Updating the Case studies of the Political Economy of Science Granting Councils in Sub-Saharan Africa

Full Report

To the International Development Research Centre (IDRC)

Science Policy Research Unit (SPRU), University of Sussex, United Kingdom
African Centre for Technology Studies (ACTS), Kenya

Principle Investigator: Chux Daniels

Authors: Chux Daniels, Rob Byrne, Rebecca Hanlin, Sandra Pointel and Ann Numi

May 2020
This page is left intentionally blank
Executive Summary

Background

This study, *Updating the Case studies of the Political Economy of Science Granting Councils in sub-Saharan Africa*, is a follow-up (Phase 2) to the case studies of the Political Economy of Science Granting Councils (SGCs) in sub-Saharan Africa research completed in 2017 (Phase 1, or baseline study). The study supports the Science Granting Councils Initiative (SGCI) in sub-Saharan Africa (SSA), funded by Canada’s International Development Research Centre (IDRC), the UK Department for International Development (DFID) and South Africa’s National Research Foundation (NRF). In the interest of generating evidence that can be deployed for economic and social development, the SGCI supports SGCs in 15 SSA countries. This research has been commissioned in response to an increasing recognition of the importance of improving understanding of the political economy (PE) of science and research in Africa and the roles that science, technology and innovation (STI) play in the processes involved. The aims of the SGCI are to strengthen the capacity of SGCs to: manage research; design and monitor research programmes based on the use of robust STI indicators; support exchange of knowledge with the private sector; and establish partnerships among SGCs, and with other science system actors. In line with these aims, the approach outlined below by the SPRU and ACTS consortium draws from and builds upon the findings from the Phase 1 research.

Building upon the Phase 1 (PE1) research, which used an approach to political economy based on the concepts of “ideas”, “interests” and “institutions”, the Phase 2 (PE2) approach extends the concepts to include “structures”. This addition stems from the PE1 findings, one result of which was the need to better understand how structural configurations influence the PE factors of SGCs in performing their activities, operations and functions. The four concepts inform the analytical framework adopted in the research. Drawing on mixed methods, the PE2 study methodology involved: (a) an extensive review of relevant literature, data, agents and actors; (b) semi-structured interviews with representatives from science funding and policy bodies – researchers, policymakers, research and innovation experts from industry, and civil society actors; (c) five national case studies of the PE1 study countries – Ethiopia, Kenya, Rwanda, Senegal¹ and Tanzania; and (d) analysis of grey literature.

Key findings

Among the key findings, (a) Human Resources and (b) Gender and Inclusivity emerge as cross-cutting issues, alongside five specific messages around: (1) Research excellence, (2) Narratives, (3) Private sector, (4) Structure, and (5) Governance and policymaking. In this Executive Summary, we discuss the two cross-cutting issues briefly and summarise the five key messages. The summary recommendations provided here are for all stakeholders. In Section 5, we provide detailed recommendations specific to different stakeholder groups.

Two cross-cutting issues:

a) **Human Resources** constraints were cited by many interviewees as an essential political economy feature of SGCs. Specifically, constraints in terms of skills and capabilities – particularly in STI

¹ Although we use STI in many sections of this report, it is important to note that the study primarily focussed on science and/or research systems. For example, capturing funding related to technology or innovation in SSA was out of the scope of this study and therefore not fully addressed.

² An important note about the PE1 study is that the Senegal case was “light touch”: that is, it was not as detailed as the other countries due to logistical challenges related to data collection. In the PE2 study, however, the five countries received the same level of data collection, analysis and reporting.
related fields – result from inadequate access to quality university education, high costs of such access, curriculum-design, the kind of skills training needed, and the working conditions for researchers. This finding has implications for how the SGCI and SGCs design and implement training and capacity building: the kinds of training implemented, and the focus of such training exercises.

Recommendation: in designing and implementing training and capacity building programmes, ensure that curriculum designs cover a broader range of innovation studies concepts, and training addresses the skills of individuals as well as capability needs at organisational level.

b) Gender and Inclusivity did not feature as issues in our interviewees’ responses, except when explicitly prompted to do so. This is an important finding for a number of reasons as it could be understood in a variety of ways: (a) that gender and inclusivity are not important, (b) the awareness of gender and inclusivity as issues is not recognised or properly articulated or, further still, (c) that gender and inclusivity, as issues/challenges, are not considered priorities. Therefore, if gender and inclusivity issues are to be addressed, concerted efforts are needed by stakeholders.

Recommendation: refocus attention on gender and inclusivity issues in SSA’s STI systems, with a view to gaining a deeper understanding of (i) why some actors still do not consider these as priorities, (ii) why current efforts seem to be yielding ineffective outcomes, and (iii) what further changes – for example, institutional configurations (structures), capabilities and skills, research designs, policies and practices – need to be made in order that gender equality and inclusivity are embedded in SSA’s STI systems and are adopted by stakeholders.

Five specific messages:

1. **Research Excellence** remains an important goal to SSA STI stakeholders. However, compared with the PE1 study, there is clearer evidence that research excellence is widely interpreted by STI stakeholders to mean research achieving societal impact. Respondents want to see research mean something socially and economically, alongside high-quality research as measured by the traditional metrics such as journal citations. In this updated study, the interviews explored research excellence explicitly, thereby providing a stronger evidence base from which three specific categories of issues emerge: research excellence in terms of (1) research focus, (2) research process and incentives, and (3) research support. With respect to research focus, for example, the emphasis was on the relevance of the research conducted in SSA and whether the focus is solely on academic problems, or the need to address societal challenges and national development goals. The consensus position is that research excellence must include a focus on addressing societal challenges and national development goals (impact) in addition to publishing in journals. The two objectives – of achieving development impact and publishing in academic journals – are not necessarily in tension. Details on the other two issues (research process and incentives, and research support) are provided in the main report, in Section 3.3.4.

Recommendation: although research excellence in SSA has received more attention in recent years (from 2016, and through the PE1 study period, to present), efforts need to be sustained in order to ensure that the knowledge generated and lessons learned are diffused widely and embedded in the relevant institutions, policies and practices. This could be aided by extending political economy analyses beyond the current illustrative cases of the five SGCs and countries to the rest in the SGCI, regional analysis, and perhaps to the whole of SSA. As well as diffusing knowledge more widely, this would help deepen understanding by broadening the evidence base. Furthermore, to underpin future studies on research excellence, political economy, indicators and metrics on STI in SSA, there is a need to improve the availability, access and transparency of data.
2. **Narratives** at play among STI stakeholders, as expressed by those we interviewed, imply there are widely-held concepts of innovation and innovation systems in operation across the SSA region that need to be further explored. Innovations seem predominantly to be understood in the narrow sense to mean marketable products and innovation processes seem to be understood in linear science-push terms. The concept of innovations as products leads to a sharp focus on intellectual property (IP) and IP protection regimes, where the underlying assumption is that strong IP protection leads to more and better innovation. However, evidence from the scholarly literature on this subject remains mixed, suggesting there are also other factors and processes that lead to innovation.

The concept of a linear science-push innovation process means the innovation system model essentially collapses to a focus on university-industry (U-I) linkages and, in SSA contexts, how these can be strengthened. Strengthening U-I linkages may well be important but a broader view of both innovation and innovation systems could help to better understand the role of science in STI systems and therefore the role that SGCs (and the SGCI) could and should play in strengthening those systems. Care about understanding the role of science in STI systems is essential to understanding what capabilities, for example, need to be built and why. And to developing narratives that stakeholders can use to influence policy, funding priorities and other interventions that will indeed strengthen STI systems. This finding on narratives has a bearing on our first specific key message, discussed above, about the notion of research excellence. That is, narratives promoting a narrow conception of innovation and a linear science-push process may be raising expectations among policy makers, for example, that excellent research will lead unproblematically to significant development impact. This risks over-promising on the outcomes of funding science, potentially undermining the support of policy makers and others if outcomes do not materialise in the ways such narratives depict.

Recommendation: reconceptualise innovation and science systems in SSA, and move from both: (a) a narrow view that focuses on products and processes to a broader view of innovation; and (b) a linear science-push approach that collapses innovation into university-industry linkages to a systems view that incorporates a broader set of actors.

3. **Private Sector** as a category is something in need of unpacking as it pertains to SSA contexts. When talking about continuing low levels of private sector funding for STI activities, many respondents argued that the private sector is mainly comprised of small and medium-sized enterprises (SMEs) and many of these operate in the informal economy. And, in some countries, the private sector is small and undeveloped. As such, “the private sector” is unable to invest in research. Nevertheless, some sectors or industries, especially where larger firms – both international and national – are operating, may be able to spend more on STI activities. In SSA contexts therefore, notions such as “the domestic private sector” become important in the work of the SGCI and SGCs, in that they raise some salient questions. For instance, if economic activities are mainly in the domestic private sector, what (STI-related) capabilities currently exist in this sector and how should these capabilities be built or enhanced? What new capabilities need building? What implications would a shift of focus onto the STI needs of the domestic private sector have on research excellence, STI policies, or the operations of SGCs? This calls for re-categorising what constitutes the private sector in SSA contexts and further unpacking what this implies for: (a) how data are collected and analysed, (b) how the discussions around funding from “the private sector” (being low or weak) are

3 There was little attention to, or recognition of, other kinds of innovation such as in public services, social practices or business models, for example.
influenced or shaped by current narratives, and (c) how research and development investments by the private sector are handled.

Recommendation: a deeper analysis and (re)categorisation of what constitutes the private sector in Africa is essential to improving our understanding of the relevant PE factors influencing the sector. Deeper analysis, and re-categorisation of the private sector to include SMEs and actors in the informal economy, will support work in key PE aspects such as data and knowledge management, funding, skills and capability building, and policy interventions.

4. **Structures** that allow science or, more broadly, STI systems to be better coordinated in ways that enable effective performance of SGCs are important. Whilst care is needed not to overemphasise this importance, the findings reveal that there are structural issues to consider at different levels:

 a. **National-level governance of STI**: this relates to different actor’s roles and responsibilities, independence, accountability, ease of securing funding and its stability, coordination and fragmentation. The specifics of these issues will differ, for example, in cases where multiple actors constitute the SGC, as in the case of Kenya, in contrast to cases such as Senegal where the SGC is one actor.

 b. **Sectoral level governance of STI**: this relates, among others, to the impacts of sectoral structures. For example, changes to the structure of the education sector in Tanzania have led to an under-supply of technicians, with impacts on human resources, funding and policies. In terms of human resources, more graduates and fewer technicians weakens support for the work of graduates and weakens the “system”. With respect to funding, more financial resources flowing to Higher Education (universities in particular) may be at the expense of funds available for Technical and Vocational Education and Training. And, on policies, care needs to be taken to ensure that the focus of interventions does not unduly favour universities to the detriment of colleges and polytechnics.

 c. **Sub-systems or organisational level governance of STI**: this overlaps to a degree with sectoral level governance but is more about the specific sub-system structures conditioning how organisations operate. For instance, at university level, in reference to the types of degrees offered and fees being charged, few innovation-related degrees are available and, where they are on offer, universities charge higher fees than for other courses. Also, university academics are expected to do research but without the option to buy out teaching time.

 Recommendation: encourage and support policy experimentation with new and different structural and governance (see Key message 5 below) configurations at SGCs with a view to gathering empirical evidence that helps to demonstrate what works best, why, and in what circumstances.

5. **Governance and policymaking** emerges as an area requiring more stakeholder consultation – specifically, policy formulation, implementation and the governance of STI policies – as a means to achieving better policymaking in SSA. The governance issues highlighted in the study focus on silos and fragmentation, and the importance of coordination of actors across (a) government agencies and (b) the science systems, and the links to implementation of policies (where such policies exist). The findings on governance have a bearing on the four key messages discussed above. For example, the challenges of governance (in terms of actors working in silos, fragmentation, and lack of coordination across systems, and weak links to science/policy systems) have implications on how capabilities are built/strengthened, or how (human and financial) resources are managed. In addition, the governance approach adopted by SGCs has implications for the ways in which structural issues are tackled, and vice versa. Different structures – for example, an SGC made up of one or multiple actors – will have to deal with governance (and
policymaking) issues in different ways. Furthermore, where the SGC is located structurally – that is, its proximity to political power – could better promote or hinder its autonomy with respect to governing STI in a more transparent manner, promoting research excellence, shaping STI ideas and narratives, or delivering on multiple mandates.

Recommendation: similar to Key message 4 above, encourage and support policy experimentation with new and alternative governance configurations and policy approaches at SGCs with a view to improving knowledge of what works best, why, and under what circumstances.
Table of Contents

Executive Summary ... iii
List of Acronyms and Abbreviations .. x
Acknowledgements ... xii

1 Introduction .. 1

2 Analytical Framework and Methodology .. 3

- 2.1 Analytical framework ... 3
- 2.1.1 Discourse, ideas and narratives ... 3
- 2.1.2 Interests and actors ... 4
- 2.1.3 Structures .. 5
- 2.1.4 Institutions and agency .. 6
- 2.1.5 Summary of the political economy analytical framework 6

- 2.2 Methodology .. 7

3 Summary of National Case Studies and Key Themes .. 9

- 3.1 Introduction .. 9

- 3.2 Summaries of the national case studies ... 9
- 3.2.1 Ethiopia National Case Study Summary ... 9
- 3.2.2 Kenya National Case Study Summary .. 11
- 3.2.3 Rwanda National Case Study Summary .. 13
- 3.2.4 Senegal National Case Study Summary .. 15
- 3.2.5 Tanzania National Case Study Summary ... 17

- 3.3 Key themes from the national case studies .. 19
- 3.3.1 Governance and development strategies ... 19
- 3.3.2 Human resources .. 20
- 3.3.3 Funding ... 23
- 3.3.4 Research excellence .. 24
- 3.3.5 Innovation systems ... 26

4 Analysis and Discussion of the Political Economy of SGCs .. 29

- 4.1 Introduction .. 29

- 4.2 Ideas: understandings of innovations and innovation systems 29
- 4.3 Institutions: policy risks associated with the dominant understandings 30
- 4.4 Structures: geographical, social, political and organisational influences 31
- 4.5 Interests: understanding different actors’ roles in strengthening STI systems 33
- 4.6 Summary: narratives about science and STI systems ... 33
Conclusions and Recommendations Arising from the PE Study .. 34

5.1 Concluding remarks and general recommendations for STI stakeholders in SSA 34

5.2 Recommendations for STI Stakeholders in SSA ... 35

5.2.1 Recommendations for SGCI and International Development Partners 35

5.2.2 Recommendations for SGCs .. 35

5.2.3 Recommendations for Academia ... 35

5.2.4 Recommendations for Industry .. 35

5.2.5 Recommendations for other Stakeholders ... 35

5.3 Limitations ... 36

5.4 Further Study ... 36

References .. 38

Annexes ... 40

Annex 1: National case study report on Ethiopia ... 40

Annex 2: National case study report on Kenya ... 40

Annex 3: National case study report on Rwanda .. 40

Annex 4: National case study report on Senegal ... 40

Annex 5: National case study report on Tanzania ... 40

Annex 6: PE2 Interview protocol ... 41

Annex 7: List of kick-off workshop participants held in Nairobi on 27-28 March 2019 43

Annex 8: Executive Summary of Political Economy Study (Phase 1) 44
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTS</td>
<td>African Centre for Technology Studies</td>
</tr>
<tr>
<td>AESA</td>
<td>Alliance for Accelerating Excellence in Science in Africa</td>
</tr>
<tr>
<td>AfDB</td>
<td>African Development Bank</td>
</tr>
<tr>
<td>AIO</td>
<td>Africa Innovation Outlook</td>
</tr>
<tr>
<td>AVU</td>
<td>African Virtual University</td>
</tr>
<tr>
<td>COSTECH</td>
<td>Commission for Science and Technology</td>
</tr>
<tr>
<td>CTAs</td>
<td>Collaborating Technical Agencies</td>
</tr>
<tr>
<td>DFID</td>
<td>United Kingdom Department for International Development</td>
</tr>
<tr>
<td>ENOs</td>
<td>Espace Numérique Ouvert (or Open Digital Spaces)</td>
</tr>
<tr>
<td>ESTA</td>
<td>Ethiopian Science and Technology Agency</td>
</tr>
<tr>
<td>GERD</td>
<td>Gross Domestic Expenditure on Research and Development</td>
</tr>
<tr>
<td>GTP</td>
<td>Growth and Transformation Plan</td>
</tr>
<tr>
<td>IDRC</td>
<td>International Development Research Centre</td>
</tr>
<tr>
<td>IPRs</td>
<td>Intellectual Property Rights</td>
</tr>
<tr>
<td>KENIA</td>
<td>Kenya National Innovation Agency</td>
</tr>
<tr>
<td>LIWA</td>
<td>Linking Industry with Academia</td>
</tr>
<tr>
<td>MESRI</td>
<td>Ministry for Higher Education, Research and Innovation</td>
</tr>
<tr>
<td>MINEDUC</td>
<td>(Unit within the) Ministry of Education</td>
</tr>
<tr>
<td>NACOSTI</td>
<td>National Commission for Science, Technology and Innovation</td>
</tr>
<tr>
<td>NCST</td>
<td>National Commission for Science and Technology</td>
</tr>
<tr>
<td>NRF</td>
<td>National Research Foundation</td>
</tr>
<tr>
<td>NST1</td>
<td>National Strategy for Transformation</td>
</tr>
<tr>
<td>NSTIC</td>
<td>National Science, Technology and Innovation Council</td>
</tr>
<tr>
<td>PE1</td>
<td>Political Economy 1 (i.e. Phase 1 Research, same as the Baseline Study)</td>
</tr>
<tr>
<td>PE2</td>
<td>Political Economy 2 (i.e. Phase 2 Research)</td>
</tr>
<tr>
<td>PPPs</td>
<td>Private Public Partnerships</td>
</tr>
<tr>
<td>PSE</td>
<td>Senegal emergence plan</td>
</tr>
<tr>
<td>REC s</td>
<td>(African Union) Regional Economic Communities</td>
</tr>
<tr>
<td>SGC</td>
<td>Science Granting Council</td>
</tr>
<tr>
<td>SGCI</td>
<td>Science Granting Councils Initiative</td>
</tr>
<tr>
<td>SIDO</td>
<td>Small Industry Development Organisation</td>
</tr>
<tr>
<td>SMEs</td>
<td>Small and Medium-sized Enterprises</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>SPRU</td>
<td>Science Policy Research Unit</td>
</tr>
<tr>
<td>SSA</td>
<td>Sub-Saharan Africa</td>
</tr>
<tr>
<td>STEM</td>
<td>Science, technology, engineering and mathematics</td>
</tr>
<tr>
<td>STI</td>
<td>Science, technology and innovation</td>
</tr>
<tr>
<td>STIR</td>
<td>Science, Technology, Innovation and Research</td>
</tr>
<tr>
<td>TIRDO</td>
<td>Tanzanian Industrial Support and Development Organisation</td>
</tr>
<tr>
<td>TVET</td>
<td>Technical Vocational Education and Training</td>
</tr>
<tr>
<td>UIL</td>
<td>University-Industry Linkage</td>
</tr>
<tr>
<td>UNCTAD</td>
<td>United Nations Conference on Trade and Development</td>
</tr>
<tr>
<td>UVS</td>
<td>Virtual University of Senegal</td>
</tr>
</tbody>
</table>
Acknowledgements

The project team would like to thank the many individuals who co-operated with the fieldwork for this project, giving up their valuable time to be interviewed. We would also like to thank IDRC for commissioning the project. In addition, thanks to the IDRC, DFID, the Department of Science and Innovation and National Research Foundation of the Republic of South Africa for providing funding and support for the Science Granting Councils Initiative (SGCI). We are particularly grateful to Ellie Osir, Loise Ochanda, Diakalia Sanogo and Matthew Wallace from the IDRC for their support, inputs and advice throughout the project. Our gratitude also goes to our kick-off workshop participants (listed in Annex 7), held in Nairobi on 27-28 March 2019, for their inputs and generosity with their time over the two days, thank you!

We would also like to express our deep appreciation to our advisory group for providing their time, comments on the draft, and advice which has been invaluable to the project throughout: Professor Joanna Chataway (University College London, UK), Professor John Mugabe (University of Pretoria, South Africa), Professor Mamadou Sy (Senegal), Ms Ruth Oriama (African Technology Policy Studies Network, Kenya), Mr Boniface Wanyama (NACOSTI, Kenya), and Mr Donnelly Mwachi (MEL Consultant, Kenya). In addition to the comments from our advisory board, Remy Twiringiyimana, Aschalew Tigabu, Kassahun Yimer Kebede and John Kirkland provided comments on the drafts. We are also grateful for the useful feedback we received at our presentations during the SGCI Regional Workshop in Addis Ababa, Ethiopia, 24-28 June 2019, the Annual Forum in Dar es Salaam, Tanzania, 11-15 November 2019 and Final Workshop of SGCI Phase 1 in Dakar, Senegal, 11-13 February 2020. Our final gratitude goes to the staff and management of the Science Policy Research Unit (SPRU), the University of Sussex and the African Centre for Technology Studies (ACTS), Kenya.
1 Introduction

Political economy analyses are important because they can go beyond a focus on technical solutions and help to reveal underlying political and economic factors shaping decision-making, funding, or influencing the outcomes from science, research and innovation programmes, projects and policies. Examples of such underlying political and economic factors include ideas held by actors about what works and what does not work, narratives that convey these ideas in persuasive stories, institutions such as policies and regulations that enable or constrain action and structures of various kinds that condition the broader environment for what is possible. The insights gained from political economy studies can therefore help improve decision-making, inform policies and guide policymaking, redirect resources, improve the effectiveness of funding, or support monitoring and evaluation at different levels: organisational, programmatic, project and policy (DFID, 2009). Consequently, the study of the political economy of SGCs in SSA contributes to improving knowledge and understanding of the factors that influence or contribute to shaping the decision-making, funding, actors, and policies related to research and science, technology and innovation (STI) in Africa.

Our first political economy (PE) (Phase 1 or PE1) study revealed many emerging issues in the findings, with implications for the SGCI, SGCs and other stakeholders (see Chataway et al., 2017). The PE1 key findings are summarised in Box 1 below. The overall objective of this updated (Phase 2 or PE2) study was to investigate the ways in which the PE of SGCs has changed from the PE1 study findings. To achieve this objective, we focussed as far as possible on examining changes to selected qualitative information and quantitative indicators used in the PE1 study. The selection of the criteria for investigation was based on information and indicators that would enable the research team to identify change – incremental, radical or suggestive of change – since the completion of the Phase 1 study. Indicators examined included change in R&D per GDP such as increases or reductions in science/research funding; change in narratives and perceptions; and other factors that might indicate change in science and research systems.

An additional indicator, not included in the Phase 1 study, relates to evidence of organizational or structural changes that may have occurred, as such changes may have implications for the work of the SGCI. For instance, Kenya has had challenges in defining and/or operationalising the roles and mandates of the National Commission for STI (NACOSTI), National Research Foundation (NRF) and Kenya Innovation Agency (KeNIA); while the status of the CEOs of both NRF and KeNIA, who were in acting capacities for a number of years, remained an interesting and relevant issue worth investigation. There are signs these situations could change in the near future and, if so, there may be implications for the SGCI and SGCs. The PE2 study focussed on the same countries as those in PE1: Ethiopia, Kenya, Rwanda, Senegal and Tanzania.

To help ensure that we provide background to readers who may not be familiar with the PE1 study, we include a summary of the findings in this report (Box 1). Furthermore, to help improve comprehension and ensure adequate linking from PE1 to PE2, we include the Executive Summary of the PE1 study in this report (see Annex 8). The next section explains the analytical framework and methodology used for the study. Section 3 summarises the national case studies and discusses the main themes that emerge from them. In section 4, we provide our political economy analysis of the cases. We then provide a summary and recommendations in section 5.

4 Paucity of data meant that this indicator could not be fully examined.
5 For instance, with the recent recruitment exercise for the role of CEO at KeNIA.
Box 1: Summary of Key Findings from Political Economy Phase 1 (PE1) Study

1. All case study countries are committed to increasing funding for science but overall levels of funding are still low. National level SGCs are established or emerging in all countries and they are playing an increasingly prominent role in setting research agendas. Funding for SGCs, and the cost and effectiveness implications of different institutional configurations, could be tracked. SGC governance arrangements and spending on administration could also be monitored to enable analysis and comparison.

2. At the national and regional level there is reference to the important role that the private sector could play. However, private sector funding is low and engagement is patchy across countries. Greater involvement from the private sector will take dedicated effort and there is a need for greater communication between private and public sectors about the value of different types of research. SGCI may consider whether more resources need to be allocated to private sector engagement activities.

3. There is increasing activity at the regional level and interest in supporting programmes that shift ownership to Africa. Alongside increasing national funding, there are new regional level research funding and support actors emerging. SGCs can continue to leverage international funds. However, careful thought should be given to which international funders to prioritise in co-funding arrangements, and also what possible effects there may be on the level of national ownership.

4. There are divergent agendas at national and regional levels. SGCI could consider promoting discussion on the impact of various regional funders on national level SGCs. Alignment of agendas and a common understanding of “excellence” and criteria for funding cannot be assumed. Sub-regional bodies may play a role here in creating more specific agendas aligned with goals in East, South and West Africa and establishing locally relevant criteria.

5. There is no clear narrative about relative strengths of East, South and West Africa sub-regions. There is a potential issue for SGCI in monitoring whether regional initiatives have an equalising effect. The issue is compounded by a lack of consensus about existing strengths and weaknesses in sub-regions. National, and regional bodies have important roles to play in monitoring and evaluating the impact of funding.

6. Health and agriculture are the sectors which receive most resource in the SSA region but this may change over the coming years. The traditional sector focus of research in SSA (health and agriculture) is likely to be complemented over the coming years by research in a variety of new areas. It will be important to build capacity amongst researchers and funders to fund science over these wider areas. New international funders may become more significant in relation to funding and influence.

2 Analytical Framework and Methodology

2.1 Analytical framework

Political economy is a broad term that refers to the interaction of political and economic processes, relations between state and non-state actors, and how these interactions shape evolving distributions of resources and power. As a broad term, there are many ways in which to conduct political economy analysis (see Hudson and Leftwich, 2014 for a discussion of various approaches). The Phase 1 study built upon a political economy framework based on DFID’s approach (DFID, 2009), which focusses on structures, institutions and agents. But it became clear in that study that the development of science systems in SSA is shaped by the ways in which actors discuss those systems, implying a need to include the role of ideas in a political economy framework. As such, the analytical framework for this study is based on a discursive institutionalist political economy (e.g. Schmidt, 2008) that consists of three co-productive categories (e.g. see Kern, 2011): ideas, interests and institutions (or “rules of the game”). But, following feedback on the PE1 findings and comments from stakeholders that the PE1 study was weak in its attention to structures, we added to the framework a structural category. The sub-sections below discuss these four categories in turn, but it should be noted that they each interact with the others to co-produce a specific and evolving political economy.

2.1.1 Discourse, ideas and narratives

An important feature of a discursive institutionalist political economy is that it allows us to analyse the role of discourse in constituting a specific political economy, through which we can gain a better understanding of the politics of its current form and explain the politics of its evolution. Ideas are at the heart of any discourse, where they are communicated, promoted, debated, contested and shaped by actors who are constructing and seeking to further their interests. According to Hudson and Leftwich (2014), “ideas [more generally, the ideational] are central to politics and the political context. Ideas define political identities; they frame political debates; they interpret and reflect interests; they guide behaviour”. Tracing ideas, then, is essential for understanding and explaining a political economy, enabling us to reveal its political dynamics and offering the potential to see how these interact co-productively with interests, and with the political economy’s institutional and structural dimensions.

One way to trace ideas, while also analysing the political work they do, is to identify the narratives at play in a discourse (Leach et al., 2010, Kern, 2011). Drawing on Roe (1991), (development) narratives simplify the complexity of the world into plausible stories that frame-in certain aspects of that complexity and frame-out others: e.g. certain actors, institutions, interests, issues, knowledge, perspectives, etc., are highlighted, constructing a specific picture that obscures other potentially relevant views. Leach et al. (2010) argue that a narrative is constructed from three main parts: a definition of the current development problem, a strategy for fixing the problem, and a description of the better outcome (end-goal) if the fix is successful. The plausibility of a problem-strategy-outcome narrative derives from its connection with “context-specific qualities of local culture, politics, history, economy, etc.” (Byrne et al., 2018), achieving its persuasiveness through links with other locally-powerful narratives or “prominent socio-political agendas” (Raven et al., 2016b).

These are highly abstract concepts and so an example might help to clarify what they look like in practice, and how narratives can reveal ideas. In the Phase 1 study, one of the findings emerging from stakeholder interviews concerned the perception that there is a lack of political will to fund STI in Africa. In reporting this perception, the authors write (Chataway et al., 2017):

The failure of African governments to provide STI funds continues to attract criticism from analysts across all parts of the STI system in Africa and is often blamed on a lack
of political will. This may be an accurate diagnosis but, as one of our interviewees suggested, some of the blame may lie with actors in the STI system itself. That is, they have perhaps failed to demonstrate the importance of STI for development; to offer convincing arguments and solutions that policy makers can grasp and that provide evidence to support [STI] with implementation plans (p.29).

Whatever the validity of this claimed lack of political will, we can argue that there is a specific narrative at play in the discourse on STI-funding in Africa. Using the problem-strategy-outcome narrative structure, we could infer its parts to be:

Problem-definition: Government-funding for STI is good because of the benefits to society that STI brings, but African governments are under-funding STI because of a lack of political will.

Solution-strategy: STI actors must provide policy makers and political leaders with convincing arguments and evidence for the importance of STI to African development.

End-goal: Policy makers and political leaders will better understand the importance of STI for development, strengthening their political will. STI will thus be provided with sufficient funding from African governments and so be able to contribute to achieving Africa’s development goals.

Examining this narrative, we can infer the ideas that may be at work. The main idea could be articulated as *STI contributes to development*. As an idea, this may be valid, but the ways in which it works are not articulated in the narrative. This could be because the narrative only connects rhetorically two otherwise separate but individually-powerful socio-political agendas: the agenda to strengthen African science systems, and the agenda to achieve development goals. So, in terms of investigating the idea more deeply, it would be important to analyse, for example, what actors believe to be the ways in which STI contributes to development. In other words, identifying a narrative provides a way to reveal the ideas that may be at work and, therefore, suggests which ideas need to be interrogated more closely. This would then, in our political economy framework (the rest of which is explained below), mean asking about how interests, structures and institutions condition, shape, constrain and enable how STI contributes to achieving development goals.

2.1.2 Interests and actors

In contrast to classic political economy in which actors are assumed to be personal-utility maximisers rationally pursuing known interests (Naess et al., 2015), we start from the view that development pathways materialise under conditions of complexity and uncertainty, where we cannot assume actors’ interests are self-evident (Kern, 2011, Hudson and Leftwich, 2014). Instead, we assume that actors construct their interests through participating in discourses and assessing the opportunities for action emerging from structural conditions and institutional arrangements. Even if actors do have self-evident interests, it might not be clear how these will feature in an unfolding development pathway: those interests could become either more or less important over time. Thus, whether we are examining “hard” material interests (such as financial investments, sources of revenue) or “soft” interests (such as specific capabilities, a powerful institutional role), we should attend to how these co-evolve with ideas, as well as with structural conditions and institutional arrangements.

Where interests and actors are more clearly self-evident, such as who benefits from funding-flows, it can still be important to attend to how actors seek to maintain (or even enhance) them. Evidence for these efforts is likely to be available in policy debates and associated documentation (e.g. organisational submissions to a public consultation), but also in narratives. Similar sources of evidence will be useful for tracing emerging interests, or interest-construction. So, we would be looking for what arguments
are being promoted for ways to achieve development objectives – and, indeed, what development objectives should be pursued – and by whom.

