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Perceptual and semantic representations at encoding
contribute to true and false recognition of objects
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When encoding new episodic memories, visual and semantic processing are proposed to
make distinct contributions to accurate memory and memory distortions. Here, we used
functional magnetic resonance imaging (fMRI) and preregistered representational
similarity analysis (RSA) to uncover the representations that predict true and false
recognition of unfamiliar objects. Two semantic models captured coarggained
taxonomic categores and specific object features, respectively, while two perceptual
models embodied lowlevel visual properties. Twentyeight female and male participants
encoded images of objects during fMRI scanning, and later had to discriminate studied
objects from gmilar lures and novel objectsn a recognition memory testBoth perceptual
and semantic models predicted true memory. When studied objectgere later identified
correctly, neural patterns corresponded to Iovevel visual representations of these object
images n the early visual cortex, lingual, and fusiform gyri. In a similar fashion, alignment
of neural patterns with finegrained semantic feature representations in the fusiform gyrus
also predicted true recognition. However, emphasis on coarser taxonamepresentations
predicted forgetting more anteriorly in the anterior ventral temporal cortex, left inferior
frontal gyrus and, in an exploratory analysis, left perirhinal cortex. In contrast, false
recognition of similar lure objects was associated wittveaker visual analysis posteriorly
in early visual and left occipitotemporal cortexThe results implicate multiple perceptual
and semantic representations in successful memory encoding and suggest that fine
grained semantic as well as visual analysis coitiutes to accurate later recognition, while
processing visual image detail is critical for avoiding false recognition errors.
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Significance Statement

People are able to store detailed memories of many similar objects. We offer new insights into the
encoding of these specific memories by combining fMRI with explicit models of how image
propertiesiad object knowledge are represented in the brain. When people procegsaadthe

visual properties in occipital and posterior temporal cortex, they were more likely to be recognize
the objects later, and less likely to falsely recognize similarlalgentsast, while objespecific

feature representations in fusiform gyrus predicted accurate memorgraioaseategorical
representations in frontal and temporal regions predicted forgetting. The data provide the first
direct tests of theoretlcassumptions about encoding true and false memories, suggesting that
semantic representations contribute to specific memories as well as errors.
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Introduction

Humans are able to remember objects in great detail and discriminate them in memory from others
that are similar in appearance and(§taading, 197.3)o achievehis,highly specific memories

must be encodeduccessfubbject encoding engagelsverse corticategionsalongsidethe
hippocampug(Kim, 2011) Theseareas interseatith networksinvolved in visual object
processingnd semantic cogniti¢Binder et al., 2009; Clarke and Tyler, 28bd)ever Jittle is

known about th@eural operatiortheseregions suppoduring encodingAccording to fuzzy

trace theorythe specific memory traces that contribute to true recogiepemcon encoding

of perceptual features, wis@mantigistrepresentatiorgomote both true and falsscognition
(Brainerdand Reyna, 1990However, recent data suggest that perceptual relations between
studi@ items and lures can also trigger false recogfhi@spi et al., 2020Here, weused
functional magnetic resonance imaging (fliRlyepresentational similarity analgRISA)to
investigatehe perceptual and semantic representatingeged that allow peoplerégognize

these same objetaseramongperceptually and semantically similar. lures

In line with fuzzytrace theorya fewfMRI studies havehownstrongeractivation iroccipitc
temporal regions when people later successfully recognize specific studied objects than when they
misrecognizsimilarlures(Garoff et al, 2005; Gonsalvest al., 2004; Okadmnd Stark, 2005)
However, activation of simijaosteriorareafhasalsobeenassociated with later false recognition
(Garoff et al., 2005and activation in left inferior frontal gyAasegion typically associated with
semantiprocessingwith later true recognitigRidgeon and Morcom, 2018)ch results appear

to challenge any simple mapping between perceptual and semantic processErandridise
recognition(see also Naspi et al., 202@)wever, one cannot infer type of processing based on
presence or absence of activation aldexe we investigatethe underlying processes that give
rise to such effects,igRSA to test whethgatterns of neural similarity that indicate visual and
semantic processing predict subsequent memory performance.

Object recognition involvessualanalysis and the computation of mearpngceeding ian
informationalgradient along the ventral vispathway(Clarkeand Tyler, 2015)The coarse
semantiadentityof an object emerges gradually from vision in posterior cimitiaegng lingual,
fusiform, parahippocampal, and inferior temporattgtintegrag semantic featurespturing
taxonomic relationshigBeverewset al, 2013; Mahoat al, 2009; Tyler et al., 20IB)elingual
and fusiformgyriin particulararealsoengagedvhen memories of objects arecoaed (Kim,
2011) At the apex ofheventral pathway, the perirhinal cortex provtue$inergrainedeature
integration requiretd differentiag¢ similar objectéClarke and Tyler, 2014; Devlin Bride, 20Q7
WintersandBussey, 200%ndactivationherepredicts latememoryfor specificobjectdChen et
al., 20190ther researchers ascttiiis rolemorebroadlyto the anterior ventral temporal ext
considered semantic huthat integratemodalityspecific featuraato transmodal conceptual
representatioriftambon Ralph et al., 201B@yondhe ventrastreamleftinferdateraprefrontal
regionssupporingcontrolled, selective semantic processaglsaritical formemoryencoding
(Gabrieli et al., 1998Bim, 2011)

According to theorythe perceptial and semantiepresentationesncoded in memory traces
reflecthowitems wereriginaly processd(CraikandLockhart, 1972; OtteandRugg, 2001\Ve
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thereforeexpeatdthat some otheseventral pathway and inferior fromgbresentationsould

be revealedn distinctdistributed activitpatterrs giving rise to later true and false recognition
We quantifiegperceptuatepresentationa terms oflow-level visual attributes of objeobges
andsemanticepresentation® | W KH R E M Hifrt&fisof EnRi@daks &S tAkdhomic category
membership as well #seir specific semantic featuréde used thesenodelsto identify
representational similarity patterns between olbjeeiscodingisinga novel approach that
combinedRSAand the subsequent memory paradigasinglestep Thisallowed us tdest
wherehe strength of perceptual and semabijict representations predstibsequerdgccurate
memory ad false recognition of similar lures

Materials and Methods

Participants

Twentyeightrighthanded adults aged-3® years underwent fMRI scanr(iMig= 23.07 years,

SD = 3.54; 18 females, 10 rgal@ata froma furthe# participants were excluded duedcbnical
failuresAll participants also spokeaglishfluently(i.e., had spokefnglish sincéhe age 05 or

livedin an Engliskspealng country for at least 10 ygaasdhad normal or correctetb-normal
vision.Exclusion criteriaverea history of a serious systemic psychiatric, medical or a neurological
condition, visual issues precluding good visibility of the task in the scanstandard MRI
exclusion criterig(see https://osf.io/lypmdj for preregistered criteriaParticipants were
compensatedrfancially They were contacted by local advertisement and provided informed
consent. The study wapproved by the University of Edinburgh Psychology Research Ethics
Committee (Refl161819/7). All the followingproceduresverepreregstered unless otherwise
specified.

Stimuli

Stimuli were pictures of objects corresponding tof48&638 basievel concepia The Centre

for Speech, Language and the Brain concept property(tieer@SLB norm$)everewet al,

2014) Theseweremembers of 24 superordinate categofpplian¢éird Body ParClothing
Containddrink, FishFloweFoogdFruit Furniturénvertebratéichenwdrand AnimaMiscellaneous,
MusicSea Creatufeagl Toy TregVegetabehicleWater Vable Weapdnand 238 were living
thingsand 253 notliving things. We sourced two images for eachléeasiconcept. Qhe982
images]80werea subset dheimages used Itarke and Tyler (201480 were compiled from

the Bank ofStandardize8timuli(BOSS; Brodelet al, 2014)and the remaining 622 were taken
from the Internet. Each stuligt included single exemplar images of €ft@ar 327concepts

Of thesehalfwere subsequently tested as oldhalidiere subsequently tested test as kaehb.

test list consisted of 491 itert®4 (or 163) studied images, 164 (or 163) sime(ileimages

of different exemplasf studied basilevel concepts), and 163 (or 164) novel items (i.e., images
of basielevel concepts thatdnot beenstudied). Three fillerials prefaced the test phdsar

each participant, living and Amng concepts were randomly allocated to the conditions with
equal probabillity, i.e., to be studied/lure or novel iteach study angstlist waspresentetch

a uniqueandomtrial order.
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Procedure

The expament comprised a scanned encoplirage followed by a recognition test phase outside
the scaner. Stimuli were presenteingMATLAB 2019b (The MathWorks Inc., 20a8p
Psycioolbox(Version 2.0.3&Kleineret al, 2007)In the scannertimuli wereviewedn a back
projection screeniaa mirror attached to the head coil. Earplugs were employed to reduce scanner
noise, and head motion wasimizedusing foam pads. During tsudyphase participants
viewed one image at a time, and they were asked to judgetivetiree of each objestarted

with a consonant or with a vowedspondingvith eitherindex fingewia handheld filveoptic
responsdriggers By requiringparticipantdo retrieve the object names, we ensured that they
processed the stimuli at both visual and senargisParticipants were not informed of a later
memory tesimages were presented centrally against a white background forT306 wes
followed by a black fixation cragsgh duration sampderom integer values @fto 10 swith a

flat distributio, andthena red fixation cross of 500 ms prior to the nextfiiahstimulus onset
asynchrony (SOA)f 3-11 s(M = 6). At test participants viewed one image at a time $or 3
followed by a black fixation crdes 500 ms, and thgydged eacbictue DV "ROGu RU "QHz
indicaing at the same tim&hether this judgment was accompanied by high or low confidence
using one of 4esponseon a computekeyboard. Mappings of responses to hands were
counterbalanced at both encoding and retrieval.

fMRI acquisition

,PDIJHV ZHUH DFTXLUHG ZLWK D 6LHPHQV ODJQHWRP 6N\U|
Research Cert{QMRI) at the Royal Infirmaoy Edinburgh. P*-weighted functional images
were collected by acquiring multiple g¢che sequences for eacho-planarfunctionalvolume
(repetition time (TR) = 1700 ms, echo t{fE) = 13 mgechel), 31 (eche2) ms and49 ms
(echae3)). Functional dataere collected overséanner rungf 360 volumes, each containing 46
slices (interleaved acquisitionx80 matrix3 mm x 3 mm x 3 mm, flip angle= 73°). Each
functional session lasted ~ 10 min. Before functional scanninggsoigiion T-weighted
structural images were collected WRh= 2620 ms, TE = 49 ms a 24cm field of view (FOV)
and a slice thickness of-théh. Two field mapmagnitudemagegTE = 492 msand 738mg
and gohase differendmage were collectafterthe 2" functional runAt the endT2-weighted
structural images weaksoobtained TR=6200ms andlTE = 120 m3.

Image preprocessing

Except where statedyage processifgilowedproceduregpreregistered https://osf.io/ypmd]

and wagonducted in SPM X27487)n MATLAB 2019b.The raw fMRI time series wdinst
checkedo detect artefagblumeghat were associated wiigh motion omvere statisticaltliers

(e.g. due tacanner spike3Ne checketiead motiorper run usingan initial realignment step
classifyingalumes aartefactsf their absolute motiowas> 3 mm or 3 deg, dpetweerscan

relative motiorr 2 mm or 2 degOutlier scans were then defined as thosenaiithalizednean

or standard deviatidof absoluteraluesr differences between sgang SD from the mean for

the runVolumes identified as containing artefaets replaced with the mean of the neighboring
non-outlier volumes, or removed if at the end of a run. If more than half of the scans in a run had
artefacts, that run was discarded. Artefacts were also modefddwasl regressors in thiest
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level design matricdsext, BOLD images acquired at different echo times were realigned and
slice time correctacgsing SPM12 defaulfde resultingnages were then resliced to the space of
the first volume of thdirst e&ho-1 BOLD time series. A brain mask was computed based on
preprocessed eclioBOLD images using Nilearn 0.5.2 and combined with -anghefite
matter mask iffunctionalspace for better coverage of anterior and ventral temporal lobes
(Abraham et al., 2014 hethree echtime series were then fed ititeTedanavorkflow(Kundu

et al., 2017yun inside the previously created brain mask. This wodktmmposg#the time

series into components acldsgiedeach component as BOLD signal or ndike.three echo
series were optimally combined and noise components discarded fronilthe ckealtingime

series were unwarptalcorrect for inhomogeneities in the scanner's magjeé&tithe voxel
displacement magalculated from the field mapss coregistered to tfiest echel image from
thefirst run, and applied the combinedime seriefor each runThepreprocessed BOLD time
series corresponding tlwe optimaldenoiseccombination of eches outputed by the Tedana
workflowwerethenusedor RSA analysiehere wesed unsmoothed functional images in native
space to keep the fingirained structure of activifyor univariate analysis, the preprocessed
BOLD time series were atgmatially normalized to MNI space using SPM-mear registration

tool, DARTEL; spatially normalized images wiees smoothed with a8 mm isotropicfull-

width half maximum Gaussian kernel.

Experimental designatistisahalysis
Sample size

The sample size was determined using effect sizes from two previouStsiediest al(2012)
reporteda large encodingtrievaRSAsimilarity #ect (d= 0.87). However, subsequent memory
effects are typically more subtle, for exampl®.87 for an activation meas(xorcomet al,
2003) We calculated that, with=N28, we would have .8 power to detest@55 for a one
samplé-test at alpha 0.05 (G*Power 3.1.9.2).

Behavioraanalysis

To assessvhetherdifferences irtask engagementuring memory encodingredictedlater

memory we modelledthe effects of encoding task accuracy (0, 1¥umsequent memory
outcomesusingtwo separate generalized linear mixed effect models (GLMM) for studied items
tested as oldsgbsequenhits and misgesas predictojs andfor studied items tested as lures
(subsequerialse alarmandcorrect rejean as predictoysSimilarly, to assemsy differences in

study phase reaction tim@s's)according tsubsequent memory statuge usedwo further

linear mixed effect models (LMM]J test, b evaluat¢he effects on memory pérceptual and
semantisimilarity between objects, we algplieda generalized linear mixed madaddbwing

the methods oNaspi et al. (2020yhis had ependent measures fHVSRQVH DW WHVW
"QHZu canfRgability predictocsalculate for eachimageand concepiC1 visual and color
confusability were defined as the similarity valueirabgeawith its most similar picture (i.e., the
QHDUHVW QHLJKERU IURP 3HDUVRQ FRUUHODWLRQ DQG F
Concept confusabilityas calculatdmy aweighted sum of th@sinesimilaritiebetween objects

in which each weight svthe betweeooncept similarityself, i.e., the sum of squared similarities
(seeNaspi et al., (2090All the analyses described above were carrieldtautith the Ime4
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packagéVersion 1.23)in R(Version 4.0.0Models includechndomintercepts to accoufdr
variation oveitens andparticipant

Multivariate fMRI analysis

Overview

The goal of our study was to investigate how perceptual and semantic representations processed
at encoding predict successful and unsuccessful mnemonic discriminatiothig,onwestsed

RSA to assess whether the fit of perceptual and semantic representational models to activity
patterns at encoding predicted subsequent memory. iatiweets of analyses we examined
representations predicting later true recognition oédtildms, and representations predicting

false recognition of similar lurégeimplementeé novel approach that models the interaction

of representatiosimilarity with subsequent memorya single stefcachmemory encoding
modelcontrasts the strength of visual and semantic representations of items later remembered
versus forgotterof falsely recognized versus correctly rejected) within the same representational
dissimilarity matrix (RDMIn a third set of analyses we also ditneeplicat€larke and Tyler

(2014 Xkey findings regarding perceptual and semantic representations irrespective dlmemory.
RSA analgs wereperformed separately for each participant orspaifigparameter estimates

from a general linear model (GLMethen followed three standard steps: 1) For each theoretical
perceptual and semantic model, we created model RDMs emitioelypngdicted pairwise
dissimilarity over items; 2) For each ROI (or degirclsphere), we created fMRI data RDMs
embodying the actual dissimilarity of multivoxel activity patterns over items; 3) We determined the
fits between the model RDMs and the fMRI data RDM for each ROI (or searchlight®phere).
implementation of thesteps is outlined in the following sections.

