
Perceptual and semantic representations at encoding 
contribute to true and false recognition of objects
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When encoding new episodic memories, visual and semantic processing are proposed to 
make distinct contributions to accurate memory and memory distortions. Here, we used 
functional magnetic resonance imaging (fMRI) and preregistered representational 
similarity analysis (RSA) to uncover the representations that predict true and false 
recognition of unfamiliar objects. Two semantic models captured coarse-grained 
taxonomic categories and specific object features, respectively, while two perceptual 
models embodied low-level visual properties. Twenty-eight female and male participants 
encoded images of objects during fMRI scanning, and later had to discriminate studied 
objects from similar lures and novel objects in a recognition memory test. Both perceptual 
and semantic models predicted true memory. When studied objects were later identified 
correctly, neural patterns corresponded to low-level visual representations of these object 
images in the early visual cortex, lingual, and fusiform gyri. In a similar fashion, alignment 
of neural patterns with fine-grained semantic feature representations in the fusiform gyrus 
also predicted true recognition. However, emphasis on coarser taxonomic representations 
predicted forgetting more anteriorly in the anterior ventral temporal cortex, left inferior 
frontal gyrus and, in an exploratory analysis, left perirhinal cortex. In contrast, false 
recognition of similar lure objects was associated with weaker visual analysis posteriorly 
in early visual and left occipitotemporal cortex. The results implicate multiple perceptual 
and semantic representations in successful memory encoding and suggest that fine-
grained semantic as well as visual analysis contributes to accurate later recognition, while 
processing visual image detail is critical for avoiding false recognition errors. 
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Significance Statement 
People are able to store detailed memories of many similar objects. We offer new insights into the 
encoding of these specific memories by combining fMRI with explicit models of how image 
properties and object knowledge are represented in the brain. When people processed fine-grained 
visual properties in occipital and posterior temporal cortex, they were more likely to be recognize 
the objects later, and less likely to falsely recognize similar objects. In contrast, while object-specific 
feature representations in fusiform gyrus predicted accurate memory, coarse-grained categorical 
representations in frontal and temporal regions predicted forgetting. The data provide the first 
direct tests of theoretical assumptions about encoding true and false memories, suggesting that 
semantic representations contribute to specific memories as well as errors. 
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Introductio n 

Humans are able to remember objects in great detail and discriminate them in memory from others 
that are similar in appearance and type (Standing, 1973). To achieve this, highly specific memories 
must be encoded. Successful object encoding engages diverse cortical regions alongside the 
hippocampus (Kim, 2011). These areas intersect with networks involved in visual object 
processing and semantic cognition (Binder et al., 2009; Clarke and Tyler, 2014). However, little is 
known about the neural operations these regions support during encoding. According to fuzzy-
trace theory, the specific memory traces that contribute to true recognition depend on encoding 
of perceptual features, while semantic gist representations promote both true and false recognition 
(Brainerd and Reyna, 1990). However, recent data suggest that perceptual relations between 
studied items and lures can also trigger false recognition (Naspi et al., 2020). Here, we used 
functional magnetic resonance imaging (fMRI) and representational similarity analysis (RSA) to 
investigate the perceptual and semantic representations engaged that allow people to recognize 
these same objects later among perceptually and semantically similar lures. 
 
In line with fuzzy-trace theory, a few fMRI studies have shown stronger activation in occipito-
temporal regions when people later successfully recognize specific studied objects than when they 
misrecognize similar lures (Garoff et al., 2005; Gonsalves et al., 2004; Okado and Stark, 2005). 
However, activation of similar posterior areas has also been associated with later false recognition 
(Garoff et al., 2005), and activation in left inferior frontal gyrus �² a region typically associated with 
semantic processing �² with later true recognition (Pidgeon and Morcom, 2016). Such results appear 
to challenge any simple mapping between perceptual and semantic processing and true and false 
recognition (see also Naspi et al., 2020). However, one cannot infer type of processing based on 
presence or absence of activation alone. Here, we investigated the underlying processes that give 
rise to such effects, using RSA to test whether patterns of neural similarity that indicate visual and 
semantic processing predict subsequent memory performance. 
 
Object recognition involves visual analysis and the computation of meaning, proceeding in an 
informational gradient along the ventral visual pathway (Clarke and Tyler, 2015). The coarse 
semantic identity of an object emerges gradually from vision in posterior cortices including lingual, 
fusiform, parahippocampal, and inferior temporal gyri that integrate semantic features capturing 
taxonomic relationships (Devereux et al., 2013; Mahon et al., 2009; Tyler et al., 2013). The lingual 
and fusiform gyri in particular are also engaged when memories of objects are encoded (Kim, 
2011). At the apex of the ventral pathway, the perirhinal cortex provides the finer-grained feature 
integration required to differentiate similar objects (Clarke and Tyler, 2014; Devlin and Price, 2007; 
Winters and Bussey, 2005), and activation here predicts later memory for specific objects (Chen et 
al., 2019). Other researchers ascribe this role more broadly to the anterior ventral temporal cortex, 
considered a semantic hub that integrates modality-specific features into transmodal conceptual 
representations (Lambon Ralph et al., 2017). Beyond the ventral stream, left inferolateral prefrontal 
regions supporting controlled, selective semantic processing are also critical for memory encoding 
(Gabrieli et al., 1998; Kim, 2011). 
 
According to theory, the perceptual and semantic representations encoded in memory traces 
reflect how items were originally processed (Craik and Lockhart, 1972; Otten and Rugg, 2001). We 
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therefore expected that some of these ventral pathway and inferior frontal representations would 
be revealed in distinct distributed activity patterns giving rise to later true and false recognition. 
We quantified perceptual representations in terms of low-level visual attributes of object images, 
and semantic representations �R�I���W�K�H���R�E�M�H�F�W�V�·���F�R�Q�F�H�S�W�V in terms of their coarse taxonomic category 
membership as well as their specific semantic features. We used these models to identify 
representational similarity patterns between objects at encoding using a novel approach that 
combined RSA and the subsequent memory paradigm in a single step. This allowed us to test 
where the strength of perceptual and semantic object representations predicts subsequent accurate 
memory and false recognition of similar lures.   
 

Materials and Methods 

Participants 

Twenty-eight right-handed adults aged 18-35 years underwent fMRI scanning (M = 23.07 years, 
SD = 3.54; 18 females, 10 males). Data from a further 4 participants were excluded due to technical 
failures. All participants also spoke English fluently (i.e., had spoken English since the age of 5 or 
lived in an English-speaking country for at least 10 years) and had normal or corrected-to-normal 
vision. Exclusion criteria were a history of a serious systemic psychiatric, medical or a neurological 
condition, visual issues precluding good visibility of the task in the scanner, and standard MRI 
exclusion criteria (see https://osf.io/ypmdj for preregistered criteria). Participants were 
compensated financially. They were contacted by local advertisement and provided informed 
consent. The study was approved by the University of Edinburgh Psychology Research Ethics 
Committee (Ref. 116-1819/1). All the following procedures were preregistered unless otherwise 
specified. 
 

Stimuli 

Stimuli were pictures of objects corresponding to 491 of the 638 basic-level concepts in The Centre 
for Speech, Language and the Brain concept property norms (the CSLB norms; Devereux et al., 
2014). These were members of 24 superordinate categories (Appliance, Bird, Body Part, Clothing, 
Container, Drink, Fish, Flower, Food, Fruit, Furniture, Invertebrate, Kitchenware, Land Animal, Miscellaneous, 
Music, Sea Creature, Tool, Toy, Tree, Vegetable, Vehicle, Water Vehicle, Weapon), and 238 were living 
things and 253 non-living things. We sourced two images for each basic-level concept. Of the 982 
images, 180 were a subset of the images used by Clarke and Tyler (2014), 180 were compiled from 
the Bank of Standardized Stimuli (BOSS; Brodeur et al., 2014) and the remaining 622 were taken 
from the Internet. Each study list included single exemplar images of either 328 or 327 concepts. 
Of these, half were subsequently tested as old and half were subsequently tested test as lures. Each 
test list consisted of 491 items: 164 (or 163) studied images, 164 (or 163) similar lures (i.e., images 
of different exemplars of studied basic-level concepts), and 163 (or 164) novel items (i.e., images 
of basic-level concepts that had not been studied). Three filler trials prefaced the test phase. For 
each participant, living and non-living concepts were randomly allocated to the conditions with 
equal probability, i.e., to be studied/lure or novel items. Each study and test list was presented in 
a unique random trial order.    

https://osf.io/ypmdj
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Procedure  

The experiment comprised a scanned encoding phase followed by a recognition test phase outside 
the scanner. Stimuli were presented using MATLAB 2019b (The MathWorks Inc., 2019) and 
PsychToolbox (Version 2.0.14; Kleiner et al., 2007). In the scanner, stimuli were viewed on a back-
projection screen via a mirror attached to the head coil. Earplugs were employed to reduce scanner 
noise, and head motion was minimized using foam pads. During the study phase participants 
viewed one image at a time, and they were asked to judge whether the name of each object started 
with a consonant or with a vowel, responding with either index finger via handheld fiber-optic 
response triggers. By requiring participants to retrieve the object names, we ensured that they 
processed the stimuli at both visual and semantic levels. Participants were not informed of a later 
memory test. Images were presented centrally against a white background for 500 ms. This was 
followed by a black fixation cross with duration sampled from integer values of 2 to 10 s with a 
flat distribution, and then a red fixation cross of 500 ms prior to the next trial, for a stimulus onset 
asynchrony (SOA) of 3-11 s (M = 6). At test, participants viewed one image at a time for 3 s 
followed by a black fixation cross for 500 ms, and they judged each picture �D�V�� �´�R�O�G�µ�� �R�U�� �´�Q�H�Z�µ 
indicating at the same time whether this judgment was accompanied by high or low confidence 
using one of 4 responses on a computer keyboard. Mappings of responses to hands were 
counterbalanced at both encoding and retrieval.  
 

fMRI acquisition 

�,�P�D�J�H�V�� �Z�H�U�H�� �D�F�T�X�L�U�H�G�� �Z�L�W�K�� �D�� �6�L�H�P�H�Q�V�� �0�D�J�Q�H�W�R�P�� �6�N�\�U�D�� ���7�� �V�F�D�Q�Q�H�U�� �D�W�� �W�K�H�� �4�X�H�H�Q�·�V�� �0�H�G�L�F�D�O��
Research Centre (QMRI) at the Royal Infirmary of Edinburgh. T2*-weighted functional images 
were collected by acquiring multiple echo-time sequences for each echo-planar functional volume 
(repetition time (TR) = 1700 ms, echo time (TE) = 13 ms (echo-1), 31 (echo-2) ms, and 49 ms 
(echo-3)). Functional data were collected over 4 scanner runs of 360 volumes, each containing 46 
slices (interleaved acquisition; 80 × 80 matrix; 3 mm × 3 mm × 3 mm, flip angle = 73°). Each 
functional session lasted ~ 10 min. Before functional scanning, high-resolution T1-weighted 
structural images were collected with TR = 2620 ms, TE = 4.9 ms, a 24-cm field of view (FOV), 
and a slice thickness of 0.8-mm. Two field map magnitude images (TE = 4.92 ms and 7.38 ms) 
and a phase difference image were collected after the 2nd functional run. At the end, T2-weighted 
structural images were also obtained (TR= 6200 ms and TE = 120 ms). 
 

Image preprocessing 

Except where stated, image processing followed procedures preregistered at https://osf.io/ypmdj 
and was conducted in SPM 12 (v7487) in MATLAB 2019b. The raw fMRI time series were first 
checked to detect artefact volumes that were associated with high motion or were statistical outliers 
(e.g. due to scanner spikes). We checked head motion per run using an initial realignment step, 
classifying volumes as artefacts if their absolute motion was > 3 mm or 3 deg, or between-scan 
relative motion > 2 mm or 2 deg. Outlier scans were then defined as those with normalized mean 
or standard deviation (of absolute values or differences between scans) > 7 SD from the mean for 
the run. Volumes identified as containing artefacts were replaced with the mean of the neighboring 
non-outlier volumes, or removed if at the end of a run. If more than half of the scans in a run had 
artefacts, that run was discarded. Artefacts were also modeled as confound regressors in the first 

https://osf.io/ypmdj
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level design matrices. Next, BOLD images acquired at different echo times were realigned and 
slice time corrected using SPM12 defaults. The resulting images were then resliced to the space of 
the first volume of the first echo-1 BOLD time series. A brain mask was computed based on 
preprocessed echo-1 BOLD images using Nilearn 0.5.2 and combined with a grey-and-white 
matter mask in functional space for better coverage of anterior and ventral temporal lobes 
(Abraham et al., 2014). The three echo time series were then fed into the Tedana workflow (Kundu 
et al., 2017), run inside the previously created brain mask. This workflow decomposed the time 
series into components and classified each component as BOLD signal or noise. The three echo 
series were optimally combined and noise components discarded from the data. The resulting time 
series were unwarped to correct for inhomogeneities in the scanner's magnetic field: the voxel 
displacement map calculated from the field maps was coregistered to the first echo-1 image from 
the first run, and applied to the combined time series for each run. The preprocessed BOLD time 
series corresponding to the optimal denoised combination of echoes outputted by the Tedana 
workflow were then used for RSA analysis, where we used unsmoothed functional images in native 
space to keep the finer-grained structure of activity. For univariate analysis, the preprocessed 
BOLD time series were also spatially normalized to MNI space using SPM's non-linear registration 
tool, DARTEL; spatially normalized images were then smoothed with an 8 mm isotropic full-
width half maximum Gaussian kernel. 
 

Experimental design and statistical analysis 

Sample size 

The sample size was determined using effect sizes from two previous studies. Staresina et al. (2012) 
reported a large encoding-retrieval RSA similarity effect (d = 0.87). However, subsequent memory 
effects are typically more subtle, for example d = 0.57 for an activation measure (Morcom et al., 
2003). We calculated that, with N = 28, we would have .8 power to detect d = 0.55 for a one 
sample t-test at alpha = 0.05 (G*Power 3.1.9.2). 
 

Behavioral analysis 

To assess whether differences in task engagement during memory encoding predicted later 
memory, we modelled the effects of encoding task accuracy (0, 1) on subsequent memory 
outcomes using two separate generalized linear mixed effect models (GLMM) for studied items 
tested as old (subsequent hits and misses as predictors), and for studied items tested as lures 
(subsequent false alarms and correct rejection as predictors). Similarly, to assess any differences in 
study phase reaction times (RTs) according to subsequent memory status, we used two further 
linear mixed effect models (LMM). At test, to evaluate the effects on memory of perceptual and 
semantic similarity between objects, we also applied a generalized linear mixed model following 
the methods of Naspi et al. (2020). This had dependent measures of �U�H�V�S�R�Q�V�H�� �D�W���W�H�V�W�����´�R�O�G�µ�� �R�U��
�´�Q�H�Z�µ���� �D�Q�G��confusability predictors calculated for each image and concept. C1 visual and color 
confusability were defined as the similarity value of an image with its most similar picture (i.e., the 
�Q�H�D�U�H�V�W�� �Q�H�L�J�K�E�R�U���� �I�U�R�P�� �3�H�D�U�V�R�Q�� �F�R�U�U�H�O�D�W�L�R�Q�� �D�Q�G�� �H�D�U�W�K�·�V�� �P�R�Y�H�U�� �G�L�V�W�D�Q�F�H�� �P�H�W�U�L�F�V���� �U�H�V�S�H�F�W�L�Y�H�O�\�� 
Concept confusability was calculated by a weighted sum of the cosine similarities between objects 
in which each weight was the between-concept similarity itself, i.e., the sum of squared similarities 
(see Naspi et al., (2020)). All the analyses described above were carried out data with the lme4 
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package (Version 1.1-23) in R (Version 4.0.0). Models included random intercepts to account for 
variation over items and participants. 
 

Multivariate fMRI analysis 

Overview 
The goal of our study was to investigate how perceptual and semantic representations processed 
at encoding predict successful and unsuccessful mnemonic discrimination. To test this, we used 
RSA to assess whether the fit of perceptual and semantic representational models to activity 
patterns at encoding predicted subsequent memory. In two main sets of analyses we examined 
representations predicting later true recognition of studied items, and representations predicting 
false recognition of similar lures. We implemented a novel approach that models the interaction 
of representation similarity with subsequent memory in a single step. Each memory encoding 
model contrasts the strength of visual and semantic representations of items later remembered 
versus forgotten (or falsely recognized versus correctly rejected) within the same representational 
dissimilarity matrix (RDM). In a third set of analyses we also aimed to replicate Clarke and Tyler 
(2014) key findings regarding perceptual and semantic representations irrespective of memory. All 
RSA analyses were performed separately for each participant on trial-specific parameter estimates 
from a general linear model (GLM). We then followed three standard steps: 1) For each theoretical 
perceptual and semantic model, we created model RDMs embodying the predicted pairwise 
dissimilarity over items; 2) For each ROI (or searchlight sphere), we created fMRI data RDMs 
embodying the actual dissimilarity of multivoxel activity patterns over items; 3) We determined the 
fits between the model RDMs and the fMRI data RDM for each ROI (or searchlight sphere). The 
implementation of these steps is outlined in the following sections. 
 

RSA first level general linear model 
Statistical analysis of fMRI data was performed in SPM12 using the first-level GLM and a Least-
Squares-All (LSA) method (Mumford et al., 2012). For each participant, the design matrix included 
one regressor for each trial of interest, for a total of 327 or 328 regressors (depending on 
counterbalancing), computed by convolving the 0.5 s duration stimulus function with a canonical 
hemodynamic response function (HRF). For each run, we also included twelve motion regressors 
comprising the three translations and three rotations estimated during spatial realignment, and 
their scan-to-scan differences, as well as individual scan regressors for any excluded scans, and 
session constants for each of the 4 scanner runs. The model was fit to native space pre-processed 
functional images using Variational Bayes estimation with an AR(3) autocorrelation model (Penny 
et al., 2005). A high-pass filter with a cutoff of 128 s was applied and data were scaled to a grand 
mean of 100 across all voxels and scans within sessions. Rather than using the default SPM whole-
brain mask (which requires a voxel intensity of 0.8 of the global mean and can lead to exclusion of 
ventral anterior temporal lobe voxels), we set the implicit mask threshold to 0 and instead included 
only voxels which had at least a 0.2 probability of being in grey or white matter, as indicated by 
�W�K�H���W�L�V�V�X�H���V�H�J�P�H�Q�W�D�W�L�R�Q���R�I���W�K�H���S�D�U�W�L�F�L�S�D�Q�W�·�V���7�����V�F�D�Q���� 
 

Regions of interest 
All regions of interests (ROIs) are shown in Figure 1. We defined six ROIs including areas 
spanning the ventral visual stream, which have been implicated in visual and semantic feature-
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based object recognition processes (Clarke and Tyler, 2014; Clarke and Tyler, 2015). We also 
included the left inferior frontal gyrus, strongly implicated in semantic contributions to episodic 
encoding (Kim, 2011), and bilateral anterior ventral temporal cortex, which is implicated in 
semantic representation (Lambon Ralph et al., 2017) and is hypothesized to contribute to false 
memory encoding, albeit mainly in associative false memory tasks (Chadwick et al., 2016; Zhu et 
al., 2019). Except where explicitly stated, ROIs were bilateral and defined in MNI space using the 
Harvard-Oxford structural atlas: 1) the early visual cortex (EVC; BA17/18) ROI was defined using 
the Julich probabilistic cytoarchitectonic maps (Amunts et al., 2000) from the SPM Anatomy 
toolbox (Eickhoff et al., 2005); 2) the posterior ventral temporal cortex (pVTC) ROI consisted of 
the inferior temporal gyrus (occipito-temporal division; ITG), fusiform gyrus (FG), lingual gyrus 
(LG), and parahippocampal cortex (posterior division; PHC); 3) the perirhinal cortex (PrC) ROI 
was defined using the probabilistic perirhinal map including voxels with a > 10% probability to be 
in that region (Devlin and Price, 2007; Holdstock et al., 2009); 4) the anterior ventral temporal 
cortex (aVTC) ROI included voxels with >30% probability of being in the anterior division of the 
inferior temporal gyrus and >30% probability of being in the anterior division of the fusiform 
gyrus; 5) the left inferior frontal gyrus (LIFG; BA44/45) consisted of the pars triangularis and pars 
opercularis. Lastly, we used univariate analysis as a preregistered method to define additional ROIs 
for RSA around any regions not already in the analysis that showed significant subsequent memory 
effects. Based on this analysis, we also included 6) the left inferior temporal gyrus (occipito-
temporal division; LITG) (see Results, Univariate fMRI analysis). The LITG has been previously 
implicated in true and false memory encoding (Dennis et al., 2007; Kim and Cabeza, 2007). The 
ROIs in Figure 1 are mapped on a pial representation of cortex using the Connectome Workbench 
(https://www.humanconnectome.org/software/connectome-workbench). 
 

 

https://www.humanconnectome.org/software/connectome-workbench
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Figure 1. Binary ROIs overlaid on a pial cortical surface based on the normalized structural image averaged over 
participants. Colored ROIs represent regions known to be important in episodic encoding and in visual or semantic 
cognition. Circled numbers specify different subregions within pVTC (see Region of Interest for details). 

 

RSA region of interest analysis 

Model RDMs. We created four theoretical RDMs using low-level visual, color, binary-categorical, 
and specific object semantic feature measures. Figure 2 illustrates the multidimensional scale 
(MDS) plots for the perceptual and semantic relations expressed by these models, and Figure 3 
shows the model RDMs. Memory encoding RDMs are displayed in Figure 3A and 3B, and overall 
RDMs irrespective of memory in Figure 3C. 
 

 

Figure 2. MDS plots for perceptual and semantic similarities for the four models. Pair-wise similarities were calculated 
to create representational dissimilarity matrices (RDMs). A, C1 visual similarity codes for a combination of orientation 
and shape (e.g., round objects towards the top, horizontal shapes on the right, vertical shapes at the bottom). B, Color 
similarity represents color saturation and size information (i.e., from bright on the left to dark at the bottom, and white 
towards the top). C, Binary categorical semantic similarity codes for domain-level representations distinguishing 
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animals, plants and nonbiological objects (bottom-left, top, bottom-right, respectively). D, Semantic feature similarity 
codes for finer-grained distinctions based on features of each concept (e.g., differences within living things at the 
bottom, non-living things on the left, and many categories of animal on the top-right). The objects shown are taken 
from a single subject at encoding. 

 

1) The early visual RDM was derived from the HMax computational model of vision (Riesenhuber 
and Poggio, 1999; Serre et al., 2007) and captured the low-level (V1) visual attributes of each 
picture in the C1 layer. Pairwise dissimilarity values were computed as 1 - �3�H�D�U�V�R�Q�·�V���F�R�U�U�H�O�D�W�L�R�Q�V��
between response vectors for gray-scale versions of each image. 
2) The color RDM was calculated using the color distance package (Version 1.1.0; Weller and 
Westneat, 2019) in R. After converting the RGB channels into CIELab space we calculated the 
�H�D�U�W�K���P�R�Y�H�U�·�V���G�L�V�W�D�Q�F�H���E�H�W�Z�H�H�Q���H�D�F�K���S�D�L�U���R�I���L�P�D�J�H�V��(Rubner et al., 2000). We then normalized the 
distance so that the dissimilarity values ranged from 0 (lowest) to 1 (highest). 
3) The animal-nonbiological-plant RDM combined the 24 object categories together according to 3 
domains: animal, nonbiological, and plants (Clarke and Tyler, 2014). Pairwise dissimilarity values 
in this RDM were either 0 (same domain) or 1 (different domain). 
4) Construction of the semantic feature RDM followed Clarke and Tyler (2014), but used updated 
property norms (Devereux et al., 2014). We first computed pairwise feature similarity between 
concepts from a semantic feature matrix in which each concept is represented by a binary vector 
indicating whether a given feature is associated with the concept or not. Pairwise dissimilarity 
between concepts was computed as 1 �² S where S is equal to the cosine angle between feature 
vectors. This RDM captures both categorical similarity between objects (as objects from similar 
categories have similar features) and within-category object individuation (as objects are composed 
of a unique set of features). 
For the analyses of memory encoding, model RDMs were split into two, giving one RDM for each 
subsequent memory analysis. The true subsequent memory RDMs included only items that were 
subsequently tested as old; these were coded as subsequent hits or subsequent misses (Fig. 3A). 
The false subsequent memory RDMs included only items that were subsequently tested as lures; 
these were coded as subsequent false alarms or subsequent correct rejections (Fig. 3B). For true 
subsequent memory, we computed dissimilarity between all pairs of subsequently remembered 
items, and all pairs of subsequently forgotten items, omitting pairings of subsequently remembered 
and subsequently forgotten items. Then, to assess how dissimilarity depended on subsequent 
memory we weighted the model RDMs so that the sum of the cells corresponding to remembered 
items equaled 1 and the sum of the cells corresponding to forgotten items equaled -1, so the 
dissimilarity values for all included trials summed to 0 (i.e., subsequent hits �² subsequent misses). 
Thus, positive correlations of the model RDMs with the fMRI data RDMs indicate that the 
representations are aligned more strongly with neural patterns for items that are later remembered 
than forgotten. Conversely, negative correlations indicate greater alignment for items that are later 
forgotten than remembered items. For false subsequent memory, we followed the same procedure, 
but subsequent false alarms were substituted for subsequent hits, and subsequent correct rejections 
for subsequent misses. Although an unequal number of trials can create spurious effects, we have 
a sufficiently large number of trials for each participant and condition for reliable correlation 
coefficients. According to one estimate, a correlation needs to have at least 150 observations to be 
considered stable (Schönbrodt and Perugini, 2013). In our study, only one participant yielded less 
than 150 similarity values, from a matrix of 17 falsely recognized trials, which gives a vector of 136 
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unique similarity values. Thus, we can be fairly confident in our results. Analyses were implemented 
using custom MATLAB 2019b (The MathWorks Inc., 2019) and R (Version 4.0.0; R Core Team, 
2017) functions (https://osf.io/ypmdj). For the RSA analyses irrespective of memory, we modeled 
dissimilarities between all item pairs, treating all trials in the same way (see Fig. 3C). 
 

 

Figure 3. Representational dissimilarity matrices. A, Dissimilarity predictions of the four true subsequent memory 
models which included items that were later tested as old, coding subsequent hits positively (upper-left quadrants) and 
subsequent misses negatively (bottom-right quadrants). B, Dissimilarity predictions of the four false subsequent 
memory models which included items that were later tested as lures, coding subsequent false alarms positively (upper-
left quadrants) and subsequent correct rejections negatively (bottom-right quadrants). C, Dissimilarity models of 
object processing including all the items. D, Similarity between theoretical models. The color palettes used for the 
model correlations in D are the inverse of those used for the model RDMs in A, B, and C. The specific models are 
unique for each participant. For visualization purposes, similarity values within true and false subsequent memory 
RDMs have not been scaled. A-N-P = Animal-nonbiological-plant. 

 

fMRI data RDMs. Parameter estimates were extracted from gray matter voxels in each ROI for all 
trials of interest. For each voxel, these betas were then normalized by dividing them by the standard 
deviation of its residuals (Walther et al., 2016). As for the model RDMs, we constructed separate 
fMRI data RDMs for the true and false subsequent memory and overall object processing analyses. 
For the true subsequent memory analysis, the fMRI data RDM represented activity patterns for 
concepts subsequently tested as old, and for the false subsequent memory analysis, the fMRI data 

https://osf.io/ypmdj
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RDM represented activity patterns for concepts subsequently tested as lures. For the overall 
analysis, the RDM represented activity patterns for all study trials. For the fMRI data RDMs for 
the subsequent memory analysis, as for the model RDMs, we computed dissimilarity between all 
pairings of subsequently remembered (or falsely recognized) items, and between all pairings of 
subsequently forgotten (or correctly rejected) items, omitting pairings between different trial types. 
Distance between each item pair was computed as 1 - Pe�D�U�V�R�Q�·�V���F�R�U�U�H�O�D�W�L�R�Q, creating a dissimilarity 
matrix.  
 

Fitting model to data RDMs. Each fMRI data RDM was compared with each theoretical model 
RDM �X�V�L�Q�J�� �6�S�H�D�U�P�D�Q�·�V�� �U�D�Q�N�� �F�R�U�U�H�O�D�W�L�R�Q, and the resulting dissimilarity values were Fisher-
transformed. It is �L�P�S�R�U�W�D�Q�W���W�R���Q�R�W�H�� �W�K�D�W���W�K�H�� �6�S�H�D�U�P�D�Q�·�V���U�D�Q�N���F�R�U�U�H�O�D�W�L�R�Q�� �L�V���Q�R�W���D�I�Iected by the 
weighting procedure for number of trials, since this measure does not depend on the distance 
between pair of items; thus the order of the ranks is equivalent. For the subsequent memory 
analysis, we tested for significant positive and negative similarities between model RDM and fMRI 
data RDMs at the group level using a two-�V�L�G�H�G�� �)�L�V�K�H�U�·�V�� �R�Q�H-sample randomization (10,000 
permutation) test for location with a Bonferroni correction over 6 ROIs. The permutation 
distribution of the test statistic T enumerates all the possible ways of permuting the correlation 
signs, positive or negative, of the observed values and computes the resulting sum. Thus, for a 
two-sided hypothesis, the p-value is computed from the permutation distribution of the absolute 
value of T, calculating the proportion of values in this permutation distribution that are greater or 
equal to the observed value of T (Millard and Neerchal, 2001). For the overall analysis we only 
tested for significant positive similarities between model RDM and fMRI data RDMs (Clarke and 
Tyler, 2014), using a one-sided test, in which the p-value is evaluated as the proportion of sums in 
the permutation distribution that are greater than or equal to the observed sum T (Millard and 
Neerchal, 2001). To find the unique effect of model RDMs, each fMRI data RDM showing a 
significant effect was also compared with each theoretical model RDM while controlling for effects 
�R�I�� �D�O�O�� �R�W�K�H�U�� �V�L�J�Q�L�I�L�F�D�Q�W�� �P�R�G�H�O�� �5�'�0�V�� ���X�V�L�Q�J�� �S�D�U�W�L�D�O�� �6�S�H�D�U�P�D�Q�·�V�� �U�D�Q�N�� �F�R�U�U�H�O�D�W�L�R�Q�V���� While 
correlations between model RDMs were generally low, the object-specific feature model shared 
about 19% variance with the category model (r = 0.44; Fig 3D), likely reflecting the information 
about coarse semantic categories as well as individual objects that is carried by feature similarities 
(Clarke and Tyler, 2014).   
 

Post hoc RSA analyses by memory item type. For regions and models showing significant RSA 
memory effects, we explored whether representations aligned with each item type were 
significantly different from zero. To do this, we created four separate model and fMRI data RDMs 
for items subsequently remembered, forgotten, falsely recognized, and correctly rejected. We then 
followed the same steps as described for the ROI analysis irrespective of memory, but fit model 
RDMS to fMRI data RDMs for each trial type separately. Then, we tested for significant positive 
similarity at the group level using a one-tailed �)�L�V�K�H�U�·�V�� �R�Q�H-sample randomization test (10,000 
permutations) for location. We applied Bonferroni corrections for the 6 preregistered and the 6 
exploratory ROIs. 
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RSA searchlight analysis 
In addition to the targeted ROI analysis, we ran a whole-brain searchlight analysis. This followed 
the same 3 main steps as the ROI analysis (see RSA region of interest analysis). For each voxel, 
the fMRI data RDM was computed from parameter estimates for gray matter voxels within a 
spherical searchlight of radius 7 mm, corresponding to maximum dimensions 5 × 5 × 5 voxels. 
Dissimilarity was again estimated using 1 - �3�H�D�U�V�R�Q�·�V���F�R�U�U�H�O�D�W�Lon. As in the ROI analysis, this fMRI 
data RDM was compared with the model RDMs, and the resulting dissimilarity values were Fisher 
transformed and mapped back to the voxel at the center of the searchlight. The similarity map for 
each model RDM and participant was then normalized to the MNI template space (see Image 
preprocessing). For each model RDM, the similarity maps were entered into a group-level random-
effects analysis and thresholded using permutation-based statistical nonparametric mapping 
(SnPM; http://www.nisox.org/Software/SnPM13/). This corrected for multiple comparisons 
across voxels and the number of theoretical model RDMs. As for the ROIs we performed two-
tailed tests in the subsequent memory analyses and one-tailed tests for the overall analysis. Variance 
smoothing of 6 mm FWHM and 10,000 permutations were used in all analyses. We used cluster-
level inferences with FWE-correction at �¡ = 0.025 in each direction for the two-tailed tests and �¡ 
= 0.05 for the one-tailed test, in both cases with a cluster forming threshold of 0.005 uncorrected. 
All results are presented on an inflated representation of the cortex using the BrainNet Viewer 
(Xia et al., 2013, http://www.nitrc.org/projects/bnv/) based on a standard ICBM152 template. 
 

Univariate fMRI analysis 

In addition to RSA, we used univariate analysis to test whether activation in PrC was related to the 
conceptual confusability of an object, in a replication of Clarke and Tyler (2014), and whether this 
activation predicted memory. We also used activations to define additional ROIs (see Regions of 
interest). The first level GLM for each participant included one regressor of interest for each of 
the 4 experimental conditions (subsequent hits, misses, false alarms, and correct rejections). For 
each condition, we also included 4 linear parametric modulator regressors representing concept 
confusability values for each concept with other concepts in the CSLB property norms (Devereux 
et al., 2014). We first computed a semantic similarity score between each pair of concepts (see RSA 
region of interest analysis, Model RDMs). The concept confusability score of each concept was 
then equal to the sum of squared similarities between it and the other concepts in the set. This was 
equivalent to a weighted sum of pair-wise similarities in which each weight was the between-
concept similarity itself, a measure used in our recent behavioral study (Naspi et al., 2020). As also 
specified in the preregistration, since the results of the concept confusability analysis diverged from 
those of Clarke and Tyler (2014), we ran an additional analysis using a measure of concept 
confusability with a stronger weighting scheme equivalent to theirs. They defined concept 
confusability as the exponential of the ranked similarities of all the paired concepts, which is very 
�F�O�R�V�H���W�R���D���Q�H�D�U�H�V�W���Q�H�L�J�K�E�R�U���V�F�K�H�P�H���L�Q���Z�K�L�F�K���H�D�F�K���F�R�Q�F�H�S�W�·�V���V�L�P�L�O�D�U�L�W�\���L�V���H�T�X�D�O���W�R���L�W�V���V�L�P�L�O�D�U�L�W�\���W�R��
the most similar concept in the set. Due to our larger number of items the exponential weighting 
produced extremely large weights, so we substituted the simpler nearest neighbor scheme (the two 
measures were correlated at r = 0.98). We used an explicit mask including only voxels which had 
at least a 0.2 probability of being in grey matter as defined using the MNI template. To permit 
inferences about encoding condition effects across participants, contrast images were submitted 
to a second-level group analysis (one sample t-test) to obtain t-statistic maps. The maps were 
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thresholded at p < 0.05, FWE-corrected for multiple comparisons at the voxel level using SPM 
(the preregistration specified 3dClustSim in AFNI, but this function had since been updated (Cox 
et al., 2017) so for simplicity we used the SPM default). Only regions whose activations involved 
contiguous clusters of at least 5 voxels were retained as ROIs for subsequent RSA analysis. 
 
Code accessibility 

All analyses were performed using custom code and implemented either in MATLAB or R. All 
code and the data for the behavioral and the fMRI analyses are available through 
https://osf.io/z4c62/. 

Results 

Memory task performance 

In the study phase, participants correctly identified most of the time whether concepts began with 
a consonant or vowel on the incidental encoding task (M proportion = 0.78). Analysis on task 
engagement (see Materials and Methods, Behavioral data) using a GLMM showed that accuracy at 
encoding did not differ according to whether items that were tested as studied were later 
remembered relative to forgotten (�¢ = 0.110, SEM = 0.242, z = 0.456, p = 0.649), or whether items 
that were tested as lures were later falsely recognized relative to correctly rejected (�¢ = 0.051, SEM 
= 0.202, z = 0.251, p = 0.802). Similarly, a linear mixed model did not reveal any difference in RTs 
related to subsequent old items that were later remembered relative to forgotten (�¢ = 0.002, SEM 
= 0.017, t = 0.123, p = 0.902), or subsequent lures that were later falsely recognized relative to 
�F�R�U�U�H�F�W�O�\���U�H�M�H�F�W�H�G�����¢��� ��-0.013, SEM = 0.015, t = -0.873, p = 0.383). Thus, the fMRI subsequent 
memory effects are not attributable to differences in accuracy or time on task at encoding.  
At test, as a simple check on the overall level of performance we used the discrimination index Pr, 
i.e., the difference between the probability of a hit to studied items and the probability of a false 
alarm to novel items. All participants passed the preregistered inclusion criterion of Pr > 0.1. 
Overall, discrimination collapsed across confidence was very good (M = 0.649, SD = 0.131, t(27) = 
26.259, p < 0.001). Discrimination was also above chance for high confidence (M = 0.771, SD = 
0.152, t(27) = 26.868, p < 0.001) and low confidence judgments (M = 0.330, SD = 0.145, t(27) = 
12.014, p < 0.001). This suggests that low confidence responses at test carried veridical memory, 
so we followed our preregistered plan to include trials attracting both high and low confidence 
responses in the subsequent memory analysis. Following an analogous procedure for false 
recognition of similar lures corrected by subtracting the proportion of false alarms to novel items, 
we also found that this was significantly above chance for judgments collapsed across confidence 
(M = 0.271, SD = 0.090, t(27) = 15.996, p < 0.001), and for both high confidence (M = 0.293, SD 
= 0.133, t(27) = 11.618, p < 0.001) and low confidence (M = 0.157, SD = 0.160, t(27) = 5.187, p < 
0.001) considered separately. 
 
We then used a GLMM to quantify the influence of perceptual and semantic variables on memory 
performance according to item status. Our variables of interest were condition (studied, lure, or 
novel), concept confusability, C1 visual confusability, and color confusability (see Behavioral data 
for details). Results revealed modulations of memory by perceptual and semantic variables in line 
with our recent behavioral study (Naspi et al., 2020). People were less likely to recognize studied 
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items for which the low-level visual representations (C1) were more similar to those of their nearest 
neighbor (�¢��= -0.166, SEM = 0.064, z = -2.584, p = 0.015), and also less likely to recognize studied 
items with high concept confusability relative to novel items (�¢��= -0.533, SEM = 0.067, z = -7.963, 
p < 0.001). As expected, concept confusability also had a substantial effect on false recognition of 
similar lures relative to novel items, whereby images whose concepts were more confusable with 
other concepts in the set were less likely to be falsely recognized (�¢��= -0.273, SEM = 0.064, z = -
4.292, p < 0.001). 
 
Preregistered RSA analysis in regions of interest 

Perceptual and semantic representations predict true recognition  

To examine representations engaged during successful encoding we compared the fit of early 
visual, color, animal-nonbiological-plant, and semantic feature models for studied items tested as 
old that were subsequently remembered (number of trials, M = 61.41; range = 60-146) versus 
forgotten (number of trials, M = 19.93; range = 17-104) (Fig. 4A). These comparisons were 
bidirectional, since engagement of perceptual and/or semantic processing in a region might either 
support or be detrimental to later memory. Thus, we used a two-�V�L�G�H�G���)�L�V�K�H�U�·�V���U�D�Qdomization test 
T. In posterior ROIs, engagement of both perceptual and finer-grained semantic representations 
tended to predict successful later recognition. In EVC, the early visual model strongly predicted 
later true recognition of studied items (M = 0.07, 95% CI [0.05, 0.09], T = 1.86, p < 0.001). Thus, 
when the neural patterns at study were representing visual information, items were more likely to 
be correctly recognized. Both the early visual and semantic feature models also predicted true 
recognition in pVTC (M = 0.03, 95% CI [0.02, 0.04], T = 0.82, p < 0.001, and M = 0.02, 95% [CI: 
0.01, 0.04], T = 0.67, p = 0.007, respectively). In contrast, taxonomic semantic representations 
coded more anteriorly were associated with later forgetting. In aVTC and in the LIFG, model fit 
for categorical semantic information represented by the animal-nonbiological-plant domain was 
less for remembered than forgotten studied items (M = -0.01, 95% CI [-0.02, -0.01], T = 0.35, p = 
0.001, and M = -0.02, 95% CI [-0.04. -0.01], T = 0.65, p = 0.004, respectively). Thus, when neural 
patterns in these regions �Z�H�U�H���D�O�L�J�Q�H�G���Z�L�W�K���L�W�H�P�V�· taxonomic categories, participants were less likely 
to successfully recognize them. No other results were significant. 
 
We also checked which representations showed unique effects that predicted memory after 
controlling for effects of other significant models using partial correlation. In pVTC, only the early 
visual model uniquely predicted successful recognition memory for studied items (M = 0.02, 5% 
CI [0.01, 0.03], T = 0.64, p = 0.004) (but see Exploratory ROI analysis). 
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Figure 4. Perceptual and semantic representations predicting subsequent memory for a priori ROIs and models. Plots 
show the relative difference in the strength of perceptual and semantic representations at the group level associated 
with: A, true subsequent memory (greater representational similarity for remembered than forgotten items, positive 
bars); B, false subsequent memory (greater representational similarity for falsely recognized than correctly rejected 
items, positive bars). Error bars represent the standard error of the mean (SEM) across participants. Asterisks indicate 
models for which �6�S�H�D�U�P�D�Q�·�V���U�K�R���G�L�I�I�H�U�H�G���V�L�J�Q�L�I�L�F�D�Q�W�O�\���I�U�R�P���]�H�U�R���D�W���W�K�H���J�U�R�X�S���O�H�Y�H�O�����W�Z�R-�V�L�G�H�G���)�L�V�K�H�U�·�V���U�D�Q�G�R�P�L�]�D�W�L�R�Q��
test for location; Bonferroni correction calculated by multiplying the uncorrected p-value by the number of 
preregistered ROIs, i.e., 6). * p < 0.05, ** p < 0.01, *** p < 0.001 
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Weak perceptual representations predict false recognition  

To examine how the perceptual and semantic representations embodied in our theoretical models 
contributed to subsequent memory for lures, we compared RSA model fit for items that were later 
falsely recognized (number of trials, M = 30.71; range = 26-107) versus correctly rejected (number 
of trials, M = 50.61; range = 54-131) (Figure 4B). In posterior regions, weaker low-level visual 
representations of pictures predicted subsequent false recognition of lures. We observed this 
pattern in both the EVC and the LITG (M = -0.02, 95% CI [-0.04, -0.01], T = 0.66, p = 0.047, and 
M = -0.02, 95% CI [-0.04, -0.01], T = 0.69, p = 0.026, respectively). Thus, when neural patterns in 
these regions were not aligned with the early visual model, items were more likely to be falsely 
recognized. No other results were significant.  
 

Perceptual and semantic object processing irrespective of memory 

Replicating Clarke and Tyler (2014), we also examined the perceptual and semantic representations 
of objects that were reflected in fMRI activity patterns regardless of memory encoding. The results 
(Fig. 5) showed that while visual information is broadly represented posteriorly, activity patterns 
in the aVTC, PrC, and LIFG reflect finer-grained semantic information. Posteriorly, EVC showed 
a strong relationship with the low-level visual model (M = 0.08, 95% CI [0.06, 0.10], T = 2.21, p 
< 0.001), and a weaker but significant relation with the semantic feature model (M = 0.01, 95% CI 
[0.00, 0.01], T = 0.20, p = 0.032). More anteriorly, the low-level visual and semantic feature models 
were both significantly related to activity patterns in pVTC (M = 0.04, 95% CI [0.03, 0.04], T = 
1.00, p < 0.001, and M = 0.02, 95% CI [0.02, 0.03], T = 0.60, p < 0.001, respectively) and in LITG 
(M = 0.01, 95% CI [0.00, 0.02], T = 0.26, p < 0.038, and M = 0.02, 95% CI [0.01, 0.02], T = 0.45, 
p < 0.001, respectively). At the apex of the ventral visual pathway, semantic feature information 
was coded in both the bilateral aVTC (M = 0.01, 95% CI [0.00, 0.01], T = 0.17, p = 0.006) and in 
bilateral PrC (M = 0.01, 95% CI [0.00, 0.01], T = 0.19, p < 0.001). These findings replicated those 
of Clarke and Tyler (2014). The specific semantic properties of objects were also represented in 
the LIFG (M = 0.01, 95% CI [0.01, 0.02], T = 0.30, p = 0.001). 
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Figure 5. Semantic and perceptual representations represented in ROIs regardless of memory encoding. Plots show 
the strength of perceptual and semantic representations at the group-level within patterns of activity along the ventral 
stream and frontal regions. Error-bars are standard error of the mean (SEM) across subjects. Asterisks above and 
below the bars depict p-�Y�D�O�X�H�V���I�R�U���W�H�V�W�V���R�I���Z�K�H�W�K�H�U���H�D�F�K���L�Q�G�L�Y�L�G�X�D�O���6�S�H�D�U�P�D�Q�·�V���F�R�U�U�H�O�D�W�L�R�Q���L�V���J�Ueater than zero (one-
�V�L�G�H�G���)�L�V�K�H�U�·�V���U�D�Q�G�R�P�L�]�D�W�L�R�Q���W�H�V�W���I�R�U���O�R�F�D�W�L�R�Q�����%�R�Q�I�H�U�U�R�Q�L���F�R�U�U�H�F�W�L�R�Q���F�D�O�F�X�O�D�W�H�G���E�\���P�X�O�W�L�S�O�\�L�Q�J���W�K�H���X�Q�F�R�U�U�H�F�W�H�G��p-value 
by the number of preregistered ROIs, i.e., 6). * p < 0.05, ** p < 0.01, *** p < 0.001 

 

We then ran a partial correlation on those ROIs showing significant effects for multiple models. 
As expected, patterns of activity in the EVC were uniquely related to the early visual model (M = 
0.08, 95% CI [0.06, 0.10], T = 2.20, p < 0.001), replicating Clarke and Tyler's (2014) results. Thus, 
the semantic feature model was no longer significant when the early visual model was controlled 
for. More anteriorly, the pattern of activity in the pVTC had unique relations to both low-level 
visual and semantic feature information (M = 0.03, 95% CI [0.03, 0.04], T = 0.96, p < 0.001, and 
M = 0.02, 95% CI [0.01, 0.02], T = 0.54, p < 0.001, respectively). However, after controlling for 
the low-level visual model, activity patterns in the LITG were only uniquely associated with 
semantic feature representations (M = 0.02, 95% CI [0.01, 0.02], T = 0.44, p < 0.001). Thus, like 
Clarke and Tyler (2014), we found that visual information is represented in early visual regions. 
We also replicated their finding that semantic feature similarity information was coded more 
anteriorly in the PrC, and found further, also anterior, regions that showed a similar pattern, in the 
aVTC and the LIFG (see also RSA searchlight fMRI analysis). 
 

Exploratory RSA analysis in regions of interest 

Perceptual and semantic representations in pVTC subdivisions predict true recognition 

In the preregistered analyses reported above, our large pVTC ROI showed evidence of both visual 
and semantic feature representations predicting memory success. We therefore explored whether 
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four subdivisions of this large bilateral region showed distinct effects: the LG, ITG, FG, and PHC 
(see Regions of interest). Moreover, given our strong a priori prediction of involvement of PrC in 
subsequent memory, we ran exploratory analyses in left perirhinal cortex (LPrC) and right 
perirhinal cortex (RPrC), separately. The results are shown below in Figure 6. Posteriorly, in 
bilateral LG, perceptual information related to the early visual model predicted later recognition 
of studied items (M = 0.03, 95% CI [0.01, 0.04], T = 0.74, p = 0.002), as it did in the EVC ROI. 
In contrast, more anteriorly, activity patterns in the FG related to both the low-level visual and 
semantic feature models predicted subsequent true recognition (M = 0.03, 95% CI [0.02, 0.05], T 
= 0.87, p = 0.002, and M = 0.04, 95% CI [0.02, 0.05], T = 1.01, p < 0.001, respectively), as did 
categorical semantic information represented by the animal-nonbiological-plants model in the 
PHC (M = 0.02, 95% CI [0.01, 0.03], T = 0.55, p = 0.019). Lastly, activity related to the categorical 
semantic model in the LPrC predicted subsequent forgetting (M = -0.01, 95% CI [-0.02, 0.00], T 
= 0.28, p = 0.023). 
 

 
Figure 6. Perceptual and semantic representations predicting true subsequent memory in exploratory ROIs. Plots 
show the relative difference in the strength of perceptual and semantic representations at the group-level associated 
with true subsequent memory (greater representational similarity for remembered than forgotten items, positive bars). 
Error bars represent the standard error of the mean (SEM) across participants. Asterisks indicate significance of tests 
�R�I���J�U�R�X�S���O�H�Y�H�O���G�L�I�I�H�U�H�Q�F�H�V���R�I���6�S�H�D�U�P�D�Q�·�V���U�K�R���I�U�R�P���]�H�U�R�����W�Z�R-�V�L�G�H�G���)�L�V�K�H�U�·�V���U�D�Q�G�R�P�L�]�D�W�L�R�Q���W�H�V�W���I�R�U���O�R�F�D�W�L�R�Q�����%�R�Q�I�H�U�U�R�Q�L��
correction calculated by multiplying the uncorrected p-value by the number of exploratory ROIs, i.e., 6). * p < 0.05, 
** p < 0.01, *** p < 0.001 

 

A partial correlation analysis for the FG (which showed effects of multiple models) confirmed that 
both the early visual and semantic feature models were uniquely associated with later true 
recognition (M = 0.02, 95% CI [0.01, 0.03], T = 0.58, p = 0.034, and M = 0.03, 95% CI [0.01, 
0.04], T = 0.71, p = 0.002, respectively). Thus, both simple visual and object-specific semantic 
information contributed to memory after controlling for each other.  
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Perceptual representations in the early visual cortex predict true recognition 

Lastly, following our main analyses of true and false memory encoding, we wanted to check for 
evidence that the key representations predicting later memory differed according to the type of 
memory (true or false). Thus, we compared the fit of our theoretical models for studied items 
tested as old and subsequently remembered versus those tested as lures and subsequently falsely 
recognized. Results showed that low-level visual information mapped in EVC was stronger for 
true than false recognition (M = 0.04, 95% CI [0.02, 0.06], T = 1.16, p < 0.001). No other results 
were significant at the Bonferroni-corrected threshold of 6 ROIs, but without a correction the 
theoretically important object-specific semantic representations in FG were also stronger for true 
than false recognition (M = 0.02, 95% CI [0.00, 0.04], T = 0.61, p = 0.030). 
 

Post hoc RSA analyses by memory item type  

Where the RSA analyses showed that representational similarity differed significantly according to 
subsequent memory, we explored which trial types �² hits or misses, and falsely recognized or 
correctly rejected �² carried representations of the relevant information. To do this, we asked 
whether representational similarity was significantly different from zero for each trial type 
separately (Table 1).  For all models and ROIs where the alignment of neural patterns with a 
perceptual or semantic model positively predicted true memory, significant representational 
similarity was present only for subsequently remembered items. Examples were low-level visual 
representations in EVC and pVTC, and fine-grained semantic representations in pVTC. In 
contrast, for almost all models and ROIs in which the alignment of neural patterns with the model 
predicted forgetting, significant representational similarity was present only for forgotten items. 
This pattern was found in aVTC and LIFG, and in the exploratory analysis, in LPrC. Lastly, in the 
visual regions where the alignment of neural patterns with low-level visual representations 
predicted correct rejection of lures in early and late visual regions, there was significant 
representational similarity only on correct rejection trials.  
 

Table 1. Post hoc analysis in regions associated with true and false subsequent memory 
in the preregistered and exploratory analysis. 
 

 
True subsequent memory (Sub hits > Sub misses) 

Preregistered 
ROIs 

Early visual model Color model A-N-P model Semantic feature model 
M CI M CI M CI M CI 

EVC 
   Sub hits 
   Sub misses 

 
0.07*** 
0.02 

 
0.05-0.09 
0.01-0.03 

      

pVTC 
   Sub hits 
   Sub misses 

 
0.05*** 
0.01 

 
0.04-0.06 

-0.01-0.02 

     
0.04*** 
0.01 

 
0.04-0.05 

-0.01-0.03 
aVTC 
   Sub hits 
   Sub misses 

     
0.00 
0.02** 

 
0.00-0.01 
0.01-0.03 

  

LIFG 
   Sub hits 
   Sub misses 

 
 
 

 
 
 

 
 
 

 
 
 

 
-0.01 
0.02* 

 
-0.01-0.00 
0.01-0.03 

 
 
 

 
 
 



Naspi et al. �‡ Neural representations and memory encoding 
 

 

Exploratory 
ROIs 

    
        

LG 
   Sub hits 
   Sub misses 

 
0.04*** 
0.00 

 
0.03-0.05 

-0.02-0.02 

      

FG 
   Sub hits 
   Sub misses 

 
0.04*** 
0.00 

 
0.03-0.05 

-0.02-0.02 

     
0.04*** 
0.00 

 
0.03-0.05 

-0.02-0.01 
PHC 
   Sub hits 
   Sub misses 

 
 

 
 
 

   
0.04*** 
0.01* 

 
0.03-0.05 
0.00-0.03 

  

LPrC 
   Sub hits 
   Sub misses 

 
 

 
 

   
0.00 
0.03*** 

 
0.00-0.01 
0.01-0.04 

  

 False subsequent memory (Sub FAs > Sub CRs) 
Preregistered Early visual Color A-N-P Semantic feature 
ROIs M CI M CI M CI M CI 
EVC 
   Sub FAs 
   Sub CRs 
LITG 
   Sub FAs 
   Sub CRs 

 
0.01 
0.04*** 
 
0.00 
0.03*** 

 
-0.01-0.03 
0.03-0.06 

 
-0.01-0.01 
0.02-0.05 

      

         

Mean estimate (M) and confidence intervals (CI) are reported in the table for each trial type. Asterisks indicate models 

�I�R�U���Z�K�L�F�K���6�S�H�D�U�P�D�Q�·�V���U�K�R���G�L�I�I�H�U�H�G���V�L�J�Q�L�I�L�F�D�Q�W�O�\���I�U�R�P���]�H�U�R���D�W���W�K�H���J�U�R�X�S���O�H�Y�H�O�����R�Q�H-�V�L�G�H�G���)�L�V�K�H�U�·�V���U�D�Q�G�R�P�L�]�D�W�L�R�Q���W�H�V�W��

with Bonferroni corrections for preregistered and exploratory ROIs, i.e., 6 each). A-N-P = animal-nonbiological-plant; 

FAs = false alarms; CRs = correct rejections. * p < 0.05; ** p < 0.01; *** p < 0.001 

 

Preregistered RSA searchlight analysis 

Perceptual and semantic representations associated with memory encoding 

The RSA searchlight analysis tested for any further brain regions coding for perceptual and 
semantic information associated with memory encoding (Fig 7 and Table 2). The true subsequent 
memory models showed significant fit to activity patterns in several areas beyond the a priori ROIs. 
The color similarity model was related to patterns in the right parietal opercular cortex, superior 
frontal gyrus, and precentral gyrus, and this representation at encoding predicted later successful 
recognition of studied items. Fine-grained semantic features represented in the right lateral 
occipital cortex (LOC) also predicted true recognition. Coarse categorical semantic representations 
in right inferior frontal gyrus (RIFG; BA44/45/47) and frontal pole (FP) were associated with 
later forgetting, paralleling the findings for the a priori ROI in LIFG (BA44/45). 
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Figure 7. RSA searchlight results for perceptual and semantic models. The figure shows regions in which multivoxel 
activity pattern predicted successful subsequent true recognition (hot map) and unsuccessful true recognition (i.e., 
subsequent forgetting, cool map). All significant clusters are shown at the FWE-corrected threshold used for analysis 
(see Materials and Methods: RSA searchlight analysis). No suprathreshold voxels survived for the subsequent false 
recognition models. Similarity maps are presented on an inflated representation of the cortex based on the normalized 
structural image averaged over participants. 

 

Table 2. RSA searchlight results showing perceptual and semantic effects on successful 
true memory encoding  

Regions Cluster 
extent 

Cluster-level 
p(FWE) 

Pseudo-t x y z 

Early visual       
     R occipital pole 2493 0.005 10.04 18 -93 9 
     R lingual gyrus   8.91 15 -78 -6 
     L occipital pole   7.20 -12 -96 6 
Color       
     R parietal operculum cortex 1756 0.010 4.77 48 -21 24 
     R superior frontal gyrus 
     R precentral gyrus 

 
 

 
 

3.91 
3.58 

9 
18 

3 
-18 

66 
69 

Animal-nonbiological-plant       
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MNI coordinates and significance levels are shown for the peak voxel in each cluster. Anatomical labels are 
provided for peak locations in each cluster; Effects in clusters smaller than 20 voxels not shown; OT = Occipito-
temporal division. 
 

Table 2. RSA searchlight results showing perceptual and semantic effects on successful 
true memory encoding  

 

MNI coordinates and significance levels are shown for the peak voxel in each cluster. Anatomical labels are provided 
for peak locations in each cluster; Effects in clusters smaller than 20 voxels not shown; OT = Occipito-temporal 
division. 

 

Perceptual and semantic object processing irrespective of memory 

Searchlight analysis was also conducted for the perceptual and semantic model RDMs across all 
trials regardless of memory encoding (Fig. 5 and Table 3). The models showed significant fit to 
multivoxel activity patterns in several areas beyond the a priori ROIs. In particular, the effects for 
the color model were largely restricted to the right lateral occipital cortex, right middle temporal 
gyrus, and intracalcarine cortex, but also extended into the left lateral occipital cortex and 
supramarginal gyrus. Categorical semantic representations represented by the animal-
nonbiological-plant domain were largely restricted to posterior parts of the ventral stream, 

     R inferior frontal gyrus (BA44) 1405 0.012 6.05 54 15 27 
     R inferior frontal gyrus (BA45) 
     R frontal pole 

 
 

 
 

5.27 
4.35 

52 
51 

24 
39 

18 
3 

     R inferior frontal gyrus (BA47)   3.34 33 30 -18 
Semantic feature       
     R lingual gyrus 1230 0.018 4.44 12 78 -12 
     R lateral occipital cortex   4.32 42 -75 -12 
     R occipital fusiform gyrus 
     R inferior temporal gyrus (OT) 

 
 

 
 

4.29 
3.43 

39 
45 

-72 
-60 

-12 
-15 

Regions Cluster 
extent 

Cluster-level 
p(FWE) 

Pseudo-t x y z 

Early visual       
     R occipital pole 2493 0.005 10.04 18 -93 9 
     R lingual gyrus   8.91 15 -78 -6 
     L occipital pole   7.20 -12 -96 6 
Color       
     R parietal operculum cortex 1756 0.010 4.77 48 -21 24 
     R superior frontal gyrus 
     R precentral gyrus 

 
 

 
 

3.91 
3.58 

9 
18 

3 
-18 

66 
69 

Animal-nonbiological-plant       
     R inferior frontal gyrus (BA44) 1405 0.012 6.05 54 15 27 
     R inferior frontal gyrus (BA45) 
     R frontal pole 

 
 

 
 

5.27 
4.35 

52 
51 

24 
39 

18 
3 

     R inferior frontal gyrus (BA47)   3.34 33 30 -18 
Semantic feature       
     R lingual gyrus 1230 0.018 4.44 12 78 -12 
     R lateral occipital cortex   4.32 42 -75 -12 
     R occipital fusiform gyrus 
     R inferior temporal gyrus (OT) 

 
 

 
 

4.29 
3.43 

39 
45 

-72 
-60 

-12 
-15 
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highlighting the coarse nature of object information represented in the posterior ventral temporal 
cortex. This included the right temporal fusiform cortex, the right lingual gyrus, and the posterior 
division of parahippocampal cortex, but also extended into the middle temporal lobe. In contrast, 
representation of finer-grained semantic properties of objects extended more anteriorly in the 
ventral pathway beyond the preregistered ROIs, into bilateral hippocampus, temporal pole and 
ventromedial frontal regions. 
 

 
Figure 8. RSA searchlight results for perceptual and semantic models. The figure shows regions in which 
multivoxel activity pattern was associated with object processing (i.e., irrespective of memory encoding). All 
significant clusters are shown at the FWE-corrected threshold used for analysis (see Materials and Methods: RSA 
searchlight analysis). Similarity maps are presented on an inflated representation of the cortex based on the 
normalized structural image averaged over participants. 

 

Table 3. RSA results showing perceptual and semantic effect of object processing 

Regions Cluster 
extent 

Cluster-level 
p(FWE) 

Pseudo-t x y z 

Early visual       
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MNI coordinates and significance levels shown for the peak voxel in each cluster. Anatomical labels are provided 
for locations in each cluster. Effects in clusters smaller than 20 voxels not shown. 
 

Preregistered univariate fMRI analysis 

Encoding activity predicting true and false recognition  

Univariate analysis was run to derive ROIs for RSA based on subsequent memory effects in 
regions where prior literature is suggestive, but not clear, regarding their involvement. This showed 
significant activation for subsequently remembered > subsequently forgotten items in the LITG 
(cluster size: k = 13, p < 0.05 FWE). No significant activation was revealed for subsequently falsely 
recognized > subsequently correctly rejected items after FWE correction.  
 

Parametric effect of concept confusability 

Finally, we were interested in the specific role of the PrC, and possibly aVTC, in processing 
conceptually confusable objects. These regions were not related to parametric changes in concept 
confusability regardless of memory encoding. Therefore, we did not replicate Clarke and Tyler 
(2014)�·�V���I�L�Q�G�L�Q�J���R�I���L�Q�F�U�H�D�V�H�G���D�F�W�L�Y�D�W�L�R�Q���I�R�U���P�R�U�H��conceptually confusable objects (uncorrected p = 

     R occipital pole 4844 0.002 13.10 18 -96 12 
     L occipital pole   13.02 -15 -99 6 
     R occipital fusiform gyrus   11.53 18 -78 -12 
Color       
     R lateral occipital cortex 1121 0.019 5.97 45 -75 -3 
     R middle temporal gyrus    3.45 36 -57 15 
     R intracalcarine cortex   3.45 21 -72 3 
     L lateral occipital cortex 714 0.044 5.67 -42 -81 -3 
     L supramarginal gyrus   3.66 -60 -48 15 
Animal-nonbiological-plant       
     R lateral occipital cortex 2110 0.005 6.05 45 -78 6 
     R lingual gyrus   5.98 30 -39 -6 
     R temporal fusiform cortex   4.18 39 -54 -18 
     L parahippocampal cortex 3865 0.002 5.14 -18 -39 -21 
     L middle temporal gyrus   4.58 -63 -42 0 
     L supramarginal gyrus   4.43 -60 -42 30 
Semantic feature       
     L lateral occipital cortex 
     R lateral occipital cortex 

28111 
 

0.000 
 

10.08 
9.69 

-48 
51 

-75 
-72 

9 
6 

     R temporal fusiform cortex 
     L temporal fusiform cortex 

  
 

8.12 
7.10 

42 
-45 

-51 
-60 

-15 
-15 

     L middle temporal gyrus 
     L hippocampus 
     L perirhinal cortex 
     R inferior frontal gyrus (BA45) 
     R inferior frontal gyrus (BA44) 
     R ventromedial prefrontal cortex 
     L ventromedial prefrontal cortex 
     L inferior frontal gyrus (BA44) 
     L ventral anterior temporal lobe 
     L inferior frontal gyrus (BA45) 
     L temporal pole 
     R hippocampus 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

6.46 
5.50 
4.58 
4.20 
4.10 
4.08 
4.03 
4.02 
3.84 
3.62 
3.60 
3.34 

-60 
-33 
-27 
51 
51 
9 
-6 
-51 
-45 
-51 
-36 
33 

0 
-27 
-12 
27 
18 
51 
51 
18 
-9 
27 
3 
-12 

-18 
-12 
-36 
0 
9 
-12 
-12 
12 
-39 
0 
-36 
-18 
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0.139 and p = 0.05 for PrC and aVTC, respectively). Subsequent memory effects were also not 
significant at the preregistered FWE-corrected threshold. However, at an uncorrected threshold, 
activity associated with concept confusability was greater for subsequently forgotten than 
remembered items in right PrC (cluster size: k = 12, p < 0.005) and bilateral aVTC (right cluster 
size: k = 19, p < 0.001; left cluster size: k = 6, p < 0.001). Activity associated with concept 
confusability was also greater for subsequently falsely recognized than correctly rejected items in 
bilateral PrC (right cluster size: k = 35, p < 0.005; left cluster size: k = 11, p < 0.005), and right 
aVTC (cluster size: k = 22, p < 0.005), and for subsequently falsely recognized than remembered 
items in bilateral PrC (right cluster size: k = 25, p < 0.005; left cluster size: k = 12, p < 0.005), and 
right aVTC (cluster size: k = 16, p < 0.005). 
 

Discussion 

Our results show that semantic and perceptual representations play distinct roles in true and false 
memory encoding. By combining explicit models of prior conceptual knowledge and image 
properties with a subsequent memory paradigm, we probed their separate contributions to 
encoding of objects. Fine-grained perceptual and semantic processing in the ventral visual pathway 
both predicted later recognition of studied objects, while coarser-grained categorical semantic 
information processed more anteriorly predicted forgetting. In contrast, only weak low-level visual 
representations in posterior regions predicted false recognition of similar objects. The data provide 
the first direct tests of fuzzy-�W�U�D�F�H�� �W�K�H�R�U�\�·�V��assumptions about how memories are encoded, and 
suggest that semantic representations may contribute to specific as well as gist memory phenomena 
(Brainerd and Reyna, 2002).  
 
Our results for the early visual model in the ROI and searchlight analyses converge with studies 
showing univariate subsequent memory effects in the same regions (Kim and Cabeza, 2007; 
Kirchhoff et al., 2000; Pidgeon and Morcom, 2016; Wagner et al., 1998). Distributed low-level 
visual representations in EVC predicted successful later recognition of specific studied objects. 
The C1 HMax representations embody known properties of primary visual cortex relating to local 
edge-orientations in images (Kamitani and Tong, 2005), and this model clustered our object images 
by overall shape and orientation (Fig. 2). These results converge with Davis et al. (2020)�·�V���U�H�F�H�Q�W 
finding that RSA model fit for an early layer of a deep convolutional neural network (DNN) in 
early visual cortex predicted later memory for pictures. Our data point to specific lower-level 
properties available in the presented images that contribute to memory. The searchlight analysis 
showed that these properties also include color (Fig 7). The roles of the regions with significant 
memory effects are not clear, but overall, color information was represented in LOC as expected.   
 
In late visual regions, such as LG and FG, activity patterns fitting the early visual model also 
predicted true recognition (Fig. 5 and 7), as hypothesized based on activation studies (Garoff et 
al., 2005; Kim, 2011; Kirchhoff et al., 2000; Stern et al., 1996; Vaidya et al., 2002). We also found 
that object semantic features coded in FG predicted true recognition. These pVTC regions receive 
low-level properties as input to compute complex shape information (Kanwisher, 2001). Emerging 
data suggest that the FG processes visible (but also verbalizable) semantic features, supporting 
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extraction of meaning from vision. Devereux et al. (2018) combined deep visual and semantic 
attractor networks to model the transformation of vision to semantics, revealing a confluence of 
late visual representations and early semantic feature representations in FG (see also Tyler et al., 
2013). This converges with Martin et al.'s (2018) finding that FG patterns aligned with rated visual 
object features. Davis et al. (2020) reported that in FG the mid-layer of a visual DNN predicted 
memory for object names when the objects were forgotten, while semantic features of the object 
images predicted memory for the images when the names were forgotten. Our findings clarify that 
both image-based visual codes and non-image-based semantic feature codes are represented here 
during successful encoding. Together, the data further suggest that this initial extraction of visual 
semantic features is important for the effective encoding of memories of specific objects, but not 
false recognition of similar objects.  
 
More anteriorly, taxonomic categorical representations in aVTC and LIFG, as well as (in the 
searchlight analysis) RIFG, predicted forgetting of studied items. In an exploratory result, LPrC 
showed a similar pattern. These findings support the idea that coarse-grained domain-level 
semantic processing is detrimental to memory for specific objects. Bilateral IFG typically shows 
strong univariate subsequent memory effects for nameable object stimuli (Kim, 2011). It  is thought 
to support selection and control processes involved in elaborative semantic encoding (Jackson et 
al., 2015; Prince et al., 2007). Object-specific semantic information was also represented in this 
region, but did not predict recognition. In contrast, taxonomic semantic information was not 
represented on average across trials, but was present only for forgotten items, suggesting that 
processing this information at encoding was detrimental to memory. One possibility is that 
domain-level taxonomic processing impeded selection of specific semantic information. Another 
possibility, in line with the levels of processing principle, is that the object naming encoding task 
did not strongly engage semantic control operations that promote subsequent memory (Craik and 
Lockhart, 1972; Otten and Rugg, 2001). Object naming depends on basic-level object-specific 
processing in the FG, consistent with the current findings (Taylor et al., 2012). Future studies can 
test this by manipulating cognitive operations at encoding to determine whether the 
representations promoting later memory are also task-dependent.  
 
The absence of any association between object-specific representations in PrC and encoding was 
unexpected, although we replicated Clarke and Tyler (2014)�·�V���F�H�Q�W�U�D�O���I�L�Q�G�L�Q�J���W�K�D�W��PrC represents 
object-specific semantic features. The PrC encodes complex conjunctions of visual (Barense et al., 
2012; Bussey et al., 2002) and semantic features (Bruffaerts et al., 2013; Clarke and Tyler, 2014) 
that enable fine-grained object discrimination and may contribute to later item memory (Brown 
and Aggleton, 2001; Yonelinas et al., 2005). As the object-specific semantic model fit embodied 
both shared and distinctive feature information, we ran a further, univariate analysis to examine 
the directional effect of shared features (concept confusability). We did not replicate Clarke & 
Tyler's (2014) finding that PrC activation was higher overall for more confusable objects, 
interpreted in terms of feature disambiguation. However, we found preliminary evidence that in 
both PrC and aVTC, activity correlating with concept confusability predicted forgetting of studied 
objects. This result is consistent with our finding that concept confusability strongly impairs true 
recognition, as well as discrimination between studied objects and lures (Naspi et al., 2020), results 
replicated here. These data also suggest an interpretation of Davis et al.'s (2020) report that 
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semantic feature model fit in PrC predicted later true recognition of object concepts when their 
pictures were forgotten, which may correspond to nonspecific encoding.  
 
An important and novel feature of our study is the investigation of the representational content 
associated with encoding of false memories. Our results revealed that weak visual representations 
coded in EVC and extending to LITG predicted later false recognition (Fig. 5), and model fit 
differed significantly from true recognition. This supports fuzzy-trace theory�·�V proposal that visual 
detail is encoded in specific memory traces that confer robustness to later true recognition 
(Brainerd and Reyna, 2002). Several univariate fMRI studies of memory retrieval have shown 
greater early and late visual cortex activation for true than false memories of objects (Dennis et al., 
2012; Karanian and Slotnick, 2017, 2018; Schacter and Slotnick, 2004). Of the few encoding 
studies, two have found occipital activation predicting true but not false recognition (Dennis et al., 
2008; Kirchhoff et al., 2000; Pidgeon and Morcom, 2016; but see Garoff et al., 2005). Here, we 
not only show that visually specialized regions are engaged more when encoding true than false 
memories, but also characterize the visual features involved. Thus, insufficient early visual analysis 
at encoding leads to poor mnemonic discrimination of similar lures. This may prevent later 
recollection of details of the studied item that would allow people to reject the similar lures 
(recollection rejection; Brainerd et al., 2003). The RSA result is also consistent with the behavioral 
increase in false recognition for more visually confusable objects (see also Naspi et al., 2020). 
 
We did not find any evidence here that semantic processing contributes to false memory encoding, 
and in FG, semantic feature representations impacted true memory encoding more strongly. 
Clearly, we cannot place weight on the null result, and our models did not comprehensively address 
all potential semantic processes but focused on concept-level processes we have shown to 
contribute behaviorally in this task (Naspi et al., 2020). Lateral and ventral temporal regions 
previously implicated in false memory encoding in verbal tasks did not show significant effects 
here (Dennis et al., 2007; Chadwick et al., 2016). These areas may support higher-level verbal 
semantics linking studied items to lures. Nonetheless, both in the current task and following deep 
semantic judgments at encoding (Naspi et al., 2020), concept confusability reduced lure false 
recognition relative to novel objects as well as true recognition. An intriguing possibility is that the 
semantic processes reducing lure false recognition operates at retrieval rather than at encoding. 
This hypothesis will be tested using RSA analysis of retrieval phase brain activity in this task. 
 
In conclusion, we have revealed some of the visual and semantic representations that allow people 
to form memories of specific objects and later reject similar novel objects. This is the first �² to our 
knowledge �² preregistered study of neural representations in memory encoding, and the first probe 
of representations predicting false recognition. Using previously validated representational models, 
we were able to disentangle low-level image properties from semantic feature processing. The data 
provide novel support for theoretical assumptions implicating visual detail in specific memory 
encoding, but suggest that semantic information may contribute to specific as well as gist memory. 
Our approach offers a path by which future studies can evaluate the respective roles of encoding 
and retrieval representations in true and false memory. 
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