We can illustrate some of these points by drawing on Chataway and Daniels (2020) and Chataway et al. (2019), and their discussions of an “excellent science” narrative at play in the SSA discourse on science-funding (see also Tijssen and Kraemer-Mbula, 2017 for further discussion of research excellence in Africa). Chataway et al. argue that an important assumption underpinning the excellent science narrative in SSA is that excellent science will lead to beneficial socio-economic outcomes. This assumption largely rests on the so-called linear model of knowledge-production-to-market-significance. But there is arguably a tension between national priorities for socio-economic impact and the promotion of excellent science. That is, national science-funders wish to see science address local development challenges, but the push for excellent science risks directing local scientific effort into addressing international science agendas, especially as it is here where many of the scientific rewards lie. Given that the bulk of science-funding flows from international sources, it is easy to argue that the interests of SSA scientists – whether in winning funding or in achieving scientific prestige – are more likely to be served responding to international agendas compared with national ones. As such, we may see SSA scientists argue that national science-funding should also be promoting excellent science rather than focus on addressing local development needs. In other words, we can see in this example how actors (e.g. scientists) might deploy ideas (e.g. excellent science) to help maintain or enhance their perceived interests (e.g. research funding) to influence institutions (e.g. SGC funding policies).

2.1.3 Structures

As we noted at the beginning of this section, stakeholders commented that the Phase 1 study was weak in its attention to structures. Therefore, we are adding this category to the political economy framework. It should be noted, however, that some of the reference by stakeholders was about organisational structures and some about more fundamental structures that condition what is possible in any given society. It is this latter understanding that the political economy approach usually uses to define structure. DFID (2009), for example, defines structures as long-term contextual factors that are not easily influenced. Hudson and Leftwich (2014) provide a more detailed and disaggregated definition of structures, but they share with DFID (2009) to some extent the notion that structures fundamentally condition what is possible in a given society and that they derive from many different sources: geographic, economic, political, social and ideological. Organisational structures do not feature in either the DFID or Hudson and Leftwich accounts of political economy. However, in response to the comments from stakeholders, for our purposes, we could see an organisational structure as a kind of political structure: e.g. within different organisations, there are different distributions and concentrations of decision-making authority, and different organisational policies (or institutions, see the next sub-section).

The Hudson and Leftwich disaggregation is probably too detailed for our purposes. Nevertheless, they include attention to power and how it works through different kinds of structure, and this is important to consider. For example, the PE1 study (Chataway et al., 2017) made reference to Ghana’s proposed use of taxes on oil revenue as a way to fund science. And the study revealed how colonial legacies continue to influence political, economic, social and, to some extent, ideological structures. Thinking across these two structural examples, we could posit that Ghana’s oil revenue would engender some degree of power for it to be able to direct its own science agenda, as opposed to international agendas, and so enhance its autonomy (or “ownership” of agendas, another issue revealed in the PE1 study) to counter the influences of colonial legacies. In other words, we see how geographic structure (a resource
endowment, in this case) provides a context within which institutions could be used to change the economic and political structures of the country.

2.1.4 Institutions and agency

Agency, or the capacity to realise intended action, is variously enabled or constrained by formal and informal institutions or “rules of the game” (Kern, 2011). In line with Hodgson (2006) and others, we understand formal rules to be those that are codified and official – such as policies, laws, regulations, standards – while informal rules are those that are usually uncodified but influential – such as social, cultural and political norms, values, and so on. And note that we see organisations as actors rather than institutions. Although they are characterised as rules, institutions are not determinative of outcomes: actors can bend or break rules, challenge their legitimacy or argue they are unjust, damaging, ineffective, inappropriate, etc. So, whilst we can analyse any current set of institutional arrangements and what this means for a specific political economy, including what and whose interests are served or marginalised by specific institutions, we can also analyse the politics of institutional change and what this means for the development pathway of that political economy by attending to the ways in which actors argue for or against specific institutions (Hudson and Leftwich, 2014, Raven et al., 2016a, Byrne et al., 2018).

2.1.5 Summary of the political economy analytical framework

In summary, we use a political economy framework that consists of four main categories: ideas, interests, structures and institutions. Figure 1 provides a conceptual framework and diagrammatic representation of these four categories. The assumption the diagram attempts to depict is that each of the four categories interacts with the others through the evolving political economy, even if changes in the categories can be slow or difficult to effect (e.g. as with structures). Figure 1 also indicates how we trace the evolution of each category or how each category is operationalised.

Figure 1: Four co-productive categories of an evolving political economy

Source: Authors’ construction, building on Byrne et al. (2018)
2.2 Methodology

From PE1 to PE2 – Updating the Political Economy of SGCs in SSA

To reiterate, the aims of the SGCI are to strengthen the capacity of SGCs to: manage research; design and monitor research programmes based on the use of robust science, technology and innovation (STI) indicators; support exchange of knowledge with the private sector; and establish partnerships among SGCs, and with other science system actors. In line with these objectives, the specific details of the methodology of the PE2 study are presented below. The methodology involved in-depth review of relevant literature on SGCs, in addition to the collection and analyses of quantitative and qualitative data. The research used similar methods to the Phase 1 study, but with a strengthened focus on narratives, structures, and changes in policy contexts at country level.

The SPRU and ACTS research team conducted five country case studies, the same as in the baseline study: Ethiopia, Kenya, Rwanda, Senegal and Tanzania. One of the main reasons for revisiting these cases was to investigate what changes, if any, have occurred in their respective political economies since the completion of the baseline study, and what the implications are for the work of the SGCs and the SGCI. Each case study involved literature review, data collection and semi-structured interviews. The literature review for each case focussed on reports, policy documents and academic work⁶, and data and reports from the work of the Collaborating Technical Agencies (CTAs). As noted earlier, quantitative data were scarce and, where available, were aggregated rather than fine-grained.

For quantitative indicators, we intended to examine empirical data such as changes in the funds granted to SGCs, percentage of such funds spent on administration duties related to running the respective SGCs, percentage spent on research, and on evaluation of SGCs expenditure. Attempts were also made to collect data on the way spending is divided across different scientific areas (and the basis for the allocations): for instance, funds allocation to mission-based or challenge-based science or research streams. Furthermore, data on different types of funding mechanisms (such as early career, large vs. small projects) were sought. Unfortunately, a combination of paucity of quantitative data and non-responsiveness from key actors has meant we have been largely unable to examine such indicators and any changes to them.

The qualitative data collection employed included document reviews and expert interviews (see Annex 6 for the interview protocol). This helped to identify changes since the completion of the PE1 study. Information examined included: (1) change or perceptions of changes in R&D per GDP – for instance, the SGCs submit budgets to their governments yearly, (2) changes in funding priorities, (3) shifts in funding criteria, (4) changes in narratives and perceptions (e.g. relating to increases or reductions in science/research funding), and (5) other factors that might indicate change. The aim was to improve understanding of how SGCs can be further strengthened in line with the challenges they currently face, including challenges around capabilities and skills, funding, and multiple mandates.

Interviews were conducted with representatives of national SGCs, researchers, recipients of research funding, as well as policymakers or decision-makers with STI oversight. A total of 8-10 interviews per country case study were conducted, comprising a mix of interviewees from the Phase 1 study and new interviewees. In addition to the purposive sampling of “elites” or people with unique expertise in the field of PE of STI policy in SSA, other techniques such as snowballing were employed. A key difference

⁶ Only a small amount of relevant academic literature exists.
between the methodologies of PE1 and PE2 is that in PE1 the data collection included regional level data in SSA. For this study, we focussed only on the national level data for the five case study countries.

With respect to interviewees, some were the same as in the baseline study. However, there were some differences, especially in instances where individuals have changed roles, and if there was a need to strengthen the diversity of views compared with the baseline study’s interview selection. In any case, the aim was to revisit up to 50% of the interviewees from the baseline study, with the remainder of interviewees being newly-selected. The addition of new interviewees helped to test the findings of the baseline study (in case there were important aspects missed), while also providing fresh insights on the focus of the research, choice of indicators, and methodology. However, this approach had implications on the interpretation of any changes detected. For example, to what extent would the changes be more about different actors’ understandings or knowledge than actual changes? Careful analysis by the research team meant that such issues did not arise.