RSA first level general linear model

Statistical analysis of fMRI data was performed in SPM12 udirslfineelGLM and a Least

Squared\ll (LSA) methodMumfordet al. 2012) For each participant, the design matakided

one regressor for each trial of interest, for a total 0bi3328 regressors (depending on
counterbalancing), computed by convolvin@ thedurationstimulus function with a canonical
hemodynamic response function (HRBJ.each run, we alsluded twelve motion regressors
comprisingthe three translations and three rotations a&stihrduring spatial realignmeartd

their scarto-scandifferencesas well amdividual scan regressors for any exclsdaalsand

session constants for eachhe 4 scanner ruriBhe model was fit to native spaceoeessed

functional images using Variational Bayes estiméticsn AR(3) autocorrelation mog&tnny

et al., 2005A highpass filtewith a atoff of 128 swvas appliednd datavere scaled to a grand

mean of 100 across all voxels and scans within sessions. Rather than using the default SPM whole
brain mask (which requires a voxel intensity of 0.8 of the global mean and can lead to exclusion of
ventral anterior temporal lobaxels), we set the implicit mask threshold to 0 and instead included
only voxels which had at least a 0.2 probability of begngymr white matter asindicated by

WKH WLVVXH VHIPHQWDWLRQ RI WKH SDUWLFLSDQW:-V 7 VF

Regions of interest
All regions of interests (ROIs) are shown in FiguWeldefined siROIls includng areas
spanning the ventraisualstreamwhich have been implicated in visual and semantic feature
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based object recognition proceg€darke and Tyler, 2Q1@larke and Tyler, 201%Ye also
included the lefinferior frontal gyrysstrongly implicated in semantic contributions to episodic
encoding(Kim, 2011) and bilateral anteriorentraltemporalcortex which is implicated in
semantic representatiirambon Ralph et al., 20B5)d ishypothesized to contribute to false
memory encoding, albeit mainly in associative false memo(¢tiaskgck et al., 2016; Zhu et
al., 2019)Except where explicitly stated, ROIs were bilateral imeldite MN| spaceausing the
HarvardOxford structuraatlas: 1) thearly visual cortex (EVBA17/18 ROl was dined using

the Julich probabilistic cytoarchitectonic nfApsunts et al., 200@om the SPM Anatomy
toolbox(Eickhoff et al., 20052) theposterior ventral temporal cor{eXTC) ROI consisted of

the inferior temporajyrus ¢ccipitetemporal divisionTG), fusiformgyrus (FG)lingualgyrus
(LG), andparahippocampabrtex(posteriordivision;PHC}) 3) theperirhinal cortex (Pr&OI

was defined using the probabilistic perirniagl including voxels with &6% probability to be

in that regionDevlin and Price, 2007; Holdstock et al.,)2@)%e anterior ventral temporal
cortex(@vVTC)ROI included voxels with >30% probability of being in the anterior division of the
inferior temporal gyrus and >30% probability of being in the ard®tigon of the fusiform
gyrus; S)ie leftinferior frontal gyrugIFG; BA44/45) consisted of the pars triangularis and pars
opercularid.astlywe used univariate analgss preregistered method to define additional ROIs
for RSAaroundany regionsot already in the analysis Sreivwedsignificansubsequent memory
effects Based on this analysig alsoincluded 6}he left inferior temporal gyrusc€ipite
temporal divisior;ITG) (see Resultslnivariate fMRI analysid)he LITG has been previously
implicated inrue andialse memory encodif@ennis et al., 2007; Kim and Cabeza, Z00&)
ROIlsin Figurel are mapped on a pi@presentation of cortex using the Connectome Workbench
(https://www.humanconnectome.org/software/connectemoekbench

Pre-registered ROls

B evc @ ute W Pc
[ pviC @ avrC B vre

pVTC subdivisions

M @F @6 @ PHC
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Figure 1.BinaryROIs overlaid on a pial corticalfasebased on the normalized structural image averaged over
participantsColored ROIs represent regions known to be important in episodic encoding and in visual or semantic
cognition. Circled numbers specify different subregions within pvVTC (see Ratpoasbfor details).

RSAregion of intesestysis

Model RDMsWe created fouheoreticaRDMsusinglow-levelvisua) color,binarycategorical,

and specificobject semantideaturemeasuresFigure? illustratesthe multidimensional scale
(MDS) plots for thgperceptual and semantic relations expressed by these models, aBd Figure
shows the model RDMglemory encoding RDMs are displayed mr&RA and3B, and overall

RDMs irrespective of memory in Ui#ig3C.

A C1 Visual similarity B Color similarity

C Categorical similarity D

e

Figure 2.MDS plots for prceptual and semantic similarities for the four modelsiseagimilarities were calculated

to create representational dissimilarity matrices (RRg4)visual similarity codes for a combination of orientation

and shape (e.gound objects towards the top, horizontal shapes on the right, vertical shapes at thg, liotiom).

similarity represents color saturation and size information (i.e., from bright on the left to dark at the bottom, and white
towards the top)C, Binary ategorical semantic similarity codes for ddeah representations distinguishing
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animals, plants and nonbiological objects (bdéfintop, bottorrright, respectively)., Semantic feature similarity
codes for finegrained distinctions based features of each concept (e.g., differences within living things at the
bottom, nonliving things on the left, and many categories of animal on-tihghtppThe objects shown are taken
from a single subject at encoding.

1) Theearly visual RD¥4s deviedfrom the HMax computational model of vis{Rmesenhuber

and Paoggio, 1999; Serret al. 2007)and capturd the lowlevel (V1) visual attributes of each

picture in the C1 laydrairwise dissimilarity values wemn@putedas - 3SHDUVRQ:-V FRUUHO
betweeneasponse vectors for gisgale versions of each image.

2) The color RDMvas calculated using the color distance pafkagpsn 1.1.0;Wellerand

Westneat, 2019) R.After converingthe RGB channels into CIELab spaeecalculated the
HDUWK PRYHU:V GLVWD Q F H(Rubhé/z &, 2000\ Ehikn Sdonhdlizek the PD JH YV
distance so that the dissimilarity values ranged from O (lowest) to 1 (highest).

3) The animahonbiologipEntRDM combined the 2ébjectcategorietogether according ®

domairs: animal nonbiologicalandplants(Clarkeand Tyler, 2014)Pairwise dissimilarity values

in thisRDM were either O (same domain) or 1 (different damain)

4) Construction ofiie semantieaturBDM followedClarke and Tyler (2014ut used updated

property normgDevereux et al., 201¥%ye first computegairwisefeature snilarity between

concepts from a semantic feature matrix inhwdach concept is represented by a binary vector
indicating whethea givenfeature isassociated with the concept or idirwise digsilarity

between conceptgas computed as 4S where $ equal tdhe cosine angle between feature
vectors.This RDM captures both categorical similarity between objects (as objects from similar
categories have similar features) and wiitégory object individuation (as objects are composed

of a unique set of features).

For the analyses of memencodingmodelRDMs were split into twgiving ond&RDM for each

subsequent memory analysis. The true subsequent R&Msincluded only items that were
subsequently tested as old; these were coded as subsequent hits or subsequent misses (Fig. 3A
The false subsequanemory RDMs included only items that were subsequently tested as lures;
these were coded as subsequent false alarms or subsequent correct rejections (Fig. 3B). For true
subsequent memory, we computed dissimilarity between all pairs of subsequenthedemembe
items, and all pairs of subsequently forgotten items, omitting pairings of subsequently remembered
and subsequently forgotten items. Then, to assess how dissimilarity depended on subsequent
memory we weighted the model RDMs so that the sum of tleeaekponding to remembered

items equaled 1 and the sum of the cells corresponding to forgotten itemslecgmltdte
dissimilarity values for all included trials summed to O (i.e., subsegdsabk@guent misses).

Thus, positive correlations of the model RDMs with the fMRI data RDMs indicate that the
representations are aligneare stronglyith neural patterns fadems that are lateemembered

than forgotten. Conversely, negative correlations indicate ¢jggateard folitems that are later
forgottenthanremembered itenmSor false subsequent memory, we followed the same procedure,

but subsequent false alarms were substituted for subsequent hits, and subsequent correct rejections
for subsequent miss@dthough an unequal number of trials can create spurious effects, we have

a sufficiently large number of trials for each participant and coffaliti@tiablecorrelation

coefficiens. According to one estimate, a correlation needs to have at least 15obderva

considered stab{8chonbrodt and Perugi®13) In our study, only one participant yielded less

than 150 similarity values, from a matrix of 17 falsely recognized trials, which gives a vector of 136
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unique similarity values. Thus, we can be fairly confident in ourAralyises were impiented
usingcustom MATLAB 2019b (The MathWorks Inc., 2019) and R (Version 4.0.0; R Core Team,
2017) functionsftps://osf.io/ypmdj). For the RSA analyses irrespective of memory, we modeled
dissimilarities betweenitdin pairs, treating all trials in the same way (see Fig. 3C).

Figure 3. Representational dissimilarity matrise®issimilarity predictions of the four true subsequent memory
models which included items that were later tested as old, coding diifisepostitively (uppédeft quadrants) and
subsequent misses negatively (betigih quadrantsB, Dissimilarity predictions of the four false subsequent
memory models which included items that were later tested as lures, coding subsequenpfaigevalaiimsper

left quadrants) and subsequent correct rejections negatively-figbttaqaadrants)C, Dissimilarity models of

object processing including all the itdnsSimilarity between theoretical models. The color palettes used for the
modelcorrelations in D are the inverse of those used for the model RDMs in A, BT lamdg&cific models are

unique for each participant. For visualization purposes, similarity values within true and false subsequent memory
RDMs have not been scaleeNA = Animatnonbiologicaplant.

fMRI dataRDMs. Parameter estimates were extrdodet gray matter voxalseactROI for all
trials of interesFor each voxel, these betasethennormalized by dividirtgemby the standard
deviation of its residudM/alther et al., 201&)s forthe model RDMsye constructegeparate
fMRI dataRDMsfor thetrue andalsesubsequent memaapd overatbbject processirapalyses
For thetrue subsequent memoayalysighe fMRI dataRDM represented activipatterrs for
concepts subsequentdsted as ojéndfor the fale subsequent memoapalysighefMRI data
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RDM represented activifyatterrs for conceptssubsequentlyested as lure§or the overall
analysis, the RDM represented activity patterns for all studidritie.fMRI data RDMdor
the subsequent memory analgsisor the model RDMee computed dissimilarity betwa#én
paiingsof subsequently remembered (or falsely recognized) items, and dlepagieqs of
subsequently forgotten (or correctly rejected) items, omitting freatvingisn different trial types
Distance between each itearwas computed &s PeD UV R Q -V FdreBtidgHaESriidriiy Q
matrix

Fitting model to data RDMEachfMRI dataRDM wascompared with each theoretical model
RDM XVLQJ 6SHDUPDQ -V auDigNestlRngissirity\Wallevere Fisher
transformeditis LPSRUWDQW WR QRWH WKDW WKH égHbyURDQ -V U
weighting procedurf®r number of trialssince thisneasureloes notdepend orthe distance
between pair of items; thus the order of the ranks is equitalethe subsequentemory
analysisye tested for significant positive and negative similarities betadsRDM and fMRI
dataRDMs at the group leveking a twoV LG H G )L Vaargle- K anddQitation (A00
permutation) testor locationwith a Bonferronicorrection ovei6 ROIs. The permutation
distribution of the test statislicenumerates all the possible ways of permutirggpiedation

signs positive or negativef the observed values and computes the resulting lsusy.for a
two-sided hypothesithep-value is computed from the permutation distribution of the absolute
value ofT, calculating the proportion of values in this permutation distribution that are greater or
equal to the observed valueTdiMillard and Neerchal, 200&Epr the overall analysie only

tested for significant positive similarities betwmelelRDM and fMRIdataRDMs(Clarkeand

Tyler, 2014usinga onesided tesin which thez-value is evaluated as the proportion of sums in

the permutation distribution that are greater than or equal to the observe(Mslliand and
Neerchal, 2001Yo find the unique effect of model RDMsch fMRIdataRDM showing a
significant effeatas also compared with each theoretical model RDM while controlling for effects
RI DOO RWKHU VLJQLILFDQW PRGHO 5'0V XVLWhile SDUWLTEL
correlations between model RDMs were generally loahjduespecific feature moddiared

about 19% variance with the category model (r = 0.44; Fig 3D), likely reflecting the information
about coarse semantic categories as well as individual objects that isfeatries signilarities

(Clake and Tyler, 2014)

Post hoRSA analyses by memory item.tifoe regions and models showing significant RSA
memory effects, we explorethether representations aligned with each item type were
significantly different from zerbo do thiswecreated four separate maated fMRI dat&iRDMs

for items subsequently remembered, forgotten, falsely recognized, and correctiVetfented
followed the same steps as descfilreithe ROI analysisrespective of memory, but fit model
RDMS to fMRI dta RDMs for each trial type separaldlgn, v tested for gnificant positive
similarityat the group level using a daited ) L V K H Usavnple @addomizatidest (10,000
permutatios) for location We applied®onferroni correctianfor the 6 preragtered and the 6
exploratory ROIls
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RSA earchlight analysis

In addition to the targeted ROI analysestam awholebrainsearchlight analysisis followed

the same 3 main stepstas ROlanalysis (sé@SAregion of interesanalysis). Fagach voxel,

the fMRI data RDM was computed frgmarameter estimatés gray matter voxels within a
spherical searchlighft radius 7 mm, corresponding to maximum dimensions 5 x 5 x 5 voxels
Dissimilarity was again estimatsidg +* 3H D U V R Q -ov. Askhlhg RQI Brialysisis MRI
dataRDM was compared withemodelRDMs, and the resultindjissimilarity valuesereFisher
transformed and mapped back to the voxel at the center of the searchlight. The similarity map for
eachmodelRDM and partigant waghen normalized to the MNI template spésee Image
preprocessing-or each mod&DM, thesimilarity maps were entered into a gteug random
effects analysis artbresholded usingermutatiorbased statistical nonparametric mapping
(SnPMhttp://www.nisox.org/Software/SnPM1}/ This correced for multiple comparisons
across voxels and the number of theoretical model R3Msr the RO$ we performedwo-

tailed tests in the subsequent mgm@nalyseandonetailed tests for the overafialysid/ariance
smoothing of 6 mm FWHM and 10,000 permutations were used in all aalyses] cluster
levelinferencesvith FWE-correctionat j= 0.025n each directiofor thetwo-tailed testand j

= 0.0 for theonetailedtest in both casesith a cluster forming threshold of 0.005 uncorrected.
All results are presented on an inflated repatieenof the cortex usirthe BrainNet Viewer
(Xia et al., 201/Bitp://www.nitrc.org/projects/bnv/) basedn a standard ICBM152 template.

UnivariatdMRI analysis

In addition ® RSA we used univariate analysigstwhether activation ifrCwas related to the
conceptuatonfusability of an objeah a replication dflarkeandTyler(2014)and whether this
activationpredicedmemoryWealso used activations to define additional ROIs (see Regions of
interest)The firstlevelGLM for eachparticipanincludedoneregressoof interestfor each of
the 4 experimental conditiof®ubsequent hits, misses, falaemsandcorrectrejectiony For
each conditionwe also included linear parametric modulator regressors represeatingpt
confusability vaks for each concepith other concepts in tHeSLBpropertynorms(Devereux

et al., 2014Wefirst computed a semantic similarity score between each pair of cond®pts (see
region of interest analysis, Model RDNIsg conceptconfusability score of each conceps
then equal to the sum of squared similarities betweethieanier concép in the sefThis was
equivalent ta weighted sum gfairwisesimilarities in which each weight was the between
concept similarity itsg#f measure used in our recent behavioral(®adpi et al., 202@s also
specified in the preregistratisincethe resultsf theconceptonfusability analysisrergedrom
those ofClarke and Tyler (2014yeran an additional analysis usaingneasure afoncept
confusabilitywith a stronger weighting scheme equivaéenheirs They defined concept
confusabilityas the exponential of the ranked similarities of all the paired gomcmbtss very
FORVH WR D QHDUHVW QHLJKERU VFKHPH LQ ZKLFK HDFK F
the most similar concept in the. 8rte to our larger number oéihsthe exponential weighting
producedextremelyargeweightssowesubstitutedhe simplemearest neighbor schefttee two
measures were correlated=a0.98. We used an explicit maskludingonly voxels which had

at least a 0.2 probability of being in grey matter as defined using the MNI {fEmp&tait
inferences about encoding condition effects across participatigstamages were submitted
to a secondevelgroup analysi®ne sanple ttest)to obtaint-statisticmaps The mapswvere
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thresholded gb < 0.05 FWE-corrected for multiple comparisatsthe voxel levelsing SPM
(the preregistration specified 3dClustSim in AFNI, but this function had since beer{Cpxiated
et al., 20140 for simplicity we used the SPM defaDltly regionsvhoseactivations involved
contiguous clusters of at leasb®els were retained ROIdor subsequent RSA analysis.

Codaccessibility

All analyses were performed usingtomcode and implemented either in MATLAB or R. All
code and the data for the behavioral and the fMRI analyses are available through
[https://ost.io/z4c62/|

Results

Memory task performance

In the study phase, participacdsrectly identified most of the time whether concepts began with

a consonant or vowel on the incidental encodingNapkoportion = 0.78). Analysis on task
engagement (see Materials and Methods, Behavioral data) using a GLMM showed that accuracy at
encaling did not differ according to whether items that were tested as studied were later
remembered relative to forgotter 0.110, SEM = 0.242= 0.456p= 0.649), or whether items

that were tested as lures were later falsely recognized relatieettp ipectedde 0.051, SEM
=0.202z=0.251p=0.802). Similarly, a linear mixed model did not reveal any difference in RTs
related to subsequent old items that were later remembered relative to fargot@2( SEM

= 0.017,t = 0.123,p= 0.92), or subsequent lures that were later falsely recognized relative to
FRUUHFWO\ 40.B18, K SEM/HOD16¢ -0.873 p= 0.383). Thus, the fMRI subsequent
memory effects are not attributable to differences in accuracy or time on task gt encodin

At test, a asimplecheck on the overall level of performance wethisatiscrimination inde;

i.e., the difference between the probability of a hit to studied items and the probability of a false
alarm to novel itemdll participants passed the preregistered inclusion criteior>di.1.

Overall, égscriminatiorcollapsed across confidem@es very goofM = 0.649, SD = 0.131,,=

26.259p < 0.00). Discrimination was also above ch&oickigh confidence (M 0.771, SD =
0.152t.7 = 26.868 p < 0.00) andlow confidence judgment®i (= 0.330, SD = 045 tprn =
12.014p< 0.001) This suggests that low confidence responses at test carried veridical memory,
so we followedaur preregistered plan iteclude trials attracting both high and low confidence
responses in the subsequent memory andgdiswing an analogous procedure fadse
recognition of similar lures corredbgdsubtracting the proportionfaise alarms to novel items,
wealsofound that this wasignificantlyabove chander judgmers collapsed across confidence

(M =0.271, SD = 0.090.7= 15.996p < 0.00)}, andfor both high confidence (M = 0.293, SD

= 0.133te7= 11.618p< 0.00) and low confidence (M = 0.157, SD.260Qt,7= 5.187p<

0.00) considered separately.

We then used GLMMto quantif/ the influence of perceptw@aid semanticariable®n memory
performance accordingitem statusOur variables of interest were condition (studied, lure, or
novel), concept confusability, C1 visual confusability, and color conf(sabiByhavioral data
for details)Results reveal@dodulations of memory Imperceptual ansemantic variables ind

with our recent behavioral stythaspi et al., 20R@People were less likely to recognize studied
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itemsfor which thdow-level visual representations (C1) were more similar to those of their nearest
neighbor ¢=-0.166, SEM = 0.064~ -2.584p= 0.015), and aldess likelyo recognizetudied

items with higleconcept confusabilitglative to novel itenfg= -0.533, SEM = 0.06Z~= -7.963,

p< 0.001) As expectedpncept confusability also had a substantial efféaiserrecognitioof

similar luregelative to novel items/herebymagesvhose concepts were more confusable with
other concepts in the seerelesslikely to befalsely recognizddt= -0.273, SEM = 0.064,= -

4.292p< 0.001).

PreregistdR&A analysis regions of interest
Perceptuadndsemanticepresentationsredict trugecognition

To examine representations engaged during successful encoding we compared the fit of early
visual, coloranimalnonbiologicaplant andsemantideaturemodels for studied itenessted as

old that were subsequently rerbened(number of trialsM = 61.41;range = 60L46)versus

forgotten (number of trialsM = 19.93;range = 17109 (Fig 4A). These comparisons were
bidirectional, since engagement of perceptual and/or semantic processing in a region might either
support or be detnental to later memorfhus, ve useg twe VL G H G ) LdbkiddtiovtestD Q

T. In posterior ROIs, engagementoth perceptual and fingrained semantic representations
tended to predict successful later recognitidBV{®, the early visual modsttonglypredicted

later true recognition of studied iteiis<0.07,95% CI[0.05, 0.09T = 1.86,p< 0.001) Thus,

when the neural patterat study were representing visual information, items were more likely to
be correctly recognizeloth the earlyisual and semantieaturemodelsalsopredicted true
recognition in pVTQM = 0.03, 95% C]0.02, 0.4 T = 0.82,p< 0.001, and! = 0.02, 95%CI:

0.01, 0.0 T = 0.67,p = 0.007, respectivelyh contrasttaxonomicsemantic representations

coded nore anteriorly were associated laitérforgetting. h avVTCand in theLIFG, model fit

for categorical semantic information represented by the-aomhallogicaplant domain was

less for remembered than forgotten studied itdnes-(.01, 9% CI[-0.02-0.03, T=0.35,p=

0.001, antl = -0.02, 95% (}F0.04-0.01, T = 0.65,p= 0.004, respectivelyhhus, when neural

patterns in these regiodsH U H D O L J Q Ha&onbm datdgdriesPpdrticipants were less likely

to successfully recognihem.No other results were significant.

We also checkeavhich representations showed unique effects that predicted naéterory
controlling for effects of other significant models using partial corrétepgi C, only he early
visual model uniquepyedicted successfelcognitiormemory for studied itengs! = 0.02, 5%
Cl1[0.01, 0.03[; = 0.64,p= 0.004)but see Exploratory ROI analysis
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Figure 4.Perceptual and semantic representations predicting subsequent marpao/i@Is and models. Plots

show therelative difference in the strength of perceptual and semantic representations at the gssapidedl

with: A, true subsequent memdgyeater representational similarity for remembered than forgotten items, positive

bars) B, false subsequent mem¢gyeater representational similarity for falsely recognized than correctly rejected
items, positive bar§rror bars represent the standard error of the mean (SEM) across paristpasis indicate

models for whict SHDUPDQ -V UKR GLIIHUHG VLJQLILFDAQWBAGIURKHUUR DBDWQWRHA
test for location; Bonferroni correction calculated by multiplying the uncopeatad by the number of
preregistered ROIs, i.e., 6).<0.05, **p< 0.01, **p< 0.001
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Weak prceptual representations prefdilse recognition

To examine howheperceptual and semantic representations embodied in our theoretical models
contributedo subsequent memory for lunee compareBSAmodel fit for iters that weréater

falsely recognizédumber of trialdyl = 30.71range = 26107 versusorrectly regctednumber

of trials,M = 50.61;range = 54131) (Figure4B). In posterior regionsyealer low-level visual
representationsf picturespredictedsubsequentalse recognition dtires We observed this
patternm boththeEVC and theLITG (M =-0.02, 95% (}0.04,-0.03, T=0.66,p= 0.047, and

M =-0.02, 95% [J-0.04-0.03, T = 0.69,p= 0.026, respectiveljhus, whemeural patterns in

these regions were not aligned with the early visual itremdglyere more likely to be falsely
recognized\No other results were significant.

Percept@add semanbjeot processiagpective of memory

Replicatin@larke and Tyler (2014)e alse@xamined the perceptual and semantic representations
of objecst thatwere reflected in fMRI activity patmegardless of memory encoding. The results
(Fig 5) showed that while visual information is broadly represented posaetivity, patterns

in theaVTC,PrC,andLIFG reflect finergrained semantic information. PosterigWC showed
astrongrelationship with thlew-level visual modé\l = 0.08, 95%CI [0.06, 0.10]f = 2.21,p

< 0.00), and a weaker but significant relation witeehmantic feature mod®l € 0.01, 95% ClI

[0.00, 0.01T; = 0.20,p= 0.032)More anteriorlythelow-levelvisual and semantic feature models
wereboth significantly related to activitgtternan pVTC M = 0.04, 95% CI [0.03, 0.0%]=

1.00p< 0.001, and! = 0.02, 95% CI [0.02, 0.0B} 0.60,p< 0.001, respectively) and.ITG

(M =0.01, 95% CI [0.00, 0.02}+ 0.26,p< 0.038, and! = 0.02, 9591 [0.01, 0.02]; = 0.45,

p< 0.001respective)y At the apex of the ventral visual pathway, semantic feature information
was coded iboththe bilaterahVTC(M = 0.01, 95% CI [0.00, 0.0I}z 0.17,p= 0.00) and in
bilateral PrCM = 0.01, 95% CI [0.00, 0.0I} 0.19, p< 0.001) These findingeplica¢d those

of Clarke and Tyler (2014he specific semantic properties of objects were also represented in
theLIFG (M =0.01, 95% CJ0.01, 0.02]f = 0.30,p= 0.00).
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Figure 5. Semantic and perceptual representations represented in ROIs regardless of memory encoding. Plots show
the strength of perceptual and semantic representations at tHe\griaighin patterns of activity along the ventral

stream and frontal regions. Efbars are standard error of the mean (SEM) across subjects. Asterisks above and
below the bars depiptY DOXHV IRU WHVWYV RI ZKHWKHU HDF KaterQhan 2étoGa{é O 6 SHD L
VLGHG )LVKHU:-V UDQGRPL]DWLRQ WHVW IRU ORFDWLRQ %RauMEHUURQL F
by the number of preregistered ROls, i.e. [ 8.0.05, **p< 0.01, **p< 0.001

We then ran a partial coatdn on those ROIs showisgnificaneffects fomultiplemodels.

As expected, patteraf activity inthe EVCwereuniqudy related tohe early visual modéd &
0.08, 95% CI [0.06, 0.10F 2.20 p< 0.00), replicatingclarkeandTylers (2014 )yesultsThus,

the semantiteaturemodel was no longer significant when the early visual model was controlled
for. More anteriorlythe pattern of activity in the pVTC had unique relatiobsttolow-level
visual andemantic featuieformation M = 0.03, 95% CI [0.03, 0.04]= 0.96,p< 0.001,and

M = 0.02, 95% CI [0.01, 0.0Z2]= 0.54,p< 0.001, respectively). However, after controlling for
the low-level visual model, activity patternstlie LITG were only uniquely associated with
semantic featurepresentation® = 0.02, 95% CI [0.01, 0.02]= 0.44,p< 0.001).Thus like
Clarke and Tyler (2014)e foundthat visual information is representecanly visualegions.

We alsoreplicated their finding that semantic feature similarity information wasmwded
anteriorlyin thePrC,andfoundfurther, also anterior, regions that showed a similar pattben,
aVTC and theLIFG (seealsoRSA searchlight fMRI analysis).

Exploratory RSA analysis in regions of interest
Perceptual and semantic representations in pVTC subdivisions predict true recognition

In the preregisterexhalyses reported abpwer large pVTROI showed evidence of both visual
and semantic feature representations predicting memory S\ledbgsefore explored whether
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four subdivisions dhis largdilateralegion showed distinct effe¢ke LG, ITG, FG,andPHC
(see Regions of interedMpreover, given our stroagpriorprediction of involvement of Pi@
subsequent memgorye ran exploratory analysedeft perirhinal cortex (LPrGnd right
perirhinal cortex (RPrCgeparatelyThe results are shown below in Figur@d&teriorly in
bilateral LG perceptual information related to the early visual model predicted later recognition
of studied itemd = 0.03, 95% CI [0.01, 0.0%]= 0.74,p= 0.002) as it did in the EVC ROI.

In contrast, mre anteriorlyactivitypatterns in the F@elated tdoth the low-levelvisual and
semanti¢eaturemodelgpredicted subsequent true recognifidr 0.03, 95% CI [0.02, 0.0%],

= 0.87,p= 0.0®, andM = 0.04, 95% CI [0.02, 0.0%]= 1.01,p< 0.001 respectively)asdid
categorical semantifarmation represented by the anin@ibiologicaplantsmodelin the
PHC (M =0.02, 95% CI [0.01, 0.0BF 0.5, p= 0.019. Lastly, activity related to the categorical
semantic model in thdrCprediced subsequent forgettinyl (= -0.01, 95% CI(.02, 0.00]F
=0.28,p=0.@3.

Figure 6. Perceptual and semantic representations predicting true subsequent memory in exploratory ROIs. Plots
show therelative difference in the strength of perceptual and semantic represahthtogpouievelassociated

with true subsequent mem¢gyeater representational similarity for remembered than forgotten items, positive bars)

Error bars represent the standard error of the mean (SEM) across parisipaistss indicate significance of tests

RI JURXS OHYHO GLIIHUHQFHV RVI6GHG JPDIQHY -WKRDIQ®R P H]DRV LMRDRW H V W
correction calculated by multiplying the uncorrgetatle by the number of exploratory RO¢s, 6). < 0.05,

** p< 0.01, **p< 0.001

A partial correlatioanalysifor theFG (which showed effects of multiple models) confithedd
both the early visual and semar@aturemodels werainiquelyassociated witkater true

recognitionM = 0.02, 95% CI [0.01, 0.08]= 0.58,p= 0.034, andv = 0.03, 95% CI [0.01,
0.04],T = 0.71,p = 0.002, respectively). Thus, bstmplevisual andbjectspecificsemantic

informationcontributed to memomgfter controlling foeach other
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Perceptual representations in the early visual poet#igt true recognition

Lastly, 6llowing our main analyses of true and false memory encoding, we wanted to check for
evidence that the kegpresentations predicting later menddfgred according tthe type of

memory (true or fals€lhus, we compared the dit our theoretical modefsr studied items

tested as oldndsubsequently rememberenisughose tested dsresandsubsequently falsely
recognized. Results showed thatlémel visuainformation mapped in EVC was stronger for

true than false recognitigv = 0.04, 95% CI [0.02, 0.06}+ 1.16,p< 0.001). No other results

were significarat theBonferronicorreced thresholdf 6 ROIs but without a correction the
theoretically imptaintobjectspecific semantic representations ine@& also stronger for true

than false recognitigM = 0.02, 95% CI [0.00, 0.0%} 0.61,p= 0.030.

PosthodrSAanalyseky memoryitem type

Where the RSA analyses showed that represensatilaaity differed significantly according to
subsequent memory, we explored which trial t/pés or misses, arfdlsely recognizeat
correctly rejected@ carried representations of the relevant information. To do this, we asked
whetherrepresentati@l similarity wasignificantly different from zeror each trial type
separatelyT@ble ). For all models and ROigherethe alignment of neural patterns véth
perceptual or semantic mogmlsitivelypredicted true memory, significant representhtiona
similarity was present only for subsequently remembered items. Exampleslevesievieual
representations iBEVC and pVTC,and finegrained semantic representationpViC. In
contrast, fomlmostall models and ROIs in which the alignment of neaitarns with the model
predicted forgettingsignificant representational similarity was present oftdygmttenitems

This pattern was found in aVTC and LIFG, antereixploratory alyaisin LPrC.Lastlyjn the
visual regions where tladignmen of neural patterns witltow-level visual representations
predicted correct rejection of luries early and late visual regiotigre was significant
representational similarity only on correct rejection trials

Table 1. Post hoc analysis in regions sgciated with true and false subsequent memory
in the preregistered and exploratory analysis.

True subsequent memory (Sub hits > Sub misses)

Preregistered Early visual model Color model A-N-P model Semantic feature mode
ROIs M Cl M Cl M Cl M Cl
EVC

Sub hits 0.07*** 0.050.09

Sub misses | 0.02 0.010.03
pVvTC

Sub hits 0.05%** 0.040.06 0.04*** 0.040.05

Sub misses | 0.01 -0.010.02 0.01 -0.010.03
avTC

Sub hits 0.00 0.000.01

Sub misses 0.02** 0.010.03
LIFG

Sub hits -0.01 -0.010.00

Sub misses 0.02* 0.010.03
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Exploratory

Sub hits 0.04*** 0.030.05

Sub misses | 0.00 -0.020.02

Sub hits 0.04*** 0.030.05 0.04*** 0.030.05
Sub misses | 0.00 -0.020.02 0.00 -0.020.01
Sub hits 0.04*** 0.030.05

Sub misses 0.01* 0.000.03

Sub hits 0.00 0.000.01

Sub misses 0.03*** 0.010.04

False subsequent memory (Sub FAs > Sub CRs)
Preregistered Earlyvisual Color A-N-P Semantic feature
M Cl M Cl M Cl M Cl

Sub FAs 0.01 -0.010.03

Sub CRs 0.04*** 0.030.06

Sub FAs 0.00 -0.010.01

Sub CRs 0.03*** 0.020.05

Mean estimate (M) and confidence intervals (Cl) are reported in the table for each trial type. Asterisks indicate models
IRU ZKLFK 6SHDUPDQ:-V UKR GLIIHUHG VLIQMLEBEQWDYKHEBEPV]HDR ORP LW
with Bonferroni caections for preregistered and exploratory ROIs, i.e., 6felcR)= animahonbiologicaplant;

FAs = false alarms; CRs = correct rejectigns.0.05; **p< 0.01; **p< 0.001

PreregistdRA archlighmalysis
Perceptual and semamgpresentations associated with memory encoding

The RSAsearchlight analydissted for any further brain regions coding for perceptual and
semantic information associated with memory end@diijand Table). Thetrue subsequent
memorymodels showed significdibto activitypatternsn several areas beyondalpgiodROls.

The colorsimilaritymodelwas related to pattexim the right parietal operautortex superior
frontal gyrusandprecentral gyrusindthis representationt ancodingpredictedatersuccessful
recognitionof studied itemsFinegrained semantic features represented in the right lateral
occipital cortex (LOC) also predicted true recognaarse categoric@manticepresentations

in right inferior frontbgyrus(RIFG; BA44/45/47) and frontal poléFP)were associated with
later forgettingparalleling the findings for thg@riorROI in LIFG (BA44/45).
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Figure 7.RSA searchlight results for perceptual and semantic models. The figure shows regions in which multivoxel
activity pattern predicted successful subsequent true recognition (hot map) and unsuccessful true recognition (i.e.,

subsequent forgetting, cool may)significant clusters are shown at the fetiEected threshold used for analysis

(see Materials and Methods: RSA searchlight analysis). No suprathreshold voxels survived for the subsequent false
recognition models. Similarity maps are presented dlat@ad irepresentation of the cortex based on the normalized

structural image averaged over participants.

Table 2. RSA searchlight results showing perceptual and semantic effects on successful

true memory encoding

Regions Cluster Clustedevel Pseudda X y z
extent p(FWE)

Early visual
R occipital pole 2493 0.005 10.04 18 -93 9
R lingual gyrus 8.91 15 -78 -6
L occipital pole 7.20 -12 -96 6

Color
R parietal operculum cortex 1756 0.010 4.77 48 -21 24
R superior frontal gyrus 3.91 9 3 66
R precentral gyrus 3.58 18 -18 69

Animalnonbiologicaplant
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R inferior frontal gyrus (BA44) 1405 0.012 6.05 54 15 27
R inferior frontal gyrus (BA45) 5.27 52 24 18
R frontal pole 4.35 51 39 3

R inferior frontal gyrus (BA47) 3.34 33 30 -18

Semantic feature

R lingual gyrus 1230 0.018 4.44 12 78 -12
R lateral occipital cortex 4.32 42 -75 -12
R occipital fusiform gyrus 4.29 39 =72 -12
R inferior temporal gyrus (OT) 3.43 45 -60 -15

MNI coordinates and significance levels are shown for the peak voxel in each cluster. Anatomical labels are
provided for peak locations in each cluster; Effects in clusters smaller than 20 voxels not shown; OT = Occipito
temporal division.

Table 2. RSA searchlight results showing perceptual and semantic effects on successful
true memory encoding

Regions Cluster Clusterlevel Pseudet X y z
extent p(FWE)
Early visual
R occipital pole 2493 0.005 10.04 18 -93 9
R lingual gyrus 8.91 15 -78 -6
L occipital pole 7.20 -12 -96 6
Color
R parietal operculum cortex 1756 0.010 4.77 48 -21 24
R superior frontal gyrus 3.91 9 3 66
R precentral gyrus 3.58 18 -18 69
Animatnonbiologicaplant
R inferior frontal gyrus (BA44) 1405 0.012 6.05 54 15 27
R inferior frontal gyrus (BA45) 5.27 52 24 18
R frontal pole 4.35 51 39 3
R inferior frontal gyrus (BA47) 3.34 33 30 -18
Semantic feature
R lingual gyrus 1230 0.018 4.44 12 78 -12
R lateral occipital cortex 4.32 42 -75 -12
R occipital fusiform gyrus 4.29 39 -72 -12
R inferior temporal gyrus (OT) 3.43 45 -60 -15

MNI coordinates and significance levels are shown for the peak voxel in each cluster. Anatomical labels are provided
for peak locations in each cluster; Effects in clusters smaller than 20 voxels not shown; OT-tei@poipito
division.

Perceptual angemantiobject processingespective of memory

Searchlight analysis was also conducted fpertteptual and semantiodel RDMsacross all
trials regardless of memory encodig. 5 and Table3). The models showed significéihto
multivoxel actity patterns in several areas beyona fhéorROIls. In particularthe effects for

the color modelverelargely restricted to thight lateral occipital corteright middle temporal
gyrus, and intracalcarine cortext also extended intthe left lateral occipital corteand
supramarginal gyrusCategorical semantic representations representethebyanimal
nonbiologicaplant domainwere largely restricted to posterior parts of the ventral stream,
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highlighting the coarse nature of object infooma&presented in the posterior ventral temporal
cortex. Thisncludedhe right temporal fusiform cortex, the right lingual gyrus, and the posterior
division of parahippocampal cortex, but ektended intthe middle temporal lobi@. contrast
represetation offinergrained semantic properties of objegtendednore anteriorly in the
ventralpathwaybeyond the preregistered ROm$o bilateral hippocampus, temporal pole and
ventromedidirontal regions.

Figure 8.RSA searchlight results for pptaal and semantic models. The figure shows regions in which
multivoxel activity pattern was associated with object processing (i.e., irrespective of memory encoding). All
significant clusters are shown at the FetEected threshold used for analysidMsgerials and Methods: RSA
searchlight analysis). Similarity maps are presented on an inflated representation of the cortex based on the

normalized structural image averaged over participants.

Table 3. RSA results showing perceptual and semantic effectadbject processing

Regions Cluster Clustedevel Pseudd X y z
extent p(FWE)

Early visual
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R occipital pole 4844 0.002 13.10 18 -96 12
L occipital pole 13.02 -15 99 6
R occipital fusiform gyrus 11.53 18 -78 -12
Color
R lateral occipital cortex 1121 0.019 5.97 45 -75 -3
R middle temporal gyrus 3.45 36 -57 15
R intracalcarine cortex 3.45 21 -72 3
L lateral occipital cortex 714 0.044 5.67 42 81 -3
L supramarginal gyrus 3.66 -60  -48 15
Animalnonbiologicaplant
R lateral occipital cortex 2110 0.005 6.05 45 -718 6
R lingual gyrus 5.98 30 -39 -6
R temporal fusiform cortex 4.18 39 -54  -18
L parahippocampal cortex 3865 0.002 5.14 -18 -39 21
L middle temporal gyrus 4.58 63 42 O
L supramarginal gyrus 4.43 -60 -42 30
Semantic feature
L lateral occipital cortex 28111 0.000 10.08 -48 -75 9
R lateral occipital cortex 9.69 51 -72 6
R temporal fusiform cortex 8.12 42 -51 -15
L temporal fusiform cortex 7.10 45 60 -15
L middle temporal gyrus 6.46 60 O -18
L hippocampus 5.50 -33 27 -12
L perirhinal cortex 4.58 27 -12 -36
R inferior frontal gyrus (BA45) 4.20 51 27 0
R inferior frontal gyrus (BA44) 4.10 51 18 9
R ventromedial prefrontal cortex 4.08 9 51 -12
L ventromedial prefrontal cortex 4.03 -6 51 -12
L inferior frontal gyrus (BA44) 4.02 -51 18 12
L ventral anterior temporal lobe 3.84 45 -9 -39
L inferior frontal gyrus (BA45) 3.62 51 27 0
L temporal pole 3.60 36 3 -36
R hippocampus 3.34 33 -12 -18

MNI coordinates and significance levels shown for the peak voxeldlngtachAnatomical labels are provided
for locations in each cluster. Effects in clusters smaller than 20 voxels not shown.

Preregistenedariat?MR| analysis
Encoding activity predicting traed falseecognition

Univariate analysis was run to derive ROIs for RSA based on subsequent memory effects in
regions where prior literature is suggestive, but not clear, regarding their invohisrsleoived
significanfactivation for subsequently remembered > subsedisegtiten items in thelTG

(cluster sizéc= 13,p< 0.05 FWE)NOo significantctivation was revealed for subsequently falsely
recognized > subsequently colyaejected itemafter FWE correctian

Parametric effect abncepiconfusability

Finally, v were interested in the specific rol¢hef PrC and possibly aVT@ processing
conceptuallgonfusable objecfEhesaegions wereot related to parametric changesoincept

confusabilityregardlessef memory encodind.hereforewe did no replicateClarke and Tyler
(2014)V ILQGLQJ RI LQFUH D vdAcephdpernfisabWwy alfeanédivedtei@+ H
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0.139andp = 0.05 for PrC and aVTC, respectivebyibsequent memory effects were also not
significant at the preregisteFANE-corrected threshold. However, at an uncorrected threshold,
activity associated with condeponfusabilitywas greatefor subsequently forgottethhan
remembered items iight PrC(cluster sizk = 12,p< 0.005)and bilateral avVTC (right cluster
size:k = 19 p < 0.001 left cluster siz&k = 6, p < 0.00). Activity associated with concept
confusability was also gredtersubsequently falsely recognibeshcorrectly rejected items in
bilateralPrC (right cluster siz&k = 35 p< 0.005 left cluster sizé&: = 11, p< 0.009, and right

aVTC (cluster sizk:= 22,p< 0.005)and for subsequently falsely recognized than remembered
items in bilateral PrC (rigtluster sizék = 25,p< 0.005; left cluster sizex= 12,p< 0.005) and

right aVTC (cluster sizk:= 16, p< 0.005).

Discussion

Our results show that semantic and percagoisentatiaplay distinct roles imue and false
memory encodingBy combining explicit modetd prior conceptual knowledge and image
propertieswith a subsequent memory paradige probel ther separate contributiorte
encodingf objectsFine-grainegerceptual and semantic processitige ventral visual pathway
both predictedlater recognition o$tudiedobjects while coarsegrained categorical semantic
information processed more anteriorly predicted forgetting. In contrastalgwevel visual
representations in posterior regions predicted false tiecogisimilar object$he datgrovide

the firstdirect tes of fuzzy WU D FH a&skirApRds abdut how memories amecoed, and
suggest thaemanticepresentatiomaay contribute tepecific as well as gisgmoryphenomena
(BrainercandReyna, 2002)

Our results for the early visual madethe ROI and searchlight analys®s/erge witlstudies
showing univariate subsequent nrgnadfects in the same regiqgksm and Cabeza, 2007,
Kirchhoff et al., 2000; Pidgeon and Morcom, 2016; Wagner et al.Dd#8B)tedlow-level
visualrepresentations BVC predictedsuccessful later recognition of specific studied objects.
TheClHMaxrepresentatiorembodyknown properties of primary visual cortex relating to local
edgeorientations imagegKamitani and Tong, 2008nhd his modetlustereadurobject images

by overallshape and orientation (F& Theseresuls converge witlavis et al. (2020 UHFH QW
finding thatRSAmodel fit foranearlylayer of a deep convolutional neural net{i@NN) in

early visual cortepredictedater memoryfor pictures Our data point to specifiowerlevel
properties available in the presented imbhgesontribute to memorythe searchligtdanalysis
showed thathese properties also include c@fag 7). The roles of theegionswith significant
memory effects are not clear, bwgrall, colomformationwas represented in LO&3 expected.

In late visual regionsuch as$ G and FG, etivity patternsfitting the early visual model also
predicted true recognitigkig. 5 and 7)as hypothesized basedaotivation studieqGaroff et
al., 2005; Kim, 2011; Kirchhoff et al., 2000; Stern et al., 1996gVaidg802) We also found
thatobjectsemanti¢eaturesoded in FG predicted truecognitionThesgVTCregionseceive
low-level propertieas inputo compuecomplex shapaformation(Kanwisher, 200JEmerging
data suggest that th6& processesisible(but also verbalizablsgmantic featuresupporting
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extraction of meaning from visiddevereux etl. (2018tombined deep visual and semantic
attractor networks to modle transformation of vision sgmanticsrevealing a confluence of
latevisual representatioasdearly semantfeaturerepresentations in FSee alsdyler et al.,
2013) Thisconvergswith Martin et al.'s (2018pdingthat FGpatterns aligned withtedvisual
objectfeaturesDavis et al. (2020@ported thain FG the midlayer of a visual DNN predact
memory for object names when the objects were forgotten, while semantic features of the object
images predicted memory for the images when the names were fGngditedingsclarify that
bothimagebased visual codasdnon-imagebasedsemantideaturecodes are representezte
during successful encodimggether, the datarthersuggest that thisitial extraction ovisual
semantic featurésimportant fothe effectiveencodingpf memories o$pecificobjectsbut not
false recognition of similar objects.

More anteriorlytaxonomiccategoricatepresentations in avVTC abhbFG, as well as (in the
searchlight analysis) RIFSBedicedforgetting ofstudied itemdn an exploraty resultLPrC
showed a similar patterihesefindings support the ide#hat coarsegraineddomainlevel
semantic processing is detrimental to mefoospecific object8ilateralFG typically shows
strongunivariatessubsequent memory effdoisnameable object stim{iim, 201). It is thought
to support selection and contpobcesses involvedetaborative semangacodingJackson et
al., 2015; Prince et al., 200bjectspecific semantinformationwasalsorepresented this
region, but did not predict recognitidm.contrast taxonomic semantinformationwas not
representedn average across triddat waspresent onlyjor forgottenitems suggestinthat
processing this informaticat encoding &s detrimental to memarne possibility is that
domainleveltaxonomigorocessing impedaseélectin of specificsemantic information. Another
possibility in line with thdevels of processimginciple,is thatthe object namingncoding task
did not strmgly engageemanticontroloperations that promote subsequent me(@mik and
Lockhart, 1972; Otten and Rugg, 200bject naminglepends orasielevel objeespecific
processingn theFG, consistent with the current findirf@ayloret al, 2012)Future studies can
test this by manipulahg cognitive operations at encoding to determine whether the
representations promoting later memory are alsddpskdent.

The absence of any associdbetveen objeetpecific representations in PrC and encoding was
unexpecteddthough we replicatedlarke and Tyler (2014) FHQW U D ®PrCte@résk® J WK D W
objectspecific semantic featurése PrC encodesomplex conjunctions of visBarense et al.,
2012; Bussey et al., 2082) semantic featur@ruffaerts et al., 2013; Clarke and Tyler, 2014)
that enable fingrainedobjectdiscriminationandmaycontribute tdater item memor{Brown

and Aggleton, 2001; Yonelinas et al., 2883)e objeespecific semantic model fit embodied
both shared and distinctive feature informatiemaw durther,univariate analysis to examine
the directional effectf ahared featuresancept confusabilityWe did not replicat€larke &
Tyler's (2014finding that PrC activation was higher overtdl more confusable objects,
interpretedn terms of featurdisambiguatin. However, we found preliminary evidenceithat
both PrCandaVTC activity correlating with concept confusalghégicted forgetting studied
objectsThisresultis consistent witbur finding thatconcept confusability strongly imp#ine
recognition, as well as discrimination between studied objects dNd$riest al., 2020®sults
replicatechere These dataalso suggest an interpretationDaivis et al.'s (202@¢port that
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senantic feature modét in PrC predicted later true recognition of object concepts when their
pictures were forgottewhich mayorrespond to nonspecific encoding.

An important and novel feature of our study is the investigation of the represectatiental
associated with encoding of false memories. Our resatiged that weak visual representations
coded inEVC andextending td.ITG predicted later false recogniti®ig. 5) and model fit
differed significantly from true recognitibhissupports fuzzyrace theoryproposal thatisual
detail is encoded ispecific memory tracéisat confer robustness to lateue recognition
(Brainerdand Reyna, 2002%everaunivariatefMRI studiesof memoryretrievalhave shown
greateearly and late visual coréegtivation for true than false memooiesbject{Dennis et al.,
2012; Kaanian and Slotnick, 2017, 2018; Schacter and SlotnickO2G04) fewencoding
studiestwo have founaccipital activation predicting true but not false recog(iteomis et al.,
2008; Kirchhoff et al., 2000; PidgemadMorcom, 2016; but see Garoff et al., 200&)e, we

not only show that visually specialized regions are engaged more when encoding true than false
memories, but also characterize the visual features invblwehsufficientearly visual analysis

at encodindead to poor mnemonic discrimination of semillures.This maypreventlater
recollection of details of the studied item that would akmpleto reject the similar e
(remllection rejectigrBrainerd et al., 2003he RSAesult is also consistent wttile behavioral
increase in false recognition for masedly confuséle objectgseealsoNaspi et al., 2020)

We did not find angvidencéerethatsemantic processiogntributes tdalse memory encoding
andin FG, semantideaturerepresentationsnpactedirue memory encodingnore strongly
Clearlywe cannot place weight on thi result, andur models did not comprehensiaelgress

all potential semanticprocesss but focused on concelgvel processes we have shown to
contribute behaviorally in this tgdaspi et al., 2020)ateral and ventral temporal regions
previously implicated in false neeynencodingn verbal taskdid not show significant effects
here(Dennis et al., 2007; Chadwick et al., 20h&seareasnay support highdevel verbal
semanticnkingstudied items to lures. Nonethelésghin the current taskndfollowingdeep
semantigudgmentsat encodingNaspi et al., 2020yonceptconfusability reduced lure false
recognition relative to novel objexdsvell as true recognitiém intriguing possibility is that the
semantic processes reducing lure false recognition ogieratgeval rather than at encoding.
This hypothesis wille tested using RSA analysis of retrieval phase brain activity in this task.

In conclusionwe haveevealed some of the visual and semantic representations that allow people
to form memories of specific objects and later reject similar novel dbjgdsthe first 2to our
knowledge?preregistered study of neural representations in memory encoding, and the first probe
of representationmedicting false recognitidgising previously validated representational models

we were able to disentangle-level image properties from semantic feature procd$sraata

provide novebupportfor theoretical assumptiomaplicatingvisual detailn specific memory
encodingbut suggest thaémantic informatiomay contribute to specific as wefjiaBnemay.

Our approach offers a path by which future studies can evaluate the respective roles of encoding
and retrieval representationfrire andalse memory.
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