalence with HbA1c at 8.4%, compared to 6.6% for FG and 3% for OGTT.

Incidence of diabetes according to marker of glycaemia
Four studies measured incidence of diabetes in 12,280 people living with HIV over a follow up time ranging from 1.8-5 years. Table 2 describes the individual study characteristics. Two studies used FG(30,31), one study used HbA1c(32) and the other OGTT(33). Incidence of diabetes ranged from 2.9%(30) (diagnostic criteria x2 FG values) to 12.8%(33) (diagnosis based on OGTT).

Studies monitoring diabetes in participants with a known diagnosis

Eighteen studies monitored diabetes in 31,783 people living with HIV. Appendix 4 shows individual study characteristics. Seven studies included a control group of participants without HIV.

All 18 studies used HbA1c as a marker of glycaemia to monitor diabetes with studies using different HbA1c value thresholds to identify ‘control’ of diabetes, values ranged from HbA1c 7-9% defining ‘good/adequate/optimal’ control. 12 studies provided mean/median HbA1c levels on participants with HIV and type 2 diabetes with the average values ranging from 6.2-8.2%.

Studies using more than one marker of glycaemia to monitor diabetes in people living with HIV.

Six studies used fasting glucose as an additional marker of glycaemia(13,34–37) to monitor diabetes with one study(38) also using Fructosamine, five(13,34–37) included a control cohort of participants without HIV. Four of the controlled studies compared HbA1c and FG values. All reported a greater discrepancy between HbA1c and FG in people living with HIV compared to the control group. Khoza et al(34) found people living with HIV had a higher FG, by 4.4%, but HbA1c 2.8% lower in comparison to the control group. Slama et al(13) used multivariate median regression and found at a FG of 6.9mmol/l (125mg/dL) median HbA1c were 0.21% lower in HIV infected men compared to HIV uninfected men. Glesby et al(36) found women with HIV had an HbA1c 1.32% lower compare to an HIV uninfected woman with the same log fasting glucose concentration. Singh et al(37) quoted HbA1c to underestimate glucose by 1.5±0.2mmol/l (27±4mg/dl).

Sensitivity and specificity of HbA1c to diagnose diabetes when compared to other marker of glycaemia.

Two studies provided individual participant-level data on diabetes diagnosis by marker of glycaemia.(25,29) They calculated the sensitivity of HbA1c to diagnose diabetes in comparison to FG or OGTT. Both studies had a low sensitivity and high specificity for HbA1c to detect diabetes based on glucose criteria; Eckhardt(29) sensitivity 40.9%, spec 97.5% against fasting glucose; Nguyen(25) sensitivity 36.8%, specificity 99.1% against OGTT.

Prevalence of diabetes in people living with HIV compared to HIV-negative control group.

Seven studies(16,18,19,23,24,39,40) included an HIV negative control group, five(16,18,19,24,39) of which reported the prevalence of diabetes to be higher in people living with HIV (see table 2). Ngatchou et al(16) presented the greatest difference in prevalence figures between people living with HIV and the control group, 26% vs 1%. People living with HIV in this study were all ART naïve and diagnosis was based on a single FG value. The study was based in the Cameroon and the authors report the high prevalence of diabetes in people living with HIV to be in keeping with African ART naïve individuals. Two studies report prevalence of diabetes to be higher in the control group.(23,40)

Discussion

What markers of glycaemia are used in the literature to investigate diabetes?
This systematic review identified OGTT as the most frequently used method to diagnose diabetes and HbA1c the most frequently used test to monitor diabetes in people living with HIV. Of the 14 studies using OGTT to diagnose diabetes only 10 applied the WHO diagnostic criteria none of which specified if it was the 0-minute or 120-minute glucose value used to make the diagnosis. This information is important to determine underlying pathophysiology for the type of diabetes, something not understood in people living with HIV. Guidance for prevention of type 2 diabetes is derived from participants in studies with elevated 120 minute values on OGTT.(41,42) HbA1c is a more convenient test to perform but cost and laboratory availability may restrict usage in lower middle income settings (LMIC). Three out of the seven studies using HbA1c to diagnose diabetes in this review were based in LMIC (Sub-Saharan Africa). Two of the 18 studies monitoring diabetes were carried out in LMIC settings (South Africa and India). No study in this review used glycated albumin and only one study used Fructosamine to monitor diabetes control. Continuous glucose monitoring was used within the search terms but no studies were identified (as well as excluded studies) that investigated diabetes diagnosis or control using this method. Continuous glucose monitors (CGM) are becoming a recognised research tool with previous studies using CGM to specifically investigate HbA1c discrepancy in those with liver cirrhosis(43), cystic fibrosis(44) and people of different ethnicity.(45)

What are the prevalence figures of diabetes reported in this review?

The prevalence of diabetes presented in this review is highly varied. Depending on marker of glycaemia used prevalence ranged from 1.3-26%. Current global prevalence in the general population for all types of diabetes in those aged 20-79 years is estimated at 9.3%,(46) of which 90% will have type 2 diabetes. Due to the exclusion criteria removing studies where prevalence figures included a prior diagnosis of diabetes, or diagnosis based on usage of hypoglycaemic medication, prevalence figures in this review cannot be compared to the general population. The age of study participants also reduces generalisability. The average age of participants was 32-59 years, prevalence of diabetes increases with age, with the highest incidence of type 2 diabetes between the ages 45-64 in the US.(47) There is also an imbalance in ethnicity and study location with almost half of included studies performed in the USA, and almost a quarter in SSA. Certain ethnic groups have a higher risk for diabetes with highest prevalence in people of South East Asian or African origin and prevalence of diabetes reported at 4% in LMIC and 10.4% in high-income countries.(46)

Studies reporting the higher prevalence of diabetes (Ngathou(16) 26% and Ji(48) 22.2%) used only a single FG as their diagnostic criteria which goes against WHO diagnostic criteria requiring two FG values separated in time. The lowest prevalence (Kosmiski(17) 1.3% and Fauroholt-Jepsen(19) 3%) used OGTT but participants in these studies only had an OGTT performed if FG was <7mmol/l (<126mg/dl) therefore reporting only a subgroup of people.

What are the incidence figures of diabetes?

High incidence rates of diabetes were reported in this review ranging from 13-26.2/1000 person years of follow up (PYFU). It is not possible to explain the high incident rates, only four studies measured incidence and all based in different countries, using different diagnostic methods, with a wide range in population sizes (39-7177). Other studies recording an incidence rate of diabetes in people living with HIV that were not included in this review (diagnostic criteria included previous diagnosis of diabetes or usage of oral hypoglycaemic agents) range from 4.4-14.1/1000 PYFU. (49–S53). An estimation of incidence of diabetes in adults aged 18 and older in the US is 6.9/1000PYFU (95% CI 5.8-8.3).(47)

Does a particular marker of glycaemia report a higher prevalence of diabetes?
It was not possible to compare the pooled prevalence according to marker of glycaemia in this review due to the heterogeneity of included studies. Only four studies measuring prevalence of diabetes used more than one marker of glycaemia to diagnose diabetes. All four show that glucose diagnoses more people compared to HbA1c in people living with HIV. One study presented a higher prevalence of diabetes using HbA1c, although this observation is misleading. Within this cross-sectional study three markers of glycaemia diagnosed diabetes variably: HbA1c 8.4%, FG 6.6%, OGTT 3% however, not all participants included in the study had the same marker of glycaemia measured. An OGTT was only performed in those with an FG <7mmol/l, explaining the lower prevalence of diabetes compared to FG or HbA1c. By combining results for participants that had either a FG >7mmol/l or 2 hour OGTT >11.1mmol/l then prevalence increased to 9.6% versus 8.4% HbA1c. The remaining three studies found HbA1c diagnosed fewer people living with HIV with diabetes compared to a different marker of glycaemia. Coelho et al concluded HbA1c underestimates glycaemia levels in people living with HIV. Eckhardt et al recommend using FG and HbA1c in conjunction to screen for diabetes. Nguyen et al and Eckhardt et al suggest that an optimal cut-off for HbA1c to detect diabetes in people living with HIV is 5.8%.

The included studies investigating HbA1c for monitoring diabetes found HbA1c to be disproportionally low in people living with HIV. This supports the observation that HbA1c diagnoses fewer people with diabetes compared to glucose. Possible theories postulated for why HbA1c is falsely low in people living with HIV are based around the idea of subclinical haemolysis supported by observed higher MCV values and low haptoglobin levels in people living with HIV, with alternative explanations including an association with NRTI use.

The two studies in this review reporting individual participant data for HbA1c to diagnose diabetes compared to FG/OGTT report a low sensitivity (36.8 and 40%) and high specificity (97% and 99%). Comparing these results to a non-HIV population, a large study analysing 96 population-based health examination surveys where diagnosing diabetes was defined by HbA1c >6.5% calculated a pooled sensitivity of 52.8% (95% CI 51.3-54.3%) and pooled specificity of 99.74% (99.71-99.78%) compared to FG >7mmol/l. This study recommends the inclusion of FG in all studies using HbA1c in order to assess how the two tests relate. This advice is supported in a recent prospective study identifying undiagnosed diabetes within the general population.

Is diabetes more common in people living with HIV?

It is widely reported that diabetes is more common in people living with HIV supported by the fact that people living with HIV are screened for diabetes from the age of 40 in the UK, at the time of HIV diagnosis in Europe and from commencement of ART in USA. It was expected this review would report a higher prevalence of diabetes in people living with HIV compared to people without HIV. Seven studies include a control cohort, of which five report prevalence of diabetes higher in people living with HIV. Of the two papers reporting a higher prevalence in the control group, one(23) in South Africa did report prevalence of diabetes was higher in people living with HIV on 2nd line ART (5.6%) compared to the control group (4.9%), suggesting an association with type of ART and duration of HIV. They also found total ‘dysglycaemia’ (encompassing diabetes, impaired glucose tolerance, impaired fasting glucose) was higher in the HIV cohort 28% versus 18% in controls. The other study(40) in the USA reported prevalence using OGTT at 5.4% in people living with HIV versus 8.3% in the controls group, the authors attributing prevalence of diabetes to traditional risk factors. A recent meta-analysis looked at incidence and prevalence of type 2 diabetes in people living with HIV in SSA, although reporting high heterogeneity between included studies, they did not find an association between prevalence of diabetes and HIV infection (Risk ratio = 1.61, 95% CI 0.62-4.21, p=0.39).
What are the strengths and weaknesses of this review?

The strengths of this review include a comprehensive search strategy to capture all published studies investigating diabetes as part of their protocols, although some still could have been missed. Studies included had a standardised approach in the glycaemic markers used to diagnose diabetes enabling some comparison between studies regarding prevalence/incidence of diabetes. There are some limitations to this review. The methodology of studies included was highly varied with differences in population size, study location, age and gender of participants, although accounting for these factors did not lower heterogeneity. Finally adding a limit to year of publication meant some articles investigating diabetes in people living with HIV were excluded.

Conclusion

This review reports that the most commonly used marker of glycaemia for diagnosing diabetes in people living with HIV is OGTT, and HbA1c for monitoring known diabetes. Prevalence of diabetes is highly varied between studies depending on which marker of glycaemia is used. The majority of studies using fasting glucose to diagnose diabetes make a diagnosis on a single fasting sample, contrary to WHO guidance. The data from the controlled-studies suggests that diabetes is more common in people living with HIV.

The review re-enforces a discrepancy around the accuracy of HbA1c, suggesting it underestimates glycaemia in people living with HIV, demonstrated in both monitoring and diagnostic studies. HbA1c is currently recommended by BHIVA as an annual screening tool and this review highlights how results could be falsely reassuring. Well-designed, prospective studies, providing individual-level data on HbA1c levels and an additional marker of glycaemia in people living with HIV would further address the issue surrounding accuracy of HbA1c in people living with HIV.
Table 1. Frequency markers of glycaemia used in studies.

<table>
<thead>
<tr>
<th>Marker of glycaemia used</th>
<th>HbA1c</th>
<th>FG</th>
<th>OGTT</th>
<th>Fructosamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studies measuring incidence of diabetes n=4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Studies measuring prevalence of diabetes n=23</td>
<td>6</td>
<td>10</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Studies monitoring diabetes n=18</td>
<td>18</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>25</td>
<td>17</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2. Prevalence of diabetes according to marker of glycaemia used in each study.

<table>
<thead>
<tr>
<th>Study author, year, country</th>
<th>Sample size (n)</th>
<th>HbA1c</th>
<th>Fasting glucose</th>
<th>OGTT</th>
<th>Sample size (n)</th>
<th>HbA1c</th>
<th>Fasting glucose</th>
<th>OGTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coelho, 2018 Portugal</td>
<td>220</td>
<td>0</td>
<td>3.2</td>
<td>5.9*</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dave, 2011 South Africa</td>
<td>849</td>
<td>-</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Drobnik, 2017 USA</td>
<td>21,157</td>
<td>4.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Eckhardt, 2012 USA</td>
<td>395</td>
<td>4.6</td>
<td>5.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Faurholt-Jepsen, 2019 Ethiopia</td>
<td>332</td>
<td>8.4</td>
<td>6.6</td>
<td>3.0*</td>
<td>100</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gianotti, 2010 Italy</td>
<td>84</td>
<td>-</td>
<td>-</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Idiculla, 2011 India</td>
<td>60</td>
<td>-</td>
<td>13.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ji, 2019 Germany</td>
<td>63</td>
<td>-</td>
<td>22.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Jin, 2016 Germany</td>
<td>180</td>
<td>-</td>
<td>19.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kosmiski, 2011 USA</td>
<td>309</td>
<td>-</td>
<td>-</td>
<td>1.3*</td>
<td>187</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Levitt, 2016 South Africa</td>
<td>940</td>
<td>-</td>
<td>-</td>
<td>3.0</td>
<td>880</td>
<td>-</td>
<td>-</td>
<td>4.9</td>
</tr>
<tr>
<td>Maganga, 2015, Tanzania</td>
<td>301</td>
<td>-</td>
<td>-</td>
<td>9.3</td>
<td>153</td>
<td>-</td>
<td>-</td>
<td>5.2</td>
</tr>
<tr>
<td>Mohammed, 2015 Ethiopia</td>
<td>386</td>
<td>-</td>
<td>4.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ngatchou, 2013 Cameroon</td>
<td>108</td>
<td>-</td>
<td>26.0</td>
<td>-</td>
<td>96</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>Nguyen, 2019 South Africa</td>
<td>672</td>
<td>1.9</td>
<td>-</td>
<td>2.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pinto-Neto, 2013 Brazil</td>
<td>486</td>
<td>-</td>
<td>5.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Polsky, 2011 USA</td>
<td>222</td>
<td>-</td>
<td>-</td>
<td>5.4</td>
<td>155</td>
<td>-</td>
<td>-</td>
<td>8.3</td>
</tr>
<tr>
<td>PrayGod, 2017 Tanzania</td>
<td>273</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seang, 2016 USA</td>
<td>285</td>
<td>-</td>
<td>-</td>
<td>3.2*</td>
<td>105</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Shankalala, 2017 Zambia</td>
<td>270</td>
<td>-</td>
<td>5.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shen, 2013 China</td>
<td>2006</td>
<td>-</td>
<td>10.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sogbanmu, 2019 South Africa</td>
<td>330</td>
<td>6.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tan, 2015 Canada</td>
<td>80</td>
<td>-</td>
<td>3.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

* Diagnosis of diabetes made only on 120-minutes glucose value.
References