Triangulation of data and information across the quantitative, qualitative and desk research sources helped to shed light on changes in actors, narratives, structures, private sector, patterns of funding and operation of SGCs in aspects that include governance and policymaking. The changes captured range from particular sectors to national level science, research and funding actors, governance, and science and policy systems. Thus, the study illuminates important dynamics and trends in the operations of SGCs. The data gathered and the analyses served to update the five national case studies and the results are presented next in Section 3.
3 Summary of National Case Studies and Key Themes

3.1 Introduction

The national case study reports for the baseline study each included some contextual sections: a section entitled “Setting the context” and a section on the national STI system. Each of these sections serves as a basis for the updated study to capture important changes since the baseline study was conducted. Some of the work on identifying important changes was done ahead of interviews, complemented with data and information that emerged from interviews. It was useful for the project team to share internally these updated draft contextual sections, or Contextual Reviews, for internal peer review purposes. This helped to maintain quality and consistency across the case studies. In the remainder of this section, we provide brief summaries of the five national case study reports. The detailed reports are provided as Annexes 1 to 5. When we conducted the national case studies, we asked people questions in line with the analytical framework (Figure 1 above), and using the concepts of ideas, interests, institutions and structures to shape the data collection and analyses.

3.2 Summaries of the national case studies

Summaries of the national case studies are presented next, followed by brief discussions of key themes arising from the case studies.

3.2.1 Ethiopia National Case Study Summary

Overview of the policy environment

As per the STI policy, the organisational structure of the National Science, Technology and Innovation System governance in Ethiopia has four functional levels:

i. National STI Council
ii. Technical Advisory Committee of the National STI Council
iii. Ethiopian Science and Technology Agency
iv. Science and Technology (S&T) operational Institutes and Centres

The National Science, Technology and Innovation Council (NSTIC) is the regulatory body for the STI policy and action plan in Ethiopia. It is mandated to establish and coordinate the general strategy and framework for the development of STI. The Prime minister is the core chair of the council and the Minister of Innovation and Technology is the secretary of the Council. The secretary of the Council nominates experts from S&T institutions/centres who are later appointed by the Council as NSTIC members. The Council monitors and evaluates performance of STI activities.

The STI policy is under review by the Ministry of Innovation and Technology (MInT) in collaboration with the United Nations Conference on Trade and Development (UNCTAD) (Tralac, 2019). The revised STI policy is aimed at transforming Ethiopia’s economy into one that is technology-led. It is hoped that the revised policy will help drive Ethiopia from “consumer” status into a manufacturing country. Revision of the policy was stimulated by a number of reasons from the previous version: non-compliance to economic reforms, misalignment with various sectors, and non-progression towards an industrial economy. Within the revised policy, science and technology are targeted to contribute 2 billion dollars to the GDP, create 20,000 technical jobs and 2000 SMEs. These targets are to be achieved within two years (Tralac, 2019).

In March 2019, a declaration on enabling an equitable research system in Ethiopia was launched by the Ethiopian Academy of Sciences (EAS) in collaboration with the International Network for the
Availability of Scientific Publications (INASP). The declaration is aimed at creating a holistic, equitable, and collaborative research system. It also aims at identifying the factors hindering the creation of an equitable system. The then Minister for Innovation and Technology emphasized the need for researchers to focus on research that addresses community issues. He also added that their research output should be shared widely for public input (EAS, 2019).

Political economy issues raised

In the Phase 1 study (Chataway et al., 2017), we observed that Ethiopia’s STI landscape was fragmented. This continued to be raised as a key issue, both by respondents and during the literature review for this Phase 2 study. In addition, issues relating to capacity, resource and funding constraints were also raised in both studies.

Fragmentation of the STI ecosystem and poor policies

We found that there continues to be weak coordination of research activities among organizations undertaking STI, with limited involvement of the government, private sector and academia. The weak coordination of research activities has led to duplication of research in universities. On the policy front, respondents stated that policies needed more work to ensure they adequately suit the needs of Ethiopia, and that it is important to strengthen the knowledge and expertise on policy issues of people involved in policy formulation and implementation.

Limited capacity building, human resource and infrastructure

There is need for capacity building in terms of training and infrastructure development in STI. This will enhance expertise in STI and create a conducive environment for researchers, lowering the risk of researchers moving to other countries and thus reduce brain drain. Furthermore, on capacity, it was pointed out that the majority of the personnel working in STI are educated about theory but lack the technical skills to effectively execute their duties. There are very few highly skilled professionals in innovation studies. In addition, respondents pointed out that universities do not yet have courses that focus on training students on innovation.

Limited funding for implementing STI activities

There is a sense among respondents that insufficient funding for STI has also slowed down the implementation process of the STI policy. In addition, there is a lot of bureaucracy involved in accessing government funding for R&D. This discourages researchers from seeking government funding, opting instead for partnership-based funding from foreign universities/organizations. From the public sector, it was mentioned that private sector funding for R&D is continuously diminishing. The private sector is not well familiar with the benefits of R&D and so does not see the value in investing in it. From the private sector, it was pointed out that private sector priorities lie elsewhere and R&D is seen as a poor investment choice due to the long waiting period for output.

Low technology transfer

A number of interviewees highlighted the difficulty of technology transfer; one even argued that local innovations are not supported. According to a representative from a government STI organisation, most of the machinery used in Ethiopian industries is imported, and the human resources needed to operate it are also from outside the country. The interviewee went on to argue that this discourages local innovators from developing new innovations due to lack of market and capacity.
Summary

Since the last report, Ethiopia’s policy landscape has not significantly changed. The place of STI on the policy landscape was noted to have significantly improved during the PE1 study and the focus on STI has not diminished in the last three years. In fact, it has probably strengthened a little. However, there are still capacity and performance issues, as noted by interviewees and from recent data sources examined for this study update.

Recommendations for STI actors in Ethiopia

Science Granting Council: MInT’s Innovation and Research Affair’s wing

MInT must ensure that the STI Policy revisions are completed and implemented. The lack of clear policy documents will hinder the movement towards improved productivity in the area of STI. Increasing funding for research must also be a priority.

Private sector actors

Ethiopia has a vibrant export oriented agro-processing and manufacturing sector that benefits from many supportive government policies. The private sector must see value in research and innovation and be provided sufficient incentives to work, for example, with universities.

Policymakers

Consideration of improved implementation of policies as well as reducing staff turnover will be imperative to build stakeholder trust in the organs of government. For example, the government could provide clearer guidance for foreign investors who might participate in STI activities.

3.2.2 Kenya National Case Study Summary

Overview of the policy environment

The PE1 report in 2017 highlighted that the enactment of the STI Act in 2013 led to the realignment of STI programmes to the Kenyan national agenda as well as the strengthening of the national system of innovation. Through the STI Act, three organizations were established to coordinate national STI activities. These are the National Commission for Science, Technology and Innovation (NACOSTI), the Kenya National Innovation Agency (KeNIA) and the National Research Fund (NRF).

Since the first study reported in 2017, Kenya’s political landscape has changed, with the introduction of the Government of Kenya’s “Big Four” initiative. This is a targeted approach to achieving Kenya’s Vision 2030 through a focus on four key challenges: food security, affordable housing, manufacturing, and affordable health care. The PE1 study also emphasised the importance of the devolution efforts in the country, which created county governments and brought decision making in many areas nearer the grassroots. However, devolution’s impact on STI and research funding is not yet clear.

The Kenyan growth rate rose to nearly 6% in 2018 but the country still suffers from high levels of unemployment and a negative trade balance. A change in the education curriculum in 2017 to introduce competency-based learning is an attempt to build the skills needed for a stronger economic future.

Political economy issues raised

In the PE1 study, we reported that Kenya had taken the step of delineating responsibility of STI regulation and promotion across three different agencies (those noted above: NACOSTI, KeNIA and NRF). The issues facing these three agencies and other stakeholders highlighted in the PE1 study included the relative power and influence of different stakeholders as well as the availability of needed resources.
capabilities and skills. These issues were also raised, alongside a set of new issues, in the interviews and literature review for this PE2 study.

