Association of age, antipsychotic medication, and symptom severity in schizophrenia with proton magnetic resonance spectroscopy brain glutamate level: a mega-analysis of individual participant-level data

Article (Published Version)

Merritt, Kate, McGuire, Philip K, Egerton, Alice, Aleman, André, Block, Wolfgang, Bloemen, Oswald J N, Borgan, Faith, Bustillo, Juan R, Capizzano, Aristides A, Coughlin, Jennifer Marie, De La Fuente-Sandoval, Camilo, Demjaha, Arsime, Dempster, Kara, Do, Kim Q, Stone, James et al. (2021) Association of age, antipsychotic medication, and symptom severity in schizophrenia with proton magnetic resonance spectroscopy brain glutamate level: a mega-analysis of individual participant-level data. JAMA Psychiatry, 78. pp. 667-681. ISSN 2168-622X

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/101818/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Association of Age, Antipsychotic Medication, and Symptom Severity in Schizophrenia With Proton Magnetic Resonance Spectroscopy Brain Glutamate Level
A Mega-analysis of Individual Participant-Level Data

Kate Merritt, PhD; Philip K. McGuire, FMedSci; Alice Egerton, PhD; and the 1H-MRS in Schizophrenia Investigators

IMPORTANCE Proton magnetic resonance spectroscopy (1H-MRS) studies indicate that altered brain glutamatergic function may be associated with the pathophysiology of schizophrenia and the response to antipsychotic treatment. However, the association of altered glutamatergic function with clinical and demographic factors is unclear.

OBJECTIVE To assess the associations of age, symptom severity, level of functioning, and antipsychotic treatment with brain glutamatergic metabolites.

DATA SOURCES The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 1H-MRS studies measuring glutamate (Glu) levels in patients with schizophrenia were contacted between January 2014 and June 2020 and asked to provide individual participant data.

STUDY SELECTION In total, 45 1H-MRS studies contributed data.

DATA EXTRACTION AND SYNTHESIS Associations of Glu, Glu plus glutamine (Glx), or total creatine plus phosphocreatine levels with age, antipsychotic medication dose, symptom severity, and functioning were assessed using linear mixed models, with study as a random factor.

MAIN OUTCOMES AND MEASURES Glu, Glx, and Cr values in the medial frontal cortex (MFC) and medial temporal lobe (MTL).

RESULTS In total, 42 studies were included, with data for 1251 patients with schizophrenia (mean [SD] age, 30.3 [10.4] years) and 1197 healthy volunteers (mean [SD] age, 27.3 [8.8] years). The MFC Glu (F1,1211.9 = 4.311, P = .04) and Glx (F1,1079.2 = 5.287, P = .02) levels were lower in patients than in healthy volunteers, and although creatine levels appeared lower in patients, the difference was not significant (F1,1395.9 = 3.622, P = .06). In both patients and volunteers, the MFC Glu level was negatively associated with age (Glu to Cr ratio, F1,3522.4 = 47.533, P < .001; cerebrospinal fluid–corrected Glu, F1,1216.7 = 5.610, P = .02), showing a 0.2-unit reduction per decade. In patients, antipsychotic dose (in chlorpromazine equivalents) was negatively associated with MFC Glu (estimate, 0.10 reduction per 100 mg; SE, 0.03) and MFC Glx (estimate, −0.11; SE, 0.04) levels. The MFC Glu to Cr ratio was positively associated with total symptom severity (estimate, 0.01 per 10 points; SE, 0.005) and positive symptom severity (estimate, 0.04; SE, 0.02) and was negatively associated with level of global functioning (estimate, 0.04; SE, 0.01). In the MTL, the Glx to Cr ratio was positively associated with total symptom severity (estimate, 0.06; SE, 0.03), negative symptoms (estimate, 0.2; SE, 0.07), and worse Clinical Global Impression score (estimate, 0.2 per point; SE, 0.06). The MFC creatine level increased with age (estimate, 0.2; SE, 0.05) but was not associated with either symptom severity or antipsychotic medication dose.

CONCLUSIONS AND RELEVANCE Findings from this mega-analysis suggest that lower brain Glu levels in patients with schizophrenia may be associated with antipsychotic medication exposure rather than with greater age-related decline. Higher brain Glu levels may act as a biomarker of illness severity in schizophrenia.
Glutamatergic dysfunction is implicated in the pathophysiology of schizophrenia, but the nature of this dysfunction may change over the course of illness. Aspects of glutamatergic dysfunction can be investigated in vivo using proton magnetic resonance spectroscopy (1H-MRS), which measures the total amount of intracellular and extracellular glutamate (Glu) in a predefined voxel of interest. Meta-analyses of 1H-MRS studies indicate that glutamatergic metabolites are elevated in patients with schizophrenia compared with healthy volunteers; however, a recent meta-analysis of 7-T MRS studies reports lower Glu levels in patients, and individual studies show variable results. This heterogeneity may be associated with factors such as age, illness duration, symptom severity, illicit substance use, and antipsychotic medication exposure, which vary between cohorts. The associations of such factors are best examined in large data sets incorporating patients across different stages of illness.

There is some indication that elevations in 1H-MRS glutamatergic metabolite levels may be most apparent in early psychosis but reduced in chronic schizophrenia. This finding may be associated with the expression of dysfunctional compensatory processes that emerge secondary to the illness but may also be associated with other factors (eg, divergence from normal aging processes or medication exposure lasting many years). Large studies have not yet reached a consensus on the associations of aging with Glu levels in patients with schizophrenia. An age-related decrease in medial frontal cortex (MFC) Glu level has been observed in both patients and healthy volunteers, but these findings were not replicated by another large study. Alternatively, metaregression analysis has detected accelerated MFC glutamatergic reductions in patients with schizophrenia compared with healthy volunteers, but this finding was not apparent in a more recent analysis. Metaregression analyses are limited to using group mean data extracted from individual studies, and thus it is difficult to disentangle age-dependent associations from other clinical factors that correlate with age, such as the duration of illness or the duration of antipsychotic treatment. Indeed, a number of longitudinal studies have reported reductions in brain glutamatergic metabolite levels following antipsychotic treatment in the frontal and temporal lobes among other regions.

There is also a lack of consensus about whether brain glutamatergic metabolite levels are associated with symptom severity and global functioning. A systematic review found inconsistent evidence to correlate Glu levels to symptom severity, although many studies were limited by small sample sizes of patients with similar symptom profiles. Individual studies comparing symptomatic and nonsymptomatic patients have reported higher Glu plus glutamine (Glx) levels in the symptomatic group and elevated Glu levels in nonremitted patients compared with remitted patients. However, age may confound these associations if patients with more severe symptoms are younger.

With the aim of better characterizing glutamatergic dysfunction in schizophrenia, we conducted a meta-analysis of individual participant-level data examining the associations of age, antipsychotic medication exposure, diagnosis, symptom severity, and functioning with 1H-MRS measures of glutamatergic metabolite levels. We hypothesized that (1) glutamatergic metabolite levels would decrease in association with age in both healthy volunteers and patients; (2) glutamatergic metabolite levels would be associated with a decrease in the context of higher antipsychotic medication doses; (3) glutamatergic metabolite levels would be lower in patients than in healthy volunteers; and (4) more severe symptoms and worse global functioning would be associated with higher Glu levels. In addition, we tested the assumption that these factors are not associated with the combined creatine and phosphocreatine signal (Cr) because Glu is commonly reported in ratio to Cr for analyses.

Methods

The MEDLINE database was searched to identify journal articles published between January 1, 1980, and June 3, 2020, using the following search terms: MRS or magnetic resonance spectroscopy and (1) schizophrenia or (2) psychosis or (3) UHR or (4) ARMS or (5) ultra-high risk or (6) clinical high risk or (7) genetic high risk or (8) prodrome* or (9) schizoaffective. Authors of 1H-MRS studies were contacted at least twice between January 2014 and June 2020 to request anonymized participant-level 1H-MRS metabolite data, which included levels of Glu, glutamine, Glx, and Cr and 1H-MRS glutamatergic metabolite levelswerelowerinpatientsandnegativelyassociatedwiththedoseofantipsychotic medication, although a reduction in glutamatergic levels with age was not accelerated in patients with schizophrenia compared with healthy individuals. Higher medial frontal cortex and medial temporal lobe glutamate levels were associated with more severe symptoms in patients with schizophrenia.

Key Points

Question Are clinical and demographic factors associated with brain glutamate or glutamate plus glutamine (Glx) levels in schizophrenia?

Findings In this mega-analysis of 1251 patients with schizophrenia and 1197 healthy volunteers, medial frontal cortex glutamatergic metabolite levels were lower in patients and negatively associated with the dose of antipsychotic medication, although a reduction in glutamatergic levels with age was not accelerated in patients with schizophrenia compared with healthy individuals. Higher medial frontal cortex and medial temporal lobe glutamate levels were associated with more severe symptoms in patients with schizophrenia.

Meaning Lower brain glutamate levels may be associated with antipsychotic exposure rather than with greater age-related decline, whereas higher glutamate levels may serve as a biomarker of illness severity in patients with schizophrenia.
and 20 studies examined patients with established schizophrenia.5,14,25,35,36,38–40,44,54–63 Four studies did not include healthy volunteer data.24,32,61,64

Association of Demographic and Clinical Factors With Cr Level

In the MFC, Cr levels increased with age ($F_{1,1299.1} = 20.678$, $P < .001$; $n = 1417$) (Figure 1) at a rate of 0.2 units per decade (SE = 0.05). This association did not differ between patients and healthy volunteers (Table I). In the MTL, there was no association between Cr level and age. There were no significant associations of Cr level with CPZEdose, PANSS total symptoms, or GAF score in either the MFC or MTL.

Association of Age and CPZDose With Glutamatergic Metabolite Levels

Duration of illness was associated with age and therefore was not included in the model. Age was not significantly associated with CPZEdose (eTable 2 in the Supplement).

Across all participants, MFC Glu levels decreased with age (Glu to Cr ratio: $F_{1,1522.4} = 47.533$, $P < .001$; $n = 1534$; CSF-corrected Glu level: $F_{1,1236.9} = 5.610$, $P = .02$; $n = 1226$) (Figure 1). The Glu to Cr ratio decreased by 0.04 units per decade (SE = 0.006), and CSF-corrected Glu levels decreased by 0.2 units per decade (SE = 0.07). There was no interaction between age and group (Table I). The MFC Glx to Cr ratio also decreased with age ($F_{1,1345.4} = 15.685$, $P < .001$; $n = 1357$), by 0.04 units per decade (SE = 0.01). The MFC CSF-corrected Glx level was not significantly associated with age.

Both the MFC CSF-corrected Glu and CSF-corrected Glx levels were negatively associated with CPZEdose (CSF-corrected Glu level: $F_{1,269.9} = 7.583$, $P = .006$, $n = 276$; CSF-corrected Glx level: $F_{1,251.9} = 6.326$, $P = .01$, $n = 259$) (Figure 2). The CSF-corrected Glu level decreased by 0.10 per 100 mg of the CPZEdose (SE = 0.03), and the CSF-corrected Glx level decreased by 0.11 per 100 mg of the CPZEdose (SE = 0.04). The associations of the CPZEdose with the Glu to Cr and Glx to Cr ratios were nonsignificant.

When assessing the association of age with CPZEdose in the same model, the model combining age and CPZEdose best estimated the MFC CSF-corrected Glu level (Table I). In contrast to the MFC, in the MTL, the Glx to Cr ratio was not significantly associated with age ($n = 143$ patients with schizophrenia, $n = 151$ healthy volunteers) or with CPZEdose ($n = 94$). There were insufficient data to examine the Glu to Cr ratio, the CSF-corrected Glu level, or the CSF-corrected Glx level in the MTL.

Associations With Group

Both MFC CSF-corrected Glu and CSF-corrected Glx levels were lower in the schizophrenia group compared with the healthy volunteer group while controlling for age ($F_{1,1221.9} = 4.311$, $P = .04$, $n = 596$ healthy volunteers, $n = 630$ patients with schizophrenia; $F_{1,1079.2} = 5.287$, $P = .02$, $n = 519$ healthy volunteers, $n = 573$ patients with schizophrenia) (Table I). There was no association of group with MFC Glu to Cr ratio or Glx to Cr ratio. However, although not statistically significant, MFC Cr levels were lower in patients com-
pared with healthy volunteers while controlling for age ($F_{1,1395.9} = 3.622, P = .06, n = 712$ healthy volunteers, $n = 705$ patients with schizophrenia). In the MTL, the Cr level and the Glx to Cr ratio did not differ between patients and healthy volunteers.

Association Between Glutamatergic Metabolite Levels and Symptom Severity

The PANSS total, positive, general, and negative subscores were all intercorrelated (eTable 2 in the Supplement); therefore, the initial model examined the PANSS total score. When significant, follow-up analyses investigated the PANSS positive score and the PANSS negative score in 1 model.

The MFC Glu to Cr ratio was positively associated with the PANSS total score ($F_{1,659.1} = 5.819, P = .02, n = 668$) (Figure 3). The Glu to Cr ratio increased by 0.01 per 10 points on the PANSS scale (SE = 0.005). Subsequent analysis found a positive association between the Glu to Cr ratio and the PANSS positive score ($F_{1,615.7} = 4.382, P = .004, n = 625$), whereby the Glu to Cr ratio increased by 0.04 per 10 points (SE = 0.02). The PANSS negative score was nonsignificant.

The MFC Glu to Cr ratio was negatively associated with the GAF score ($F_{1,171.8} = 13.152, P < .001, n = 178$) (Figure 3), such that the Glu to Cr ratio increased by 0.04 per 10-point reduction on the GAF scale (SE = 0.01). There were no associations of CSF-corrected Glu or Glx level with the PANSS total or GAF score (Table 2).

The MTL Glx to Cr ratio was positively associated with the PANSS total score ($F_{1,128.7} = 4.508, P = .04, n = 132$) (Figure 3). The Glx to Cr ratio increased by 0.06 per 10 points.
Table 1. Association of Age and Antipsychotic Medication With Glutamatergic Metabolite Levels and Total Creatine Plus Phosphocreatine Levels in Patients and Healthy Volunteers

<table>
<thead>
<tr>
<th>Brain region and source</th>
<th>P or HV, No.</th>
<th>Metabolite, estimated mean (SE)</th>
<th>Clinical variable, mean (SD)</th>
<th>Model 1: main effects</th>
<th>Model 2: interaction effects (age × diagnosis or CPZE dose × age)</th>
<th>Model comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial frontal cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 Studies</td>
<td>HV: 9.37 (0.57)</td>
<td></td>
<td>Hispanic CPZE: 2.0277, p < .0005</td>
<td>Hispanic CPZE: 0.042, p < .84</td>
<td>Model 2: 304.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 3.622, p < .06</td>
<td>Hispanic CPZE: 0.754, p < .38</td>
<td></td>
</tr>
<tr>
<td>Glutamate, Cr-scaled</td>
<td>P: 283</td>
<td>CPZE</td>
<td></td>
<td>Hispanic CPZE: 2.179, p < .04</td>
<td>Hispanic CPZE: NA</td>
<td>Model 1: 314.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 1.278, p < .005</td>
<td>Hispanic CPZE: 1.278, p < .005</td>
<td>Model 2: 315.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 9.43, p < .004</td>
<td>Hispanic CPZE: 9.43, p < .004</td>
<td>Model 3: 303.3</td>
</tr>
<tr>
<td>Glutamate, CSF-corrected</td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Model 1: 314.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Model 2: 315.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 9.43, p < .004</td>
<td>Hispanic CPZE: 9.43, p < .004</td>
<td>Model 3: 303.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Model 1: 314.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Model 2: 315.3</td>
</tr>
<tr>
<td>Gtx, Cr-scaled</td>
<td>P: 324</td>
<td>CPZE</td>
<td></td>
<td>Hispanic CPZE: 2.133, p < .04</td>
<td>Hispanic CPZE: 2.133, p < .04</td>
<td>Model 1: 324.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 2.133, p < .04</td>
<td>Hispanic CPZE: 2.133, p < .04</td>
<td>Model 2: 315.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Hispanic CPZE: 0.971, p < .001</td>
<td>Model 3: 303.3</td>
</tr>
</tbody>
</table>

(continued)
Association of Age, Antipsychotic Medication, and Symptoms With Brain Glutamate Level in Schizophrenia

Table 1. Association of Age and Antipsychotic Medication With Glutamatergic Metabolite Levels and Total Creatine Plus Phosphocreatine Levels in Patients and Healthy Volunteers (continued)

<table>
<thead>
<tr>
<th>Brain region and source</th>
<th>P or HV, No.</th>
<th>Metabolite, estimated mean (SE)</th>
<th>Clinical variable, mean (SD)</th>
<th>Model 1: main effects</th>
<th>Model 2: interaction effects (age × diagnosis or CPZE dose + age)</th>
<th>Model comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glx, CSF-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Studies6,7,11</td>
<td>P: 573</td>
<td>Age 16.85 (1.04)</td>
<td>Age 30.48 (10.57)</td>
<td>Age $F_{1,1082.5} = 0.631, P = .43$ Diagnosis $F_{1,1077.6} = 1.321, P = .25$ Age × diagnosis $F_{1,1076.8} = 0.181, P = .67$</td>
<td>Model 1: 5615.3 Model 2: 5617.1</td>
<td></td>
</tr>
<tr>
<td>9 Studies6,13,14</td>
<td>P: 259</td>
<td>Age 15.80 (1.45)</td>
<td>Age $F_{1251.1} = 6.326, P = .01$ Est (SE) = 0.0011</td>
<td>NA</td>
<td>Model 1: 6051.3 Model 2: 5605.1</td>
<td></td>
</tr>
<tr>
<td>Medial temporal lobe Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Studies6,40,43</td>
<td>P: 120</td>
<td>Age 5.15 (1.09)</td>
<td>Age $F_{1,270.5} = 1.738, P = .19$ Diagnosis $F_{1,270.1} = 0.036, P = .85$ Age × diagnosis $F_{1,270.2} = 0.022, P = .88$</td>
<td>Model 1: 731.91 Model 2: 733.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Studies6,52,53</td>
<td>P: 68</td>
<td>CPZE 400.48 (42.49)</td>
<td>CPZE $F_{1,65.1} = 1.278, P = .26$ Est (SE) = 0.0011</td>
<td>NA</td>
<td>Model 1: 5605.3 Model 2: 5605.1</td>
<td></td>
</tr>
<tr>
<td>Glx, Cr-scaled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Studies6,40,43</td>
<td>P: 143</td>
<td>Age 1.90 (0.14)</td>
<td>Age $F_{1,291.7} = 2.074, P = .15$ Diagnosis $F_{1,290.6} = 0.396, P = .53$ Age × diagnosis $F_{1,288.9} = 0.494, P = .48$</td>
<td>Model 1: 352.46 Model 2: 353.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Studies6,52,53</td>
<td>P: 94</td>
<td>CPZE 237.49 (157.83)</td>
<td>CPZE $F_{1,65.1} = 1.278, P = .26$ Est (SE) = 0.0011</td>
<td>NA</td>
<td>Model 1: 342.46 Model 2: 341.96</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: AIC, Akaike information criterion; CPZE, chlorpromazine equivalent dose; Cr, creatine plus phosphocreatine; CSF, cerebrospinal fluid; Est, estimate; Glx, glutamate plus glutamine; HV, healthy volunteers; NA, not applicable; P, patients.

* If age and CPZE dose are significantly associated with glutamatergic metabolites, then model 1 including CPZE is compared with model 2 including both CPZE and age. When χ^2 test for model comparison is not significant, then the simplest model is selected.

b Determined by use of the χ^2 test.

(Reprinted)
Association of Age, Antipsychotic Medication, and Symptoms With Brain Glutamate Level in Schizophrenia

Original Investigation Research

June 2021 Volume 78, Number 6

Figure 2. Correlations Between Chlorpromazine Equivalent (CPZE) Dose and Medial Frontal Cortex (MFC) Glutamatergic Metabolites

A. Cerebrospinal fluid (CSF)–corrected glutamate (Glu) levels.
B. CSF-corrected Glu plus glutamine (Glx) levels.

The black line represents the linear mixed model, with SE represented by the gray shaded areas; the random-intercept models for each study listed are shown in different colors.

In patients, MFC Glu levels were lower than in healthy volunteers irrespective of age, and there was a nonsignificant trend for lower Cr levels in patients. In the MFC, Cr levels, a measure commonly thought to be independent of age, increased with age in both patients and healthy volunteers. Overall, these results indicate that higher Glu levels may be associated with greater illness severity but that Glu levels may be reduced through effective antipsychotic treatment to below those observed in healthy volunteers.

The finding that MFC Glu levels decrease with age in patients with schizophrenia in a manner similar to healthy volunteers suggests that these reductions may reflect normal aging processes in this brain region (2%-3% reduction of mean Glu metabolite per decade). This is consistent with a recent meta-analysis of brain Glu metabolite levels in normal aging, which reports a larger effect size for Glu than Glx for age, as glutamine (part of the Glx signal) increases with age. In contrast to that meta-analysis, our mega-analysis did not detect independent associations of age and antipsychotic medication with MFC Glu levels. Future studies incorporating both of these uncorrelated measures showed the best fit. This result suggests that findings of reduced Glu levels in patients compared with healthy volunteers are not associated with accelerated aging in patients but may be explained by greater antipsychotic exposure, although lower Glu levels have been reported in minimally treated patients with first-episode psychosis.

Conversely, MFC Cr levels increased with age in both patients and healthy volunteers (2% increase of mean Cr level per decade), consistent with previous studies, although 1 study reports no association. Creatine and phosphocreatine are involved in energy metabolism, and increased levels may reflect more burden on this system or increased glial cell numbers and activation with age. Caution should be taken when using Cr as a reference metabolite in the MFC because there was a trend for lower levels in patients. This lower level may have masked Glu differences between cases and controls, and thus lower patient Glu levels were detected only for CSF-corrected metabolites. Our findings are consistent with a report that the anterior cingulate cortex Cr level is negatively associated with schizophrenia spectrum liability. Therefore, future studies should prioritize CSF-corrected measures.

Our finding of lower MFC glutamatergic metabolite levels in patients with schizophrenia relative to healthy volunteers is consistent with a recent meta-analysis. Our study indicates that age and antipsychotic medication were independently associated with MFC Glu levels because the model incorporating both of these uncorrelated measures showed the best fit. This result suggests that findings of reduced Glu levels in patients compared with healthy volunteers are not associated with accelerated aging in patients but may be explained by greater antipsychotic exposure, although lower Glu levels have been reported in minimally treated patients with first-episode psychosis.

Antipsychotic medication may reduce Glu levels indirectly, secondary to a reduction in dopaminergic signaling via striatal-cortical feedback loops. Studies indicate that this result is not necessarily associated with symptom improvement and that Glu levels remain elevated in
patients nonresponsive to treatment, despite higher or similar doses of medication.5,24,25,65,84-86

Our third finding was that higher glutamatergic metabolite levels in both the MFC and MTL were associated with more severe symptoms and lower functioning. In the sample, younger patients were more likely to have severe symptoms, and the model incorporating both age and symptoms provided the best fit for the Glu data. Patients with more severe symptoms received a higher CPZ EDose; thus, the association of symptoms with Glu level is not better explained by medication exposure. When symptom dimensions were subsequently examined, Glu metabolite levels in the MFC were associated with positive symptoms, whereas those in the MTL were associated with negative symptoms. The MFC and MTL are key brain regions implicated in schizophrenia. Glutamatergic outputs from these regions regulate dopamine release in the striatum, and excess dopamine

Figure 3. Correlations Between Medial Frontal Cortex (MFC) and Medial Temporal Lobe (MTL) Glutamatergic Metabolites and Positive and Negative Syndrome Scale (PANSS) Scores

A, Positive association between the MFC glutamate to total creatinine plus phosphocreatine ratio (Glu/Cr) and the PANSS total score.5,11,24,25,35,40,42-47,51,57,59,60,65
B, PANSS positive score.5,11,24,25,35,40,42-47,51,57,59,60,65 C, Positive association between the MTL glutamate plus glutamine to Cr ratio (Glx/Cr) and PANSS total score.
D, PANSS negative score.40,43,52,53,56 The black line represents the linear mixed model with SE represented by the gray shaded areas; the random-intercept models for each study listed are shown in different colors.
<table>
<thead>
<tr>
<th>Brain region and source</th>
<th>Glutamatergic metabolite, estimated mean (SE)</th>
<th>Clinical variable, mean (SD)</th>
<th>Statistics</th>
<th>Estimate (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial frontal cortex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Studies5,11,24,35,40,42,47,51,54,65</td>
<td>559 9.21 (0.55)</td>
<td>PANSS total: 65.90 (18.36)</td>
<td>$F_{1,348.9} = 0.365, P = .55$</td>
<td>NA</td>
</tr>
<tr>
<td>6 Studies5,24,40,46,51,66</td>
<td>169 9.06 (0.42)</td>
<td>GAF: 49.76 (12.50)</td>
<td>$F_{1,164.2} = 0.365, P = .55$</td>
<td>NA</td>
</tr>
<tr>
<td>Glutamate, Cr-scaled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 Studies5,11,24,35,40,42-47,51,57,65</td>
<td>668 1.25 (0.07)</td>
<td>Model 1: PANSS total: 65.44 (18.90)</td>
<td>$F_{1,659.1} = 5.819, P = .02$</td>
<td>0.0012 (0.0005)</td>
</tr>
<tr>
<td>15 Studies5,11,24,35,40,42-47,51,57,65</td>
<td>625 1.30 (0.06)</td>
<td>PANSS positive: 16.15 (6.04)</td>
<td>$F_{1,615.7} = 4.382, P = .004$</td>
<td>0.0035 (0.0017)</td>
</tr>
<tr>
<td>6 Studies5,24,40,46,51,66</td>
<td>178 1.23 (0.09)</td>
<td>GAF: 50.04 (12.85)</td>
<td>$F_{1,171.8} = 13.152, P = .001$</td>
<td>-0.0041 (0.0011)</td>
</tr>
<tr>
<td>Glutamate, CSF-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Studies5,11,24,35,40,42-47,65</td>
<td>527 11.90 (0.62)</td>
<td>PANSS total: 65.46 (18.49)</td>
<td>$F_{1,520.8} = 2.231, P = .14$</td>
<td>NA</td>
</tr>
<tr>
<td>5 Studies5,24,40,46,65</td>
<td>140 11.55 (0.72)</td>
<td>GAF: 50.57 (12.81)</td>
<td>$F_{1,135.1} = 2.043, P = .16$</td>
<td>NA</td>
</tr>
<tr>
<td>Glx, Cr-scaled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Studies5,11,24,35,40,42-44,45,49,57,65</td>
<td>581 1.60 (0.09)</td>
<td>PANSS total: 64.97 (18.26)</td>
<td>$F_{1,571.3} = 0.487, P = .48$</td>
<td>NA</td>
</tr>
<tr>
<td>6 Studies5,24,40,46,49,65</td>
<td>155 1.56 (0.17)</td>
<td>GAF: 48.93 (14.07)</td>
<td>$F_{1,149.6} = 1.720, P = .19$</td>
<td>NA</td>
</tr>
<tr>
<td>Glx, CSF-corrected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Studies5,11,24,35,40,42-44,46,47,65</td>
<td>497 15.48 (0.86)</td>
<td>PANSS total: 65.99 (18.54)</td>
<td>$F_{1,492.4} = 0.227, P = .63$</td>
<td>NA</td>
</tr>
<tr>
<td>5 Studies5,24,40,46,65</td>
<td>131 15.30 (0.87)</td>
<td>GAF: 50.53 (13.05)</td>
<td>$F_{1,128.1} = 0.373, P = .54$</td>
<td>NA</td>
</tr>
<tr>
<td>Medial temporal lobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Studies40,43,52,53</td>
<td>109 5.03 (2.03)</td>
<td>PANSS total: 71.79 (15.46)</td>
<td>$F_{1,104.1} = 0.797, P = .37$</td>
<td>NA</td>
</tr>
<tr>
<td>Glx, Cr-scaled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Studies40,43,52,53,56</td>
<td>132 1.90 (0.19)</td>
<td>PANSS total: 73.94 (15.50)</td>
<td>$F_{1,128.7} = 4.508, P = .04$</td>
<td>0.0057 (0.0027)</td>
</tr>
<tr>
<td>3 Studies40,52,56</td>
<td>76 1.97 (0.34)</td>
<td>PANSS positive: 17.42 (5.08)</td>
<td>$F_{1,129.7} = 0.000, P = .98$</td>
<td>-0.0212 (0.0067)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PANSS negative: 19.28 (5.86)</td>
<td>$F_{1,129.7} = 0.000, P = .98$</td>
<td>0.1976 (0.0598)</td>
</tr>
</tbody>
</table>

Abbreviations: AIC, Akaike information criterion; CGI, Clinical Global Impression; Cr, creatine plus phosphocreatine; GAF, Global Assessment of Functioning; Glu, glutamate; Glx, glutamate plus glutamine; NA, not applicable; PANSS, Positive and Negative Syndrome Scale.

*Age and PANSS total score are both significantly associated with the medial frontal cortex Glu to Cr ratio, so we compared whether variance in the Glu to Cr ratio was best explained by model 1 including PANSS total score or model 2 including both PANSS total score and age (linear mixed methods estimated with maximum likelihoods). Model 2 showed the best fit (AIC = −98.7; residual deviance = −108.7) compared with model 1 (AIC = −85.9; residual deviance = −93.9) (P < .001, determined by use of the χ² test).
release may underlie the development of psychotic symptoms.87 Hippocampal Glu level alterations may also be associated with learning and memory,88 relevant to negative symptoms. Associations with symptoms were observed for Cr-scaled but not CSF-corrected values. This association appears unlikely to be caused by creatine because creatine level was not associated with symptom severity.

Strengths and Limitations

The strengths of the present study include the large patient sample (more than 700 patients), which enabled linear mixed models to account for potential collinearity. Mega-analyses are reported to be more sensitive than meta-analyses owing to narrower confidence intervals.89 Because data were assembled from different countries, the sample represents varying demographic features and clinical treatments.

The process of combining data from multiple independent sites also has limitations. The IH-MRS acquisition protocols, MR imaging platforms, and scaling methods differed among studies, which we controlled for in the analysis by using linear mixed models to control for site effects and by separately considering CSF-corrected data from Cr-scaled data. Ideally, future prospective multicenter studies would further harmonize IH-MRS acquisition and correction methods to enable more reliable data synthesis.89 Nevertheless, harmonization will always be constrained by the use of different MR imaging platforms across centers. Despite using established rating scales, there is a possibility of site effects associated with clinical assessment scores and CPZE dose calculations. Owing to a lack of data, we were unable to examine other brain regions that may be associated with schizophrenia pathophysiology. Therefore, we cannot determine whether the observed associations extend to other brain regions. The CPZE dose was not available for all studies; thus, analyses were restricted to smaller samples. Our analysis of the association between medication and Glu levels relied on cross-sectional data. Longitudinal studies can better examine the causal association between these factors, but our results are consistent with longitudinal studies reporting reduced MFC glutamatergic metabolite levels with treatment.5,9,40,41,91,92 Antipsychotic dose was associated with CSF-corrected Glu metabolite levels but not with Cr-scaled values. This finding contrasts with a large longitudinal IH-MRS study finding a reduction in Cr-scaled Glu level with treatment.8 Finally, mega-analyses rely on contributed data, resulting in data omission.

Conclusions

These findings have important implications for MRS studies in schizophrenia. They highlight the value of matching or adjusting for age, prioritizing CSF-corrected measures over Cr-scaled metabolite levels, and considering antipsychotic dose as an explanatory factor when comparing Glu levels between patients and healthy volunteers. The finding of elevated Glu levels in patients with more severe symptoms provides further support for the use of glutamatergic measures as a potential biomarker of illness severity, alongside other measures, and the development of novel treatments that target brain glutamatergic function.
Canada, and Sunovion outside the submitted work; and receiving royalties from Oxford University Press, Dr Purdon reported receiving grants from the Australian National Health & Medical Research Council during the conduct of the study; grants from Lundbeck Foundation; and personal fees from Lundbeck Australia Pty Ltd outside the submitted work. Dr Purdon reported receiving grants from the Canadian Institute of Health Research during the conduct of the study; and personal fees from Janssen-Cilag, Gilead Sciences GmbH, Hospira AG, and Servier outside the submitted work.

Dr Shungu reported receiving personal fees from Icahn School of Medicine at Mount Sinai and the US National Institutes of Health outside the submitted work. Dr Stone reported being a principal investigator or subinvestigator on studies sponsored by Takeda, Janssen, and Lundbeck; and attending investigator meetings at Allergan outside the submitted work. Dr Taylor reported receiving grants from the Ontario Mental Health Foundation and the Canadian Institute of Health Research during the conduct of the study. Dr Théberge reported receiving grants from the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council, and the Canada Foundation for Innovation during the conduct of the study; and receiving personal fees from Siemens Healthineers Canada. Dr Tibbo reported receiving grants from the Alberta Health Foundation for Medical Research and the Canadian Institutes of Medical Research during the conduct of the study; and personal fees from Janssen, Lundbeck, and Otsuka outside the submitted work. Dr Xin reported receiving grants from the Swiss National Science Foundation and Société des Produits Nestlé SA outside the submitted work. Dr Yamasue reported receiving personal fees from Eli Lilly and Company, Janssen, Meiji Seika Pharma, Merck Sharp & Dohme, Mochida, Otsuka, Pfizer, Sumitomo Dainippon, Takeda, and Yoshitomiyakuhin, and receiving a research grant from Eisai that disclosed financial interests outside the submitted work.

Funding/Support: This study was supported by a PhD studentship from the UK Medical Research Council and grant MR/S034346/1 from the Medical Research Council to Dr Merritt; grant MR/L03988/1 from the Medical Research Council to Dr Egerton, and grant HEALTH-F2-2010-242114 from the European Commission within the 7th Framework Programme. This study presents independent research funded in part by the National Institute for Health Research Biomedical Research Centre at South London and Maudsley National Health Service Foundation Trust and King’s College London. Dr Camillo de la Fuente-Sandoval was awarded 11 research grants 119280, 182279, and 261895 from the Consejo Nacional de Ciencia y Tecnología-Mexico (CONACYT), a grant from CONACyT Sistema Nacional de Investigadores, and grant R21 MH117434 from the US National Institutes of Health. Dr Howes was awarded grant MT/12078 from the Medical Research Council-UK, grant 666 from the Maudsley Charity, and personal fees 094849/2/10/2 from the Wellcome Trust. Dr Théberge received discovery grant RG-PIN-2016-05055 from the National Science and Engineering Research Council-Canada and was a co-applicant on grant MT-12078 from the Canadian Institutes of Health Research. Dr Palaniyappan received Foundation Grant 375104/2017 from the Canadian Institutes of Health Research and salary support from the Tanna Schullich Chair of Neuroscience and Mental Health. A clinical investigator fellowship was awarded to Kara Dempster from the Schulich School of Medicine. Mr Jean received salary support from Discovery Grant RGPIN2016-05055 from the Natural Sciences and Engineering Research Council of Canada to Dr Théberge. Data acquisition was supported by the Canada First Excellence Research Fund to BrainSCAN, Western University (Imaging Core).

Role of the Funder/Sponsor: The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

The 1H-MRS in Schizophrenia Investigators:
- Institute of Mental Health, Division of Psychiatry, UCL, London, United Kingdom: Kate Merritt, PhD; Psychosis Studies Department, Institute of Psychiatry, Psychology, and Neurosciences, King's College London, London, United Kingdom: Kate Merritt, PhD, Faith Borjan, PhD, Arisine Demjaha, MD, PhD, Oliver Howes, MD, PhD, Sameer Jauhar, MD, PhD, Gemma Modinos, PhD, Elias Mouchlianitis, PhD, Sotiros Posposres, MD, MRC Psych, Philip K. McGuire, MD, FMedSci, Alice Egerton, PhD; Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, China: André Aleman, PhD; University Medical Center Groningen, University of Groningen, Groningen, the Netherlands: André Aleman, PhD; Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany: Wolfgang Block, PhD; Department of Psychiatry and Neurology, Maastricht University, Maastricht, the Netherlands: Oswald J. N. Bloemen, MD, PhD, Thérèse van Amelsvoort, MD, PhD; Department of Psychiatry and Behavioral Sciences, Center for Psychiatric Research, University of New Mexico School of Medicine, Albuquerque: Juan R. Bustillo, MD; Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor: Arístides A. Capizanno, MD, MSc; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland: Jennifer M. Couglín, MD; Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico: Camilo de la Fuente-Sandoval, MD, PhD; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico: Camilo de la Fuente-Sandoval, MD, PhD; Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital–CHUV, Prilly-Lausanne, Switzerland: Kim Q. Do, PhD; Lawson Health Research Institute, London, Ontario, Canada: Reggie Taylor, PhD, Jean Théberge, PhD, Peter C. Williamson, MD, Department of Biostatistics and Health Informatics (S2.OG), Institute of Psychiatry, Psychology, and Neuroscience King’s College London, London, United Kingdom: Cedric E. Ginesett, PhD; Department of Psychiatry, University Hospital, LMU Munich, Nussbaumstrasse, Munich, Germany: Peter Falkai, PhD; Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland: Beata Galifinská-Skółk, PhD, Department of Psychiatry, Medical University of Warsaw, Poland: Agata Szulc, MD, PhD; Mind Research Network, Albuquerque, New Mexico: Charles Gasparovic, PhD; Department of Psychiatry, Kohaku Gando Hospital, Kita-yayushi, Fukuoka, Japan: Naoki Goto, PhD; Multimodal Neuroimaging Schizophrenia Group, Research Imaging Centre, Geriatric Mental Health Program at Centre for Addiction and Mental Health, and Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada: Ariel Graff-Guerrero, MD, PhD; Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City: Beng-Choon Ho, MD; Department of Psychiatry and Behavioral Sciences, Juntendo University Graduate School of Medicine, Tokyo, Japan: Tadafumi Kato, MD, PhD; Department of Psychiatry, Columbia University, New York State Psychiatric Institute (NYPSCI), New York: Charles A. Kaufmann, MD; Columbia University, Department of Psychiatry, NYSPI, New York, New York: Lawrence S. Kegeles, MD, PhD; Harvard Medical School, Boston, Massachusetts: Matcheri S. Keshavan, PhD; Philips Healthcare, Seoul Republic of Korea: Sang Young Kien, PhD; National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan: Hiroshi Kunugi, PhD, Miho Ota, PhD; Jefferson Health-Sidney Kimmel Medical College, Philadelphia, Pennsylvania: John Lauriello, PhD; Rob Giel Research Center, Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands: Edith Liemburg, PhD; School of Pharmacy, University of Auckland, Grafton, Auckland, New Zealand: Meghan E. McIwain, PhD; Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan: Sotiris Pantelis, PhD; South London and Maudsley, Bethlem Royal Hospital, Beckenham, London, UK: Sotiris Posposres, MD, MRC Psych, Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts: Fei Du, PhD, Dong Örng, MD, PhD; Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Carlton, Victoria, Australia: Christos Pantelis, PhD; The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia: Christos Pantelis, PhD; Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, QC, Canada: Eric Pitman, PhD, MSc; McGill University, Canada: Department of Psychiatry, McGill University, Montreal, QC, Canada: Eric Pitman, PhD; Neuropsychology Department, Alberta Hospital Edmonton, AB, Canada: Edmonton Early Intervention in Psychosis Clinic, Edmonton, AB, Canada: Scott E. Purdon, PhD; Medical Physics Group, Institute for Diagnostic and Interventional Radiology (IDIR), Jena University Hospital, Jena, Germany: Jürgen R. Reichenbach, PhD; Department of Psychiatry, University of Utah, Salt Lake City: Perry F. Renshaw, MD, PhD; School of Pharmacy, University of Utah, Salt Lake City: Bruce R. Russell, PhD; Departments of Psychiatry, Neuroscience, Mental Health, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University, Baltimore, Maryland: Alkira Sawa, MD, PhD; Department of Psychiatry, Psychotherapy, Psychosomatics and Addiction Medicine, Klinikum Essen-Mitte, Essen, Germany: Martin Schafer, MD; Department of Psychiatry and Psychotherapy, Charité–Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany: Martin Schafer, MD; Department of Radiology, Weill Cornell Medical College, New York, New York: Dikoma C. Shungu, PhD; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
Association of Age, Antipsychotic Medication, and Symptoms With Brain Glutamate Level in Schizophrenia

Original Investigation Research

(REPRINTED) JAMA Psychiatry
jamapsychiatry.com

Dr Öngür is the editor of JAMA Psychiatry, but he was not involved in any of the decisions regarding review of the manuscript or its acceptance.

REFERENCES

Association of Age, Antipsychotic Medication, and Symptoms With Brain Glutamate Level in Schizophrenia

Original Investigation Research

jamapsychiatry.com

1997;56(12):1269-1275. doi:10.1093/jn/11.7.598

2020;25(8):1297-1304.doi:10.1017/S0033291709991711

2010;40(8):1297-1304.doi:10.1017/S0033291709991711

2021;2(1):sgaa072.doi:10.1101/2020.08.11.20172841

2020;45(4):632-640. doi:10.1038/s41386-019-0589-z

