Solitary waves and excited states for Boson stars

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/100717/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
SOLITARY WAVES AND EXCITED STATES FOR BOSON STARS

M. MELGAARD* AND F. D. Y. ZONGO

Abstract. We study the nonlinear, nonlocal, time-dependent partial differential equation

\[i\partial_t \phi = (\sqrt{-\Delta + m^2} - m) \phi - \left(\frac{1}{|x|} + |\phi|^2 \right) \phi \] on \(\mathbb{R}^3 \),

which is known to describe the dynamics of quasi-relativistic boson stars in the mean-field limit. For positive mass parameter \(m > 0 \) we establish existence of infinitely many (corresponding to distinct energies \(\lambda_k \)) travelling solitary waves, \(\varphi_k(x, t) = e^{i\lambda_k t} \phi_k(x - vt) \), with speed \(|v| < 1 \), where \(c = 1 \) corresponds to the speed of light in our choice of units. These travelling solitary waves cannot be obtained by applying a Lorentz boost to a solitary wave at rest (with \(v = 0 \)) because Lorentz covariance fails. Instead we study a suitable variational problem for which the functions \(\phi_k \in H^{1/2}(\mathbb{R}^3) \) arise as solutions (called boosted excited states) to a Choquard type equation in \(\mathbb{R}^3 \), where the negative Laplacian is replaced by the pseudo-differential operator \(\sqrt{-\Delta + m^2} - m \) and an additional term \(i(v \cdot \nabla) \) enters. Moreover, we give a new proof for existence of boosted ground states. The results are based on perturbation methods in critical point theory.

1. Introduction

The Choquard equation in three dimensions reads

\[-\Delta u - \left(\int_{\mathbb{R}^3} |u(y)|^2 W(x - y) \, dy \right) u(x) = -\lambda u, \]

where \(W \) is a positive function. It comes from the functional

\[E_{NR}(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^2 \, dx - \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |u(x)|^2 W(x - y)|u(y)|^2 \, dx \, dy, \]

which, in turn, arises from an approximation to the Hartree-Fock theory of a one-component plasma when \(W(y) = 1/|y| \) (Coulomb case); as suggested by P. Choquard in 1976. If one defines

\[E_{NR}(\nu) = \inf \{ E_{NR}(u) : u \in H^1(\mathbb{R}^3), \|u\|_{L^2} \leq \nu \} \]

intuition suggests that:

- the energy \(E_{NR}(\nu) \) is finite;

Date: July 22, 2021
* Corresponding author.
1991 Mathematics Subject Classification. 35Q40, 35Q75, 35Q51, 81Q99, 83C20, 85A15.
Key words and phrases. quasi-relativistic Choquard/Hartree type equation, Boson star, solitary waves, infinitely many solutions, critical point theory.
there is a minimizing u for $E_{NR}(\nu)$ which satisfies the nonlinear Schrödinger equation
$$(-\Delta + W_{u}(x))u(x) = -\lambda u(x)$$
for some $\lambda > 0$, with $W_{u}(x) = -2 \int |u(y)|^2 |x - y|^{-1} \, dy$;

the minimizing u is unique except for translations (i.e. $u(x) \mapsto u(x + a)$, $a \in \mathbb{R}^3$), and $\|u\|_{L^2} = \lambda$. Moreover, $u \in C^\infty(\mathbb{R}^3)$. Hence
$$E_{NR}(\nu) = \inf \{ E_{NR}(u) : u \in H^1(\mathbb{R}^3), \|u\|_{L^2} = \nu \}.$$ \hspace{1cm} (1.4)

All these facts were established by Lieb in 1977 [9]. The mathematical difficulty of the functional is caused by the minus sign in E, which makes it impossible to apply standard arguments for convex functionals. Lieb overcame the lack of convexity by using the theory of symmetric decreasing functions.

In 1980 Lions [12] studied both the unconstrained and constrained problems. For the unconstrained problem (1.1) (with W being a positive function as above) he showed under very mild conditions on W – essentially W is required to be spherically symmetric – that, for $\lambda > 0$, (1.1) possesses infinitely many solutions $(u_j)_{j \geq 1}$ such that

- u_1 is positive;
- u_j is spherically symmetric;
- furthermore,
$$0 < S_{NR}(u_j) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u_j|^2 + \frac{\lambda}{2} |u_j(x)|^2 \, dx$$
$$- \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |u_j(y)|^2 W(x - y) |u_j(x)|^2 \, dxdy \to +\infty \text{ as } j \to \infty.$$

To show these results for the unconstrained problem, Lions applied the original Mountain Pass Theorem by Ambrosetti and Rabinowitz [3, 2]. For the constrained problem, seeking radially symmetric, normalized functions $\|u\|_{L^2} = +1$, or more generally, seeking solutions belonging to
$$C_N = \{ \phi \in H^1_1(\mathbb{R}^3) : \|\phi\|_{L^2} = N \},$$
the situation is more complicated, see Lions [12], and conditions on W are necessary. In the Coulomb case, Lions proves that there exists a sequence (λ_j, u_j), with $\lambda_j > 0$, and u_j satisfies (1.1) (with $\lambda = \lambda_j$) and belongs to C_1. Moreover, one has that :

- u_1 is positive and $E_{NR}(u_1) = \min_{\{v \in H^1(\mathbb{R}^3), \|v\|_{L^2(\mathbb{R}^3)} = 1\}} E_{NR}(v)$;
- u_j is spherically symmetric;
- $0 > E_{NR}(u_j) \to 0$, $\lambda_j \downarrow 0$ as $j \to \infty$, where
$$E_{NR}(u_j) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u_j|^2 - \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} |u_j(y)|^2 |x - y|^{-1} |u_j(x)|^2 \, dxdy.$$
We may replace the negative Laplace operator by the so-called quasi-relativistic operator, i.e., the pseudodifferential operator \(\sqrt{-\Delta + m^2} - m \); this is the kinetic energy operator of a relativistic particle of mass \(m \geq 0 \). It is defined via multiplication in the Fourier space with the symbol \(\sqrt{\xi^2 + m^2} - m \), which is frequently used in relativistic quantum physics models as a suitable replacement of the full (matrix valued) Dirac operator.

In the present paper we begin by considering the time-dependent equation

\[
\begin{align*}
 i\partial_t \psi &= \left(\sqrt{-\Delta + m^2} - m \right) \psi - \left(\frac{1}{|x|} \ast |\psi|^2 \right) \psi \quad \text{on } \mathbb{R}^3, \\
\end{align*}
\]

where \(\psi(x,t) \) is a complex-valued wave function, and the symbol \(\ast \) designates the convolution on \(\mathbb{R}^3 \). In suitable physical units, the convolution kernel \(|x|^{-1} \) represents the Newtonian gravitational potential. The equation (1.5) arises as an effective dynamical description for an \(N \)-body quantum system of relativistic bosons with two-body interaction given by Newtonian gravity, as recently shown by Elgart and Schlein [5]. This system models a Boson star [14, 16, 17], characterized by a quasi-relativistic regime, where effects of special relativity (taken into account by the operator \(\sqrt{-\Delta + m^2} - m \)) are important, but effects of the general theory of relativity are negligible.

The nonlinearity in (1.5) is focusing (see, e.g., [18]) and, therefore, there exist solitary wave solutions (or solitary waves)

\[
\psi(x,t) = e^{it\lambda} \phi(x),
\]

where \(\phi \in H^{1/2}(\mathbb{R}^3) \) (see Section 3 for the definition of this Sobolev space) is defined as a minimizer of

\[
\mathcal{E}(\phi) = \frac{1}{2} \int_{\mathbb{R}^3} \psi(\sqrt{-\Delta + m^2} - m) \phi \, dx - \frac{1}{4} \int \left(\frac{1}{|x|} \ast |\phi|^2 \right) |\phi|^2 \, dx
\]

such that

\[
\int_{\mathbb{R}^3} |\psi(x,t)|^2 \, dx = N.
\]

Any such minimizer \(\phi \) is referred to as a ground state [11] and it satisfies the associated Euler-Lagrange equation

\[
(\sqrt{-\Delta + m^2} - m)\phi - \left(\frac{1}{|x|} \ast |\phi|^2 \right) \phi(x) = -\lambda \phi
\]

for some \(\lambda \in \mathbb{R} \).

In this paper we consider solutions of the form

\[
\psi(x,t) = e^{it\lambda} \phi_v(x - vt)
\]

with some \(\lambda \in \mathbb{R} \) and traveling velocity \(v \in \mathbb{R}^3 \), such that \(|v| < 1 \) holds (in our choice of units, this means that \(|v| \) is below the speed of light). Solutions of the kind (1.7) cannot be directly obtained from solitary waves at rest (meaning we set \(v \) equal to zero) and invoking a Lorentz boost (see, e.g., [19]) because (1.5) is not Lorentz covariant. To by-pass this obstacle, we insert the ansatz (1.7) into (1.5), which leads to

\[
(\sqrt{-\Delta + m^2} - m)\phi + i(v \cdot \nabla)\phi - \left(\frac{1}{|x|} \ast |\phi|^2 \right) \phi = -\lambda \phi.
\]
This is the Euler-Lagrange equation for the following minimization problem associated with functional
\[E_v(\varphi) := E(\varphi) + \frac{i}{2} \int \overline{\varphi} (v \cdot \nabla) \varphi \, dx \quad (1.9) \]
subject to the constraint
\[N(\varphi) := \int_{\mathbb{R}^3} |\varphi(x,t)|^2 \, dx = N. \quad (1.10) \]

We study the nonlocal and nonlinear problem
\[\tilde{L}_0 \phi + i(v \cdot \nabla) \phi - \left(\frac{1}{|x|} * |\phi|^2 \right) \phi = -\lambda \phi, \quad (1.11) \]
\[\|\phi\|_{L^2(\mathbb{R}^3)} = N, \quad (1.12) \]
where \(\tilde{L}_0 = \sqrt{-\Delta + m^2} - m \). We prove existence of multiple solutions, including a minimizer of the corresponding energy functional \(E_v(\cdot) \), viz.
\[E_v(N) := \inf \{ E_v(\varphi) : \varphi \in H^{1/2}(\mathbb{R}^3), \quad N(\varphi) = N \}, \quad (1.13) \]
where \(H^{1/2}(\mathbb{R}^3) \) is the Sobolev space defined in Section 2. Introduce
\[\mathcal{M}_N = \{ \psi \in H^{1/2}(\mathbb{R}^3) : N(\psi) = N \}. \quad (1.14) \]

The main theorem is:

Theorem 1.1. Assume \(m > 0, \ v \in \mathbb{R}^3 \) with \(|v| < 1 \). Then there exists a positive constant \(N_c(v) \) depending only on \(v \) such that :

1. For \(0 < N < N_c(v) \), every minimizing sequence of (1.13) is relatively compact in \(\mathcal{M}_N \) up to translations; defined in (1.14). In particular, there exists a minimizer \(\phi \) of \(E_v(\cdot) \) on the admissible set \(\mathcal{M}_N \) such that

\[\left(\sqrt{-\Delta + m^2} - m + iv \cdot \nabla \right) \phi - \left(\frac{1}{|x|} * |\phi|^2 \right) \phi + \lambda \phi = 0, \quad (1.15) \]
\[\|\phi\|_{L^2(\mathbb{R}^3)} = N, \quad (1.16) \]

for some \(\lambda > 0 \).

2. For \(0 < N < N_c(v) \) there exists a sequence \((\phi_k) \) of distinct solutions of

\[\left(\sqrt{-\Delta + m^2} - m + iv \cdot \nabla \right) \phi_k - \left(\frac{1}{|x|} * |\phi_k|^2 \right) \phi_k + \lambda_k \phi_k = 0, \quad (1.17) \]
\[\|\phi_k\|_{L^2(\mathbb{R}^3)} = N, \quad (1.18) \]

for some \(\lambda_k > 0 \) and, moreover,
\[\lambda_k \to 0, \quad \phi_k \to 0 \quad \text{weakly in} \ H^{1/2}(\mathbb{R}^3). \]

3. For \(N \geq N_c(v) \) no minimizer exists for problem (1.13), even though \(E_v(N) = 0 \) is finite for \(N = N_c(v) \).
We note that radially symmetric solutions to (1.11) do not exist. Indeed if ϕ was radial, the left-hand side of
\[L_0 \phi - \left(\frac{1}{|x|} \ast |\phi|^2 \right) \phi + \lambda \phi = -i(v \cdot \nabla)\phi \]
is radial. However, the right-hand side is
\[-iv \cdot \nabla \phi = -i \frac{x}{|x|} \phi'(|x|) \]
which is radial if and only if $\phi' \equiv 0$.

For $v \equiv 0$, the first rigorous study of (1.11) was performed by Lieb and Yau [11] in a slightly different context, when the constraint is replaced by $\| \phi \|_{L^2} = N$. They established the existence of a symmetric decreasing minimizer provided $N < N_b$ for some number N_b. For the same problem, but allowing $v \neq 0$, Fröhlich et al [7] proved existence of minimizers (or boosted ground states) by using Lions’ concentration-compactness method, and they also proved item 3 above. In the present paper we will prove existence of boosted excited states (item 2 in Theorem 1.1), as well as existence of minimizers (boosted ground states, see item 1 in Theorem 1.1) by completely different methods. The methods are based on smooth perturbed minimization principles (item 1) and perturbed variational principles (item 2), using explicitly Morse-type information on Palais-Smale sequences (see Section 5) to avoid the possibility of “vanishing eigenvalues”.

2. Preliminaries

Throughout the paper we denote by C (with or without indices) various constants whose precise value is of no importance. Let \mathbb{R}^N be the N-dimensional Euclidean space. We set
\[B_R = \{ x \in \mathbb{R}^N : |x| < R \}, \quad B(x, R) = \{ y \in \mathbb{R}^N : |x - y| < R \}. \]
By S^{N-1} we will denote the unit sphere in \mathbb{R}^N.

Functions. By C_0^∞, C^∞, and L^p we refer to the standard function spaces. For a measure space (\mathcal{M}, μ), μ being a σ-finite measure, the weak L^p space (or Marcinkiewicz space) is defined as the space L^p_w of measurable functions ϕ such that
\[\sup_{t>0} \mu(\{ x : |\phi(x)| > t \})^{1/p} < \infty. \]

Sobolev spaces. Denoting the Fourier-Plancherel transform of $u \in L^2(\mathbb{R}^3)$ by \hat{u}, we define
\[H^{1/2}(\mathbb{R}^3) = \{ \phi \in L^2(\mathbb{R}^3) : (1 + |\xi|)^{1/2} \hat{\phi} \in L^2(\mathbb{R}^3) \}, \]
which, endowed with the scalar product
\[\langle \phi, \psi \rangle_{H^{1/2}(\mathbb{R}^3)} = \int_{\mathbb{R}^3} (1 + |\xi|) \hat{\phi}(\xi) \overline{\psi}(\xi) \, d\xi, \]
becomes a Hilbert space; evidently, $H^1(\mathbb{R}^3) \subset H^{1/2}(\mathbb{R}^3)$. We have that $C_0^\infty(\mathbb{R}^3)$ is dense in $H^{1/2}(\mathbb{R}^3)$ and the continuous embedding $H^{1/2}(\mathbb{R}^3) \hookrightarrow L^r(\mathbb{R}^3)$ holds whenever $r \in [2, 3]$ [1, Theorem 7.57]. Moreover, we shall use that any weakly convergent sequence in $H^{1/2}(\mathbb{R}^3)$ has a pointwise convergent subsequence.
Homotopic families. If a group G acts on two topological spaces \mathcal{X} and \mathcal{Y}, we say that a function $f : \mathcal{X} \to \mathcal{Y}$ is G-equivariant if $f(g \cdot x) = gf(x)$ for all $g \in G$ and $x \in \mathcal{X}$. We denote by $C_G(\mathcal{X}, \mathcal{Y})$ the set of all G-equivariant functions.

Let Ω be a compact subset of \mathbb{R}^n, $n \geq 1$ and let M be a complete C^2-Riemannian manifold. Assume that G is a compact Lie group acting freely and differentiably on M and Ω. A family \mathcal{F} of sets of the form

$$\{ f(\Omega) : f \in C_G(\Omega, M) \}$$

is called a G-homotopic family of dimension n. Here $C_G(\Omega, M)$ is the set of all G-equivariant continuous $f : \Omega \to M$.

Operators. Let T be a self-adjoint operator on a Hilbert space H with domain $D(T)$. The spectrum and resolvent set are denoted by $\sigma(T)$ and $\rho(T)$, respectively. We use standard terminology for the various parts of the spectrum. The spectral family associated to T is denoted by $E_T(\lambda)$, $\lambda \in \mathbb{R}$.

3. Basic set-up and assumptions

We define the following quadratic form, associated to the kinetic energy,

$$I_0[\phi] := \| \hat{\phi}(\xi) \|^2_{L^2(\mathbb{R}^3, (\sqrt{2\pi |\xi|^2 + m^2} - m)^2 d\xi)}$$

on $H^{1/2}(\mathbb{R}^3)$. It is convenient to introduce

$$I_0[\phi] := \| \hat{\phi}(\xi) \|^2_{L^2(\mathbb{R}^3, (\sqrt{2\pi |\xi|^2} + m^2) d\xi)}$$

and

$$I_v[\phi] := I_0[\phi] - \int_{\mathbb{R}^3} v \cdot \xi |\hat{\phi}(\xi)|^2 d\xi$$

where $v \in \mathbb{R}^3$ and $|v| < 1$. Moreover, we define (arising from the direct Coulomb energy)

$$\mathcal{J}_{1/|x|}(\psi, \phi) := \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \psi(x)\phi(y) |x - y| dxdy,$$

whenever it makes sense. We consider the following functional $\mathcal{E}_v : H^{1/2}(\mathbb{R}^3) \to \mathbb{R}$ defined by

$$\phi \mapsto \frac{1}{2} I_v[\phi] - \frac{1}{2} m \| \phi \|^2_{L^2} - \frac{1}{4} \mathcal{J}_{1/|x|}(|\phi|^2, |\phi|^2),$$

At this place we do not focus on whether the functionals are well-defined or not, this will be discussed in detail in the sequel. We do, however, point out that \mathcal{E}_v is real-valued. Clearly, it suffices to show that I_v is real-valued and this immediately follows from two applications of Plancherel’s theorem.

Assumption 3.1. Let W be a nonnegative, nonzero measure such that there exist $K \geq 1$, $p_k \in (1, \infty)$, with $k \in [1, K]$, and functions W_k satisfying

$$W = \sum_{k=1}^{K} W_k, \quad W_k \in L^{p_k}_{w}(\mathbb{R}^3).$$
4. Auxiliary facts and results

We summarize some basic facts, starting with [7, Lemma B.1].

Lemma 4.1. For any $v \in \mathbb{R}^3$ with $|v| < 1$, there exists (an optimal) a constant S_v such that

$$
\int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\psi|^2 \right) |\psi|^2 \, dx \leq S_v \langle \psi, \left(\sqrt{-\Delta} + iv \cdot \nabla \right) \psi \rangle \langle \psi, \psi \rangle \tag{4.1}
$$

is valid for all $\psi \in H^{1/2}(\mathbb{R}^3)$. Furthermore,

$$
S_v = \frac{2}{\langle Q_v, Q_v \rangle} \tag{4.2}
$$

where $Q_v \in H^{1/2}(\mathbb{R}^3)$, $Q_v \not\equiv 0$, is an optimiser for (4.1) and it obeys

$$
\sqrt{-\Delta} Q_v + i(v \cdot \nabla) Q_v - \left(\frac{1}{|x|} * |Q_v|^2 \right) |Q_v|^2 = -Q_v. \tag{4.3}
$$

Moreover,

$$
S_{v=0} < \frac{\pi}{2}, \quad S_{v=0} \leq S_v \leq (1 - |v|)^{-1} S_{v=0}.
$$

We note that (see also [7, Appendix C]):

Lemma 4.2. For every $v \in \mathbb{R}^3$ with $|v| < 1$, there exist $C_1, C_2 > 0$ such that

$$
C_1(|\xi| + m) \leq \sqrt{\xi^2 + m^2} - (v \cdot \xi) \leq C_2(|\xi| + m). \tag{4.4}
$$

Proof. It is easy to show that there exists $0 < \delta < 1$ such that $\sqrt{x^2 + m^2} \geq (1 - \delta)x + \delta m$ for every $x, m > 0$. The latter inequality, together with $v \cdot \xi \geq -|v||\xi|$, implies that

$$
\sqrt{|\xi|^2 + m^2} - v \cdot \xi \geq (1 - \delta)|\xi| + \delta m - |v||\xi| = (1 - \delta - |v|)|\xi| + \delta m \geq C_v(|\xi| + m),
$$

where we have chosen δ such that $\delta < 1 - |v|$ and $C_v = \min(1 - |v| - \delta, \delta)$. This establishes the first inequality of (4.4). As for the second inequality we use the fact that $|v \cdot \xi| \leq |\xi| + m$ and $\sqrt{|\xi|^2 + m^2} \leq |\xi| + m$, which yield

$$
\sqrt{|\xi|^2 + m^2} - (v \cdot \xi) \leq 2(|\xi| + m).
$$

This completes the proof. \qed

We also need [7, Lemma A.4]:

Lemma 4.3. Assume $m > 0$, $v \in \mathbb{R}^3$ with $|v| < 1$. Then the functional I_v is well-defined and weakly lower semi-continuous on $H^{1/2}(\mathbb{R}^3)$. Furthermore, if $\lim_{k \to \infty} I_v(\phi_k) = I_v(\phi)$ holds, then $\phi_k \to \phi$ strongly in $H^{1/2}(\mathbb{R}^3)$ as k tends to ∞.

For the sake of completeness, we include its proof.
Proof. An application of Plancherel’s theorem yields

\[I_v[\phi] = \int_{\mathbb{R}^3} |\hat{\phi}(\xi)|^2 (\sqrt{\xi^2 + m^2} - (v \cdot \xi)) \, d\xi. \]

In view of Lemma 4.2 we have that

\[C_{v,1}(|\xi| + m) \leq \sqrt{\xi^2 + m^2} - (v \cdot \xi) \leq C_2(|\xi| + m). \tag{4.5} \]

As a consequence, \(C_{1,v} \|\phi\|_{H^{1/2}} \leq I_v[\phi] \leq C_2 \|\phi\|_{H^{1/2}} \) and if \(\phi \in H^{1/2}(\mathbb{R}^3) \) then \(I_v[\cdot] \) is well-defined. Moreover,

\[\|\phi\|_{C_v} := \sqrt{I_v[\phi]} \tag{4.6} \]

defines a norm, which is equivalent to \(\|\cdot\|_{H^{1/2}} \). In particular, weak and strong convergence for the two norms coincide. By virtue of (3.3) we identify \(\|\phi\|_{C_v} \) with the \(L^2 \)-norm of \(\hat{\phi} \) taken with respect to the integration measure

\[d\mu = (\sqrt{\xi^2 + m^2} - (v \cdot \xi)) \, d\xi. \tag{4.7} \]

We now deduce the first assertion from the weakly lower semicontinuity of the \(L^2(\mathbb{R}^3; d\mu) \)-norm. As for the second assertion, it is a consequence of the Brezis-Lieb Lemma (see, e.g., [2, Lemma 11.9] or [10]). \(\Box \)

We recall [7, Lemma 2.1]:

Lemma 4.4. Assume \(m \geq 0, v \in \mathbb{R}^3 \) with \(|v| < 1 \). Then

\[2\mathcal{E}_v(\psi) \geq \left(1 - \frac{N}{N_c(v)} \right) \langle \psi, (\sqrt{-\Delta} + iv \cdot \nabla)\psi \rangle - mN \tag{4.8} \]

for all \(\psi \in H^{1/2}(\mathbb{R}^3) \) with \(\mathcal{N}(\psi) = N \). Moreover,

\[E_v(N) \geq -\frac{1}{2} mN \text{ for } 0 < N < N_c(v) \tag{4.9} \]

and \(E_v(N) = -\infty \) for \(N > N_c(v) \). In particular, any minimizing sequence of the problem (1.13) is bounded from below whenever \(0 < N < N_c(v) \).

For the class of potentials \(W \) in Assumption 3.1 we have:

Lemma 4.5. Let Assumption 3.1 be satisfied. Let \(r \in [2,3] \) and suppose that the sequence \((\phi_j)_{j \geq 1} \) is bounded in \(L^r(\mathbb{R}^3) \), and that \(\phi_j \rightharpoonup \phi \) strongly in \(L^r(\mathbb{R}^3) \). Then

\[(W * \phi_j^2)\phi_j \rightharpoonup (W * \phi^2)\phi, \quad \text{as } j \to \infty, \tag{4.10} \]

and

\[\mathcal{J}_W(|\phi_j|^2, |\phi_j|^2) \text{ converges to } \mathcal{J}_W(|\phi|^2, |\phi|^2) \text{ as } j \to \infty, \tag{4.11} \]

where \(\mathcal{J}_W \) is defined as a convolution, analogously to \(\mathcal{J}_{1/|x|} \) in (3.4).

Proof. The sequence \((\phi_j^2)_{j \geq 1} \) is bounded in \(L^r(\mathbb{R}^3) \), \(s \in [1, \frac{3}{2}] \) because \(\phi_j \) is bounded in \(L^r(\mathbb{R}^3) \), \(r \in [2,3] \). The generalized Young inequality and the hypothesis \(W \in L^p_w(\mathbb{R}^3) \) imply that \(W * \phi_j^2 \) is bounded in \(L^q(\mathbb{R}^3) \) with \(3/2 < q < \infty \). An application of Lebesgue’s
dominated convergence theorem shows that \(W \ast \phi_j^2 \) converges strongly to \(W \ast |\phi|^2 \) in \(L^q(\mathbb{R}^3) \). Let \(\psi_j = W \ast |\phi_j|^2 \), and \(w \in \text{H}^{1/2} \). Then
\[
|\langle \psi_j \phi_j - \psi \phi, w \rangle_{\text{H}^{-1/2, \text{H}^{1/2}}} | = |\langle \psi_j \phi_j - \psi \phi + \psi \phi - \psi \phi, w \rangle_{\text{H}^{-1/2, \text{H}^{1/2}}} |
\leq C \|\psi_j \phi_j - \phi\|_{L^2} + \|\psi \phi - \psi \phi\|_{L^2}
\]
The Hölder inequality yields
\[
\|\psi_j \phi_j - \phi\|_{L^2} \leq \|\psi_j^2\|_{L^l}\|\phi - \phi\|^2_{L^m}
\]
with \((1/l) + (1/m) = 1\); this holds because \(m \in [1, 3/2] \) and \(l \in (3/4, \infty) \). The uniform boundedness of \(\psi_j \in L^q(\mathbb{R}^3) \), \(q \in (3/2, \infty) \), together with the strong convergence of \(\phi_j \) to \(\phi \) in \(L^r \), \(r \in [2, 3] \), and the strong convergence of \(\psi_j \) to \(\psi \) in \(L^g \), allow us to deduce that \(\langle \psi_j \phi_j - \psi \phi, w \rangle_{\text{H}^{-1/2, \text{H}^{1/2}}} \to 0 \) as \(j \to \infty \). Therefore,
\[
\psi_j \phi_j \rightharpoonup_{\text{H}^{-1/2}} \psi \phi,
\]
i.e., \((4.10)\) holds. On the other hand, the boundedness of \(\phi_j \) in \(\text{H}^{1/2}(\mathbb{R}^3) \) and the boundedness of \(W \ast \phi_j^2 \) in \(L^g \), imply that the sequence \((W \ast \phi_j^2)\phi_j^2\) is bounded in \(L^1 \). These facts, in conjunction with the pointwise convergence of \((W \ast \phi_j^2)\phi_j^2\) to \((W \ast \phi^2)\phi^2\) in \(\mathbb{R}^3 \) and the Lebesgue’s dominated convergence theorem yields \((4.11)\). \(\square\)

We need the following form and its associated self-adjoint operator.

Lemma 4.6. Assume that \(0 < N < N_c(v) = 2/S_v \). The sesquilinear form defined on \(\text{H}^{1/2}(\mathbb{R}^3) \) by
\[
f_v[\phi, \psi] = l_v[\phi, \psi] - m\langle \phi, \psi \rangle_{L^2} - \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\phi(x)^2 |\psi(y)|^2}{|x - y|} \, dx \, dy \tag{4.12}
\]
generates a unique self-adjoint operator \(F_v \) associated with the differential expression
\[
\sqrt{-\Delta + m^2} + i(v \cdot \nabla) - m - \frac{1}{2} \left(\frac{1}{|x|} * |\phi|^2 \right).
\]

Proof. We already know that \(l_v[\cdot, \cdot] \) is a closed, nonnegative form. Since, by invoking Lemma 4.1,
\[
|(1/2) J_{1/|x|} (u, u) | \leq \frac{1}{2} S_v l_v[u] \|u\|_{L^2}^2 < l_v[u],
\]
where the last inequality follows from the assumption \(0 < N < N_c(v) \), the KLMN theorem [15, Theorem 3.7] immediately yields the result. \(\square\)

The following abstract operator result goes back to Lions [13, Lemma II.2].

Lemma 4.7. Let \(T \) be a self-adjoint operator on a Hilbert space \(\mathcal{H} \) and let \(\mathcal{H}_1, \mathcal{H}_2 \) two subspaces of \(\mathcal{H} \) such that \(\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2 \), \(\dim \mathcal{H}_1 = h_1 < \infty \) and \(P_2P_1 \geq 0 \), where \(P_2 \) is the orthogonal projection onto \(\mathcal{H}_2 \). Then \(T \) has at most \(h_1 \) negative eigenvalues.

We will use the following result repeatedly:

Lemma 4.8. Suppose \(m > 0, v \in \mathbb{R}^3 \) with \(|v| < 1 \) and \(0 < N < N_c(v) \). Let \(F_v \) be the quasi-relativistic Choquard type operator in Lemma 4.6. Then, for each integer \(k \), there is a \(\delta > 0 \) such that \(F_v \) admits at least \(k \) eigenvalues strictly below \(-\delta\).
Proof. In view of Glazman’s lemma (see, e.g., [15, Lemma A.3]) we shall find for each integer \(d \) a subspace \(S_d \) of dimension \(d \) such that

\[
\max\{ \langle f, u \rangle_{L^2} : u \in S_d, \|u\|_{L^2} = N \} < 0.
\]

Let \(V_d \) be the \(d \)-dimensional subspace of \(H^{1/2} \) spanned by the first \(d \) eigenfunctions \(u_n \) of \(-\Delta\) on \(\mathbb{R} = \{ |x| \leq 2 \} \) with Dirichlet boundary conditions on \(\partial \mathbb{R} \). Choose a function \(u \in V_d \cap M_N \) and let \(u_\kappa(x) = \kappa^{-3/2}u(x/\kappa) \). Then \(\|u_\kappa\|_{L^2} = N \). We are going to use that for two forms \(t_1, t_2 \) satisfying \(D(t_1) \subset D(t_2) \) and \(t_2 \leq t_1 \), one has \(\text{Coun}(-\epsilon_{\kappa,N}; T_1) \leq \text{Coun}(-\epsilon_{\kappa,N}; T_2) \). In our case we have that \(H^1(\mathbb{R}^3) \subset H^{1/2}(\mathbb{R}^3) \) and, moreover,

\[
I_v[u] \leq C\|u\|^2_{H^1}, \quad \forall u \in H^1(\mathbb{R}^3).
\]

Therefore, it suffices to estimate

\[
f_v[u_\kappa] \leq \frac{C}{\kappa^2} \int_{\mathbb{R}^3} |\nabla u|^2 dx - \frac{1}{2} \int \frac{\phi^2(x)u^2(y)}{|x - \kappa y|} dxdy
\]

\[
\leq \frac{C}{\kappa^2} \int_{\mathbb{R}^3} |\nabla u|^2 dx - \frac{1}{2\kappa} \int \frac{\phi^2(x)u^2(y)}{|x| + |y|} dxdy \quad (\text{for } \kappa \gg 1)
\]

Since

\[
\int \int \frac{\phi^2(x)u^2(y)}{|x| + |y|} dxdy \leq \int \int \frac{\phi^2(x)u^2(y)}{|x - y|} dxdy < +\infty,
\]

It is now enough to choose any \(d \)-dimensional space of functions \(u \) as above and then let \(S_d \) be the space obtained by rescaling them as above \((u \rightarrow u_\kappa)\). Then there exists \(\kappa_0 > 1 \) such that for every \(\kappa \geq \kappa_0 \), we have \(f_v[\phi_\kappa] < 0 \). \(\square \)

5. Summary of critical point theory by Lions-Fang-Ghoussoub

By combining [8, Theorem 11.1] and [8, Remark 11.13] we obtain the following result, which is a simplified version of the original theorem first presented in [6]. Below, as usual, \(d\mathcal{J} \) and \(d^2\mathcal{J} \) denote the first and second variation of a functional \(\mathcal{J} \).

Theorem 5.1. Suppose \(G \) is a compact Lie group acting freely and differentiable on a complete \(C^2 \)-Riemannian manifold \(\mathcal{X} \). Let \(\mathcal{J} \) be a \(G \)-invariant \(C^2 \) functional on \(\mathcal{X} \) with \(d\mathcal{J} \) and \(d^2\mathcal{J} \) being Hölder continuous on \(\mathcal{X} \) and suppose \(H \) is a \(G \)-homotopic family of dimension \(k \), i.e., a set of the kind

\[
H = \{ h(D) : h \in C_G(D, \mathcal{X}) \},
\]

where \(D \) is a fixed \(G \)-invariant compact subset of \(\mathbb{R}^k \), and \(C_G(D, \mathcal{X}) \) is the set of all \(G \)-equivariant continuous functions \(h : D \rightarrow \mathcal{X} \). Consider

\[
l = \inf_{A \in H} \max_{x \in \mathcal{X}} \mathcal{J}(x)
\]

Then for any min-max sequence \(\{A_j\}_{j \in \mathbb{N}} \) in \(H \) there exists sequences \(\{x_j\}_j \) in \(\mathcal{X} \) and \(\{\delta_j\}_j \) in \(\mathbb{R}^+ \) with \(\lim_{j \to \infty} \delta_j = 0 \) such that

1. \(x_j \in A_j \) for each \(j \),
2. \(\lim_{j \to \infty} \mathcal{J}(x_j) = l \),
Proposition 6.1. Assume that ϕ satisfies (P1) $\lim_{j \to \infty} dJ(x_j) = 0$,
(P2) $\lim_{j \to \infty} d^2J(x_j) = 0$.
(P3) There exists a sequence $\{\delta(j)\}$ of positive real numbers such that $\delta(j) \to 0$ for every j, $d^2J(x_j)$ has at most k eigenvalues below $-\delta(j)$.

Definition 5.2. A C^2-function on a C^2-Riemannian manifold \mathcal{X} is said to have the Palais-Smale condition at level l, around the set \mathcal{H} and of order less than k (in short, (PS)$_{\mathcal{H},l,k^{-}}$), if a sequence $\{x_j\}_j$ in \mathcal{X} is relatively compact whenever the sequence satisfies the following conditions:

(P1) $\lim_{j} J(x_j) = l$
(P2) $\lim_{j} dJ(x_j) = 0$
(P3) There exists a sequence $\{\delta(j)\}$ of positive real numbers such that $\delta(j) \to 0$ for every j, $d^2J(x_j)$ has at most k eigenvalues below $-\delta(j)$.

6. Convergence of Palais-Smale type sequences

The following result is instrumental in the proof of the main theorem.

Proposition 6.1. Assume that $l \in \mathbb{R}$, that $n \in \mathbb{N}$ and let $0 < N < N_c(v)$. Let $(\phi_j) \subset \mathcal{M}_N$ be a sequence satisfying the Palais-Smale condition at level l and of order less than n, i.e., for some sequence $(\delta_j)_j$ of positive reals such that $\delta_j \to 0$ and some real sequence $(\lambda_j)_j$, the following three conditions hold:
(i) $\lim_{j} E_v(\phi_j) = l$;
(ii) $\lim_{j} dE_v(\phi_j) = 0$;
(iii) there exists a sequence (δ_j) of positive reals with $\delta_j \downarrow 0$ such that for each j, $d^2E_v(\phi_j)$ has at most n eigenvalues below $-\delta_j$.

Then any sequence (ϕ_j) satisfying (i)-(iii) is relatively compact in \mathcal{M}_N up to translations. Moreover, the limit ϕ of ϕ_j satisfies the Choquard type equation

$$
(\sqrt{-\Delta + m^2} - m + iv \cdot \nabla) \phi - \left(\frac{1}{|x|} * |\phi_j|^2\right) \phi + \lambda \phi = 0,
$$

$$
\|\phi\|_{L^2(\mathbb{R}^3)} = N,
$$

for some $\lambda > 0$.

Proof. Henceforth let $(\phi_j) \in \mathcal{M}_N$, be a sequence satisfying (i)-(iii). By hypothesis (ii), there exists a sequence (λ_j) of reals such that

$$
(\sqrt{-\Delta + m^2} - m + iv \cdot \nabla) \phi_j - \frac{1}{2} \left(\frac{1}{|x|} * |\phi_j|^2\right) \phi_j + \lambda_j \phi_j \to 0 \text{ in } L^2(\mathbb{R}^3)
$$

as $j \to \infty$. First we prove that there exists $0 < \lambda < \infty$ such that $\lambda < \lambda_j$. To prove existence of a lower bound we use the second order information summarized in hypothesis (iii). Indeed, we have

$$
\langle d^2E_v(\phi_j), \varphi, \varphi \rangle = \langle (\sqrt{-\Delta + m^2} - m + iv \cdot \nabla) \varphi, \varphi \rangle - \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\phi_j|^2\right) |\varphi(x)|^2 dx
$$

$$
+ (\lambda_j + \delta_j)\|\varphi\|_{L^2}^2 - 2 \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\phi_j(x)\phi_j(y)\varphi(x)\varphi(y)}{|x - y|} dx dy \geq 0.
$$
By the hypothesis (i) and (ii) we have

\[f_\psi[\psi, \psi] + (\lambda_j + \delta_j)\|\psi\|_{L^2}^2 \geq 0, \tag{6.4} \]

where \(f_\psi \) is the form in (4.12), \(\delta_j \downarrow 0 \) and \(\psi \) belongs to a closed subspace of \(H^{1/2} \) with finite codimension \(1 + n \). By invoking Lemma 4.7, we deduce that the family of operator

\[L_j = L_v - mI - \frac{1}{|x|} * |\phi_j|^2 \tag{6.5} \]

has at most \(n + 1 \) eigenvalues strictly less than \(- (\lambda_j + \delta_j)\). Lemma 4.8 ensures that there exists \(\delta > 0 \) (independent of \(j \)) such that \(L_j \) has at least \(1 + n \) eigenvalues strictly below \(- \delta\). As a consequence, we infer that \(\lambda_j + \delta_j > \delta, \forall j \). Since \(\delta_j \downarrow 0 \) as \(j \to \infty \), we conclude that, for \(j \) large enough, \(\lambda_j \geq \delta > 0, \forall j \). The uniform upper bound follows from the information level and the first order information. Thus, by the Bolzano-Weierstrass theorem there exists a subsequence still denoted \(\lambda_j \) such that \(\lambda_j \to \lambda > 0 \).

By the hypothesis (i) and (ii) we have

\[\{ \begin{align*}
&\mathcal{E}_v(\phi_j) \text{ is bounded,} \\
&(\sqrt{-\Delta + m^2} - m + iv \cdot \nabla) \phi_j + \lambda_j \phi_j - \left(\frac{1}{|x|} * |\phi_j|^2 \right) \phi_j \xrightarrow{H^{-1/2}} 0
\end{align*} \]

Let \(\epsilon_j = \mathcal{E}_v(\phi_j) \). We begin by proving that \((\phi_j)_{j \geq 1} \) is a bounded sequence in \(H^{1/2}(\mathbb{R}^3) \). Now, for some \(C_1 > 0 \), we have that

\[\mathcal{E}_v(\phi_j) = \frac{1}{2} L_v[\phi_j] - \frac{m}{2} \|\phi_j\|_{L^2}^2 - \frac{1}{4} \mathcal{J}_1/|x|(\phi_j^2, \phi_j^2) \leq C_1. \tag{6.6} \]

Moreover,

\[L_v[\phi_j] - m \|\phi_j\|_{L^2}^2 = 2\mathcal{E}_v(\phi_j) + \frac{1}{2} \mathcal{J}_1/|x|(\phi_j^2, \phi_j^2) \tag{6.7} \]

and

\[L_v[\phi_j] + (\lambda_j - m) \|\phi_j\|_{L^2}^2 - \mathcal{J}_1/|x|(\phi_j^2, \phi_j^2) = \langle \epsilon_j, \phi_j \rangle_{H^{-1/2}, H^{1/2}}. \tag{6.8} \]

By combining (6.7) and (6.8) we obtain

\[L_v[\phi_j] - m \|\phi_j\|_{L^2}^2 - \lambda_j \|\phi_j\|_{L^2}^2 = 4\mathcal{E}_v(\phi_j) - \langle \epsilon_j, \phi_j \rangle \tag{6.9} \]

Using the level information and the first order information in conjunction with (\(\lambda_j \)) being a bounded sequence, we deduce that

\[L_v[\phi_j] - m \|\phi_j\|_{L^2}^2 \leq C_2 \text{ and thus } L_v[\phi_j] \leq C_3. \tag{6.10} \]

Since \(L_v[\cdot] \) defines a norm which is equivalent to the \(H^{1/2}(\mathbb{R}^3) \)-norm, we deduce that \((\phi_j)_{j \geq 1} \) is a bounded sequence in \(H^{1/2}(\mathbb{R}^3) \) and \(N(\phi_j) = N \) for every \(j \). By the Banach-Alaoglu theorem there exists a subsequence of \(\phi_j \) (still denoted \(\phi_j \)) such that \(\phi_j \to \phi \) in \(H^{1/2}(\mathbb{R}^3) \). We show that \(\phi \) is nonzero by proving that, for all \(R > 0 \),

\[\lim_{j \to \infty} \sup_{y \in \mathbb{R}^3} \int_{|x-y|<R} |\phi_j|^2 \, dx > 0. \tag{6.11} \]

Firstly, we note that

\[E_v(N) < -\frac{1}{2} \left(1 - \sqrt{1 - v^2} \right) mN. \tag{6.12} \]
This is a consequence of [7, Lemma 2.2], which asserts that
\[
E_v(N) \leq -\frac{1}{2} \left(1 - \sqrt{1 - v^2} \right) mN + E_{vNR}^v(N),
\]
(6.13)
where
\[
E_{vNR}^v(N) = \inf \left\{ E_{vNR}^v(\psi) : \psi \in H^1(\mathbb{R}^3), \quad \mathcal{N}(\psi) = N \right\}
\]
with
\[
E_{vNR}^v(\psi) := \sqrt{1 - v^2} \int_{\mathbb{R}^3} |\nabla \psi|^2 - \frac{1}{4} \int \frac{1}{|x|} |\psi|^2 |\psi|^2 dx.
\]
From [9] we know that \(E_{vNR}^v(N) \leq E_{vNR}^v(\psi) < 0 \) and, by using this in (6.13), we obtain (6.12).

To prove (6.11), we argue by contradiction, so suppose
\[
\lim_{j \to \infty} \sup_{y \in \mathbb{R}^3} \int_{|x-y|<R} |\phi_j|^2 dx = 0 \quad (6.14)
\]
for all \(R > 0 \). Then [7, Lemma A.1] implies that
\[
\lim_{j \to \infty} \int_{\mathbb{R}^3} \left(\frac{1}{|x|} * |\phi_j|^2 \right) |\phi_j|^2 = 0.
\]
Since
\[
\langle \psi, L_0 \psi \rangle + i \langle \psi, (v \cdot \nabla) \psi \rangle \geq - \left(1 - \sqrt{1 - v^2} \right) mN,
\]
we deduce that
\[
E_v(N) \geq -\frac{1}{2} \left(1 - \sqrt{1 - v^2} \right) mN.
\]
(6.15)
But (6.15) contradicts (6.12). Hence we have reached a contradiction and, therefore, the weak limit \(\phi \) is nonzero. From (6.8) we get that
\[
\lambda_j \|\phi_j\|^2_{L^2} = \langle \epsilon_j, \phi_j \rangle - 2E_v(\phi_j) + \frac{1}{2} J_{1/|x|}(\phi_j^2, \phi_j^2)
\]
and, therefore,
\[
\lim_{j} \sup \lambda_j \|\phi_j\|^2_{L^2} = \lim_{j} \langle \epsilon_j, \phi_j \rangle - 2 \liminf_j E_v(\phi_j) + \frac{1}{2} \lim_j J_{1/|x|}(\phi_j^2, \phi_j^2)
\]
\[
\leq \lambda \|\phi\|^2_{L^2} \leq \liminf_j \lambda_j \|\phi_j\|^2_{L^2},
\]
(6.16)
whence
\[
\lim_{j} \sup \lambda_j \|\phi_j\|^2_{L^2} \leq \lambda \|\phi\|^2_{L^2} \leq \liminf_j \lambda_j \|\phi_j\|^2_{L^2},
\]
or
\[
\lim_{j} \sup \lambda_j \leq \frac{\lambda}{N} \|\phi\|^2_{L^2} \leq \liminf_j \lambda_j .
\]
We thus conclude that
\[
\|\phi\|^2_{L^2} = N
\]
and we infer that \(\phi_j \) converges to \(\phi \) in \(L^2(\mathbb{R}^3) \).
Finally, we show that ϕ_j converges strongly to ϕ in $H^{1/2}(\mathbb{R}^3)$. By passing to the limit in (6.8) we get, using Lemma 4.5,
\[
\lim_j t_n[\phi_j] = -\lim_j \left[(\lambda_j - m)\|\phi_j\|_{L^2}^2 - J_{1/|x|}(\phi^2_j, \phi^2_j) \right] \\
= - \left[(\lambda - m)\|\phi\|_{L^2}^2 - J_{1/|x|}(\phi^2, \phi^2) \right] \\
= t_n[\phi]
\]
and since $t_n[\cdot]$ as a norm is equivalent to $H^{1/2}$, this shows that ϕ_j converges strongly to ϕ in $H^{1/2}(\mathbb{R}^3)$.

7. Proof of Theorem 1.1

We are ready to prove Theorem 1.1

Proof of Theorem 1.1.

Assertion 1. We will show that the functional E_v restricted to M_N verifies (PS)$_{l,k}$ for every $l \in \mathbb{R}$ and any $k \in \mathbb{N}$. From Lemma 4.4 we have that $E_v(\cdot)$ is bounded from below on M_N whenever $0 < N < N_c(v)$ and we may therefore conclude existence of a minimizing sequence $(\tilde{\phi}_j)$ to (1.14). To prove relative compactness we will now prove that the hypothesis (ii) and (iii) in Proposition 6.1 are fulfilled.

For a complete metric space (X, d) introduce Q as the set of functions that can be written in the form
\[
q(x) = \frac{1}{2} \sum_{k=1}^{\infty} \alpha_k d(x, v_k)^2
\]
for some convergent sequence (v_k) and $\alpha_k \geq 0$ such that $\sum_{k=1}^{\infty} \alpha_k = 1$. In our case we have $X = M_N$ and $d(\cdot, v) = \|\cdot - v\|_{H^{1/2}}$ for some v. An application of the Borwein-Preiss smooth variational principle [4] (see also [8]) provides us with a new minimizing sequence (ϕ_j) such that
\[
\|\phi_j - \tilde{\phi}_j\|_{H^{1/2}} \to 0.
\]
We also have that (ϕ_j) minimises
\[
E_v(\cdot) + \frac{1}{j} q_j(\cdot)
\]
on M_N with $q_j \in Q$. This new minimizing sequence satisfies the assumptions of Proposition 6.1 with $n = 1$ therein. Existence of a minimum for $0 < N < N_c(v)$ now follows.

Assertion 2. Since E_v is even in ϕ, we use a min-max method to obtain critical points. We will prove that there exists a critical point at infinitely many distinct levels. We note that $Z_2 := \{-1, 1\}$ equipped with multiplication as binary operation and the discrete topology can be considered to be a compact Lie group. As in [13, 8] we use a min-max method of the form
\[
\min_{f \in C_G(\mathbb{S}^{k-1}, M_N)} \max_{\phi \in f(\mathbb{S}^{k-1})} E_v(\phi),
\]
where $G = Z_2 \sim \{-1, 1\}$ acts on the Euclidean space \mathbb{S}^{k-1} of \mathbb{R}^k, i.e.,
\[
(\pm 1, x) \mapsto \pm x, \quad x \in \mathbb{R}^k.
\]
The action of \mathbb{Z}_2 on M_N is chosen as $(\pm 1, \phi) \mapsto \pm \phi$, $\phi \in M_N$. Existence of a minimum for $0 < N < N_c(v)$ now follows.
\(H_N\). For each \(k \in \mathbb{N}\), we consider the following homotopic class of order \(k\),

\[
H_k = \{ M : M = f(S^{k-1}) : f \in C_{Z_2}(S^{k-1}, M_N) \}
\]

where \(C_{Z_2}(S^{k-1}, M_N)\) is the set of all \(Z_2\)-equivariant continuous functions. We then define

\[
l_k := \inf_{M \in H_k} \max_{\phi \in M} E_v(\phi).
\]

(7.2)

We shall apply Theorem 5.1 by Fang-Ghoussoub which enable us to obtain Palais-Smale sequences satisfying the assumptions of Proposition 6.1. Evidently, the min-max (7.1) is defined with \(\mathbb{Z}_2\)-homotopic classes of dimension \(k\) for each \(k\) (Choose \(X = M_N\) and \(D = S^{k-1}\)). An application of Theorem 5.1 provides us with a sequence \((\phi_j)_j\) that satisfies the assumptions of Proposition 6.1 with \(n = k\). Therefore, the sequence \((\phi_j)_j\) converges up to a subsequence, to some critical point \(\phi\) of \(E_v\) on \(M_N\). The monotonicity \(l_k \leq l_{k+1}\) of \((l_k)_k\) is a direct consequence of how we have defined \(H_k\) and since \(E_v\) is bounded from below on \(M_N\) we immediately get \(l_k > -\infty\). By arguing as in the proof of Lemma 4.8, one can easily deduce that, for each \(k \geq 1\), there exists a \(k\)-dimensional subspace \(H_k\) of \(H^{1/2}(\mathbb{R}^3)\) and a \(\delta > 0\) such that

\[
I_v[\phi] - m\|\phi\|_{L^2}^2 - \int_{\mathbb{R}^3} \left(\frac{1}{|x|} \ast |\phi|^2 \right) |\phi|^2 \leq -\delta < 0, \quad \phi \in H_k, \quad \|\phi\|_{L^2} = 1.
\]

The set of these \(\phi\) yields a sphere \(\tilde{S}^{k-1}\) homeomorphic to \(S^{k-1}\) and which belongs to \(M_N\). This clearly implies that \(l_k < 0\). Now let \(g_r : H_n \to \mathbb{R}^k\) be a continuous and linear function such that \(g_r(S^{k-1}) = \tilde{S}^{k-1}\). Let \(e\) be an embedding of \(\tilde{S}^{k-1}\) onto \(M_N\). Note that \(e \circ g_r \in C_{Z_2}(S^{k-1}, M_N)\) and also note that since the global minimum is finite \(E_v|_{M_N} \geq C\). Therefore \(\{l_k\}_{k=1}^\infty \subset (-\infty, 0]\) and by, if necessary, going to a subsequences, that it is strictly increasing. Since, for all \(k \geq 1\), \(l_k < 0\) there exists a \(Z_2\)-equivariant function \(f_k\) such that

\[
l_k \leq \max_{f_k(S^{k-1})} E_v < \frac{l_k}{2}.
\]

(7.3)

Let \(\{\psi_m\}_{m=1}^\infty\) be a basis of \(H^{1/2}(\mathbb{R}^3)\). Denote by \(W_k\) as the subspace spanned by \(\{\psi_m\}_{m=1}^k\). Define \(V_k\) as the orthogonal complement of \(W_{k-1}\) and assume that \(M_k \cap V_k = \emptyset\). Let \(\pi_k\) be the orthogonal projection from \(H^{1/2}(\mathbb{R}^3)\) onto \(W_k\). Then, bearing in mind that \(V_{k+1} = \text{Ker}(\pi_k) \subset V_k\), we have that \(\pi_{k-1}(M_k) \subset V_{k-1} \setminus \{0\} \cong \mathbb{R}^k \setminus \{0\}\), where \(M_k = f_k(S^{k-1})\), we have existence of a continuous and odd map from \(S^{k-1}\) to \(\mathbb{R}^{k-1} \setminus \{0\}\). From the Borsuk-Ulam theorem we will now get existence of two antipodal points on \(S^{k-1}\) which maps (due to symmetry) to zero and we have thus arrived at a contradiction. Therefore, \(M_k \cap V_k \neq \emptyset\).

For each \(k \geq 1\), we can thus fix some \(\phi_k \in M_k \cap V_k\). Now, \(E_v(\phi_k) \leq \frac{l_k}{2} < 0 = E_v(0)\) and \(\phi_k \to 0\) weakly in \(H^{1/2}(\mathbb{R}^3)\). In view of Lemma 4.3 and Lemma 4.5, \(E_v\) is weakly lower semicontinuous and, consequently, \(0 = E_v(0) \leq \liminf_{k \to \infty} E_v(\phi_k) \leq 0\) which, together with (7.3) implies that \(\lim_{n \to \infty} l_k = 0\) as claimed. Finally, we note that the construction of the levels implies that \(-\infty < l_{k-1} < l_k = E_v(\phi_k) < l_{k+1} < 0\) with \(\phi_k\) being the critical point on level \(l_k\) and, therefore, \(E_v(\phi_k) \to 0\) as claimed. 3. This is established in [7, Theorem 1(ii)].

\(\square\)

Regularity properties of the solutions can be deduced as in [7, Theorem 3].
Acknowledgement. The first author acknowledges financial support from the Dr Perry James Browne Research Centre on Mathematics and its Applications. The second author is grateful to the IMU-Simons African Fellowship Program for supporting his research stay at the University of Sussex.

REFERENCES