Funding available and linkages for research and STI

According to interviewees, funds contributed to research and STI by the national government remain low due to competition from priority sectors in the Big Four development agenda: i.e. health, food security, housing and manufacturing. The scarcity of public funding means there is a significant focus on foreign funding sources for STI and research. Interviewees also said there is a continuing lack of private sector funding, arguing that private sector organisations do not invest because they do not see the importance of research. Even where they do see an importance, they keep STI activities in-house; they rarely link with universities or other research organisations.

Level of skills and capacity for STI

Interviewees argued there is a mismatch between graduate skills and industry requirements, and this has been a major contributor to the high level of unemployment among the youth in Kenya. The mismatch of skills is mainly attributed to weak linkages between universities and industries, poorly structured curricula, rapid conversion of technical learning institutions into universities and limited infrastructure. This has led to a continued importance on improving technical and vocational education and training (TVET) in Kenya over the past three years since the PE1 report.

Unclear mechanisms for policy implementation, monitoring and evaluation

Interviewees pointed to a need for alignment of policies rather than their current fragmentation, clear implementation frameworks and stronger engagement by relevant stakeholders in government to push implementation forward. It was noted that the three mechanisms that make up the Kenyan science granting council platform (NRF, KENIA and NACOSTI) were still in their infancy (in their new roles) and therefore were still “finding their feet” in terms of how to operate. In addition, efforts were further hampered by continued silo-working by ministries and lack of interaction between stakeholders more generally, which limited the ability for effective policy implementation. Several interviewees noted the need for new funding mechanisms that de-linked education funding from funding for STI at ministry level: i.e. funding mechanisms that would enable the Science Council organisations to be more independent from their home ministry, which is primarily focussed on education.

Fit with development priorities

A common argument made by stakeholders in Kenya is that they are unable to see the relevance of STI research for business or societal benefit. However, efforts were being made in 2019 to align Kenya’s STI policy with the SDGs and the Big Four national development agenda.

Recognition of the issues facing STI implementation

It is important to note that some of the issues raised above – and in the PE1 report – have been acknowledged as challenges by NACOSTI (which is tasked with regulating and advocating for the sector), with many of the above being listed in a 2018 report by NACOSTI itself.

Summary

Since the PE1 report, Kenya’s policy landscape has been shaped by a move towards the Big Four agenda and a marked shift in emphasis on TVET and enhancing TVET opportunities in the country, including innovation through TVET colleges. This latter move is partly due to a continued recognition of the skills gap facing the country. More generally with regard to STI funding, we found that private sector
funding remains low and there are calls to introduce a new funding model for STI. Specifically, there is a need to de-link education funding from funding for STI at ministry level.

Recommendations for STI actors in Kenya

Science Granting Council: NRF

Data availability on the NRF website has improved in terms of lists of projects funded. However, there is still no clear public access to funding figures in terms of the amount of funding given to each project. Having publicly available information on the demand and uptake of funding will provide significant support for increasing funding allocated to the agency. The NRF is encouraged to share data.

Private sector actors

There is need to focus on TVET for initiatives that increase innovation in SMEs and R&D outside of “the lab”. Potentially, this is also important given the type of private sector actors working in Kenya, the majority of whom are not focussed on traditional R&D intensive sectors, but are in small SMEs often in the informal sector.

Policymakers

There are renewed efforts to align Kenya’s STI activities with different agendas (Big Four, Vision 2030 and the SDGs). It will be necessary to ensure there is coordination of these efforts to avoid duplication, overlap or contradiction. On funding, it has been argued that the introduction of tax incentives/waivers, recognition and award schemes could encourage financing of research activities from the private sector, development partners and philanthropists (Njau, 2018).

3.2.3 Rwanda National Case Study Summary

Overview of the policy environment

In 2013, the National Commission for Science and Technology (NCST) was established with a mandate to regulate national science, technology, research and innovation activities, and advise government on policy and legislation in STI. Its establishment was part of a national focus placed on using STI as a catalyst for the country’s development. Since the PE1 report (Chataway et al., 2017), the STI political landscape has changed. Although the country retains the same President, the new Ministry of Information and Communication Technology (ICT) and Innovation was formed in 2019. This shift implies a change of innovation policy coordination role and thus will affect the mandate and activities of NCST.

In addition, in 2018, a new Director was appointed to the Science, Technology, Innovation and Research (STIR) Unit, under the Department of Education Planning, within the Ministry of Education (MINEDUC). Although the NCST is a semi-autonomous agency reporting to the Ministry in the President’s Office, the Minister of Education remains the co-chair of the NCST governing council. This is partly based on Rwanda’s belief in STI capacity development across all levels of education, which is part of the mission of the education ministry. NCST is responsible for the National Research and Innovation Fund (which is focussed on aligning research to strategic areas). In 2019, NCST was preparing a National Research Agenda document as part of its efforts to align research to strategic areas. Activities by NCST and other sectoral stakeholders such as the STIR Unit in education – and the National Industrial Research and Development Agency (NIRDA) and Rwanda Information Society Authority (RISA), affiliated to the Ministry of Trade and Industry and the Ministry of ICT and Innovation respectively – fit within a wider policy environment that until recently has been dominated by the national development agenda, Vision 2020. A new National Strategy for Transformation (NST1)
is meant to bridge the completion of Vision 2020 and the commencement of a new development plan, the Vision 2050.

The 2013 revised STI Policy is still the main policy document providing guidance for NCST and others in their efforts to promote the production and use of STI in Rwanda. Further review of the Rwandan STI policy was conducted by UNCTAD in 2018. The recommendations from this review include strengthening of policy synergies and identification of interrelationships and trade-offs among the goals. It also recommended that national STI policy should be formulated based on the national innovation system (NIS) conceptual framework. The prolonged approval process of the revised STI policy hinders its implementation.

Political economy issues raised

In the PE1 study, issues relating to limited interaction between research organisations, and limited resources (financial and human) and incentive structures, were raised. These were raised again in this follow-up study together with a number of other issues.

Lack of capacity of staff in STI organisations

Lack of expertise in STI was identified as a major challenge by several of the interviewees whom we met during this follow-up study. They noted this is a problem both within research institutions – e.g. universities – but also within the bodies responsible for regulating and promoting STI in Rwanda. The lack of qualified staff (especially at PhD level) is particularly noteworthy as is the need to promote more centres of excellence and innovation hubs.

Reliance on external actors for funding

Interviewees noted a continued reliance on external actors for funding, but two efforts are being made to change this. The first is that the Private Sector Foundation has revitalised its Research Centre. The second activity focusses on what already exists: i.e. to conduct frugal innovation, and to use current resources and traditional knowledge. However, several interviewees noted that the private sector will be reluctant to invest in this area until they recognize the value of R&D.

Limited interactions between STI stakeholders

All the interviewees highlighted the limited interaction between STI stakeholders (policy makers, universities, private sector, communities, etc.). However, it was argued that improvements to university-industry interaction are taking place and that regional cooperation would be useful to bridge gaps in interaction, especially where knowledge does not exist in Rwanda.

Improving research quality starting with the school curriculum and TVET

Recognition of the importance of improving research quality starting from school age has increased in the last two years. The Ministry of Education launched another phase of the “Quality Education Enhancement Awareness Campaign” in 2019. One of the main aims of the campaign is to emphasise the role of ICT in enhancing the quality of education. Other factors highlighted include: a change to a competency-based curriculum across primary and secondary schools, and an increased focus on TVET and the role of innovation outside of formal university research environments.

Summary

This PE2 study of Rwanda’s STI system has highlighted a number of new funding initiatives being rolled out by NCST and efforts being made to enhance the sustainability of research activities in the country through a focus on STEM across the education sector. However, the lack of a clear overview
of funds granted and indicators of the status of STI makes it difficult to assess the impact of the STI system. The consolidation of research within the University of Rwanda is a major effort by the government to focus research efforts, but the success or otherwise of this initiative is yet to be seen and so needs to be evaluated as it is a very different approach to the neighbouring countries.

Recommendations for the STI actors in Rwanda

Science Granting Council: NCST

A revision of the website to provide a clear overview of the funding schemes available, and their historic grant allocations, would provide an incentive to researchers to apply for grants and enable more effective tracking.

Education providers

The decision to consolidate research into a single university will need to be reviewed in the coming years, as is a thorough review of all efforts to stimulate innovation, science and technology, and research. There appear to be many initiatives at various levels, from clusters work and innovation hubs through to PhD studies. A review of the indicators of successful STI is also required to ensure that the focus is not simply on patents and publications/citations as the various efforts being made are now more complex than this. Indicators and metrics that help to assess or capture impacts of science and research on national development objectives or aspects such as reduction of inequality, mitigated climate change or improvements in gender in STEM and inclusivity, are strongly encouraged.

Private sector actors

Efforts of the Private Sector Foundation and those working with universities are commendable. However, more needs to be done. Those representing the private sector must find ways of making the arguments for investment and attention to R&D and STI attractive to those in business. Greater recognition of the different types of business and the need for innovative action beyond just formal manufacturing of products would also be beneficial. The current focus on TVET education is a good opportunity to make in-roads in this area.

Policymakers

All interviewees noted the difficulty of implementing the STI Policy because it has not yet been ratified. Furthermore, all interviewees noted the need to raise public awareness of the STI policy and to promote it through a clear implementation plan, with progress monitored on a regular basis.

3.2.4 Senegal National Case Study Summary

Overview of the policy environment

Regional initiatives to promote STI in SSA, strong expectations for STI to contribute to Senegal’s long-term development strategy – spelled out in the Plan Sénégal Émergent (PSE) (or Plan for an Emerging Senegal) – and implementation of higher education reforms, have all contributed to an increased awareness of the STI field in the country. Organisational and institutional reforms within the Ministry for Higher Education, Research and Innovation (MESRI) have also seen the creation of a dedicated directorate to lead on STI activities.

In the absence of a dedicated STI policy, sectoral measures related to higher education reforms and the PSE guide the SGC's funding and R&D, and MESRI's activities on STI. The 11 Presidential Decisions and associated directives, in particular, provide a roadmap for the SGC to follow and objectives to be achieved by 2022. These objectives include expanding higher education institutions to the entire country.
and diversifying the university map, developing STEM, and promoting the use of ICTs for teaching and research as a way of increasing student’s access to professional work. The reforms aim to increase investment in higher education and research. One way to achieve this objective is to increase training of human resources and create the necessary knowledge for “emergence”, placing a specific emphasis on research and innovation. For example, Decision 8 outlines measures to “provide a fresh impetus to research and innovation” in Senegal, including identifying the country’s main research priorities as they relate to its socio-economic development ambitions and implementing an appropriate system of performance indicators to evaluate national policy for STI.

The PSE also provides the direction for development of STI activities in Senegal, placing an emphasis on tertiary education and building further education institutions. In addition, the PSE emphasises the need to increase access to education for more people and from a wider range of socio-economic and marginalised groups. Furthermore, the plan allocates funding to create a second University of Dakar (with a focus on S&T) and a City of Knowledge in Diamniadio, a suburb of Dakar. Among other things, the City of Knowledge is expected to host a dedicated space for governance and evaluation, as well as specific spaces for research and innovation, learning and the promotion of a scientific culture. Implementation of the PSE started in 2016 and the Ministry of Economy was expected to publish its Sectoral Development Policy Letter (Lettre de Politique Sectorielle de Développement, LPBD) at the end of 2019. Lastly, the government reform agenda and the PSE place specific emphasis on the development of ICTs to promote access to higher education and STI.

Political economy issues raised

As discussed above, there are many encouraging steps and progress in the STI system since the PE1 study. However, interviewees identified several stumbling blocks and challenges in effectively implementing STI activities. The political economy factors raised include the need for high-level policy support, greater articulation of issues of (STEM) education and gender in research, low research funding, capacity building, and investment in equipment and infrastructure, which remains a major obstacle to addressing research needs. In addition, there is need for greater efforts to promote STI and vocational training. These efforts must broaden beyond higher education to take a systemic approach to the whole education sector, thereby facilitating the development of STI from primary school upwards. Progress in this will help ensure that STI contributes to Senegal’s socio-economic transformation. Further support at presidential level of governance and policy, including robust indicators and fully-fledged STI policy, would enable clear goals and prioritisation for the STI agenda in Senegal.

Summary

Senegal has a number of well-established universities and research institutes. MESRI’s mandate covers all higher education institutions, including universities and higher institutes of vocational training (ISEP) as well as the Senegal virtual university (Université Virtuelle du Sénégal, UVS). The 2013 President Decision mandated the creation of a virtual university and 50 Digital Open Spaces or ENOs, at least one in each government department across the country. Research institutes fall under the remit of sector ministries. The most well-known of these is the Senegalese Institute for Agricultural Research Institute (ISRA). In total, Senegal had 16 functional research centres and test centres in 2015, up from nine in 2014. The aim of the government was to have 33 functional centres by 2018.
Recommendations for the STI actors in Senegal

Science Granting Council

High-level policy support: Although there is an increased awareness of STI among different actors in Senegal, greater support from executive and legislative powers is needed to provide further impetus to the emerging sector. This includes engagement not only from policy makers at MESRI and related agencies but also support from politicians, particularly the President of Senegal. High level support from the Presidency would send a strong signal in recognising STI as a priority for the country’s socio-economic transformation. Members of Parliament could also play a role in promoting STI at the legislative level. Senegal’s SGC can help facilitate and coordinate the high-level support.

Education: There is a need for further articulation of the role of education in delivering skills for STI. This includes strengthening efforts in higher education access, in general, and STI disciplines, in particular. In addition, a systemic approach to the education sector is essential, starting from primary school upwards and including vocational training. Further interactions between the three relevant ministries, as well as involvement of education practitioners and other actors such as the private sector and NGOs, would enable deeper understanding of the STI field boundaries, potential contributions and synergies. Again, Senegal’s SGC can play an important role in this regard: in the processes involved in articulating the education system and fostering interactions among relevant actors.

Private sector

Reliance on limited state funding for research is a major stumbling block in the implementation of STI activities. STI actors in Senegal are encouraged to increase public spending towards research and innovation as well as development of partnerships to provide additional sources for R&D, which would enable further support for research. This could include partnerships with domestic and international actors as well as the development of public-private partnerships (PPPs).

Policy makers

There is need for policy to focus on overcoming silos and reducing fragmentation. The fragmentation of programmes, projects, activities and actors in the STI field makes it difficult to develop and maintain a common understanding of needs and potential contributions. The completion of the on-going national survey to provide up-to-date relevant indicators as well as a fully-fledged STI policy would help in ensuring a clearer assessment of needs and identification of STI priorities for socio-economic development. Relatedly, policies and regulations are needed to improve the availability, quantity and quality of data on STI, alongside data transparency. It is imperative that policy makers’ focus on this.

3.2.5 Tanzania National Case Study Summary

Overview of the policy environment

Since the PE1 study, there have been few political changes that have influenced the STI landscape in Tanzania. John Pombe Magufuli remains President, and improved management of public resources and public administration, as well as eradication of corruption, have been the priorities since his appointment in 2015.

In 2018, Tanzania’s GDP growth rate decreased to 6.7% from 7.1%, but inflation decreased to 3.5%. Tanzania did not receive any external funding for its 2018/19 budget due to governance issues. Official figures show that funding into public revenues by international donors has been extremely low in the period since the first PE report. Nevertheless, a significant amount of donor and international funding is used for STI and research activities.
The Commission for Science and Technology (COSTECH) remains the organisation with the mandate to oversee STI and research activities in Tanzania. COSTECH has set priority research areas in STI to enhance national socio-economic transformation, mainly through industrialization. This is in line with the national development strategy, Tanzania Development Vision 2025, to promote technology transfer and innovation. The main aim of the vision is to shift the country from agrarian-led growth into industrial and service-led economic growth. As part of these efforts, the existing (2010) STI Policy was reviewed, and was to be updated and published before the end of 2019. However, at the time of writing, the updated policy was still unpublished.

Political economy issues raised

In the PE1 study, we reported that Tanzania was doing well relative to other countries in terms of gaining funding from the private sector but that changes in policy and emphasis by donors and the government were negatively impacting the STI system. Very few of the same issues were raised during interviews and the literature review for this updated study, except for the influence of funders’ priorities in research undertaken.

Low expertