University of Sussex
Browse
Sarmadian, Alireza.pdf (11.43 MB)

Thermal management of heat-generating automotive powertrain hardware using spray evaporative cooling

Download (11.43 MB)
thesis
posted on 2023-06-10, 01:09 authored by Alireza Sarmadian
Thermal management of heat generating powertrain hardware in automotive vehicles is examined using spray evaporative cooling, particularly taking account of the effect of vehicle vibration and agitation. The heat transfer characteristics of spray evaporative cooling of vibrating surfaces are important for both automotive and aerospace applications but this thesis content focuses on automotive applications involving highly-boosted IC engines, power electronics, batteries, and electrical machines. The fundamental physics of highly complex two-phase spray evaporative cooling is currently computationally intractable, therefore the thesis addresses (for the first time) construction and calibration of correlation models of spray evaporative cooling involving vibrating surfaces. Suitable correlation models are constructed using dimensional analysis involving the Generalized Buckingham ?-Theorem. Two nondimensional parameters are introduced in the form of Acceleration Number and Vibrational Reynold Number to account for dynamic effects resulting in models which accommodate the combined effects of vibration amplitude and frequency. The correlation models are fitted to experimentally-measured spray evaporative cooling data taken from an experimental test rig which includes instrumented test-pieces vibrated by a shaker to amplitudes and frequencies appropriate for real (on-road) vehicle conditions. The models provide dynamic predictions of heat flux in the nucleate boiling regime, and predictions of the Critical Heat Flux and its associated temperature. The experimental measurements alone show that dynamic effects do indeed influence heat transfer. Thermal management in the nucleate boiling regime using a feedback control system for flat and curved surfaces with, and without vibration, has been subsequently studied in the thesis using simulation and experimental hardware. The performance of a PID controller within a thermal management system has been examined using the calibrated correlation models to provide an approximate description of the ‘plant’ physics. A detailed examination is made of the effect of the PID controller gains on the performance of a thermal management system in terms of stability and practical response requirements with, and without vibration. The results of the study confirm that thermal management of heat-generating automotive powertrain hardware is a definite practical possibility using evaporative spray cooling.

History

File Version

  • Published version

Pages

308.0

Department affiliated with

  • Engineering and Design Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2021-09-24

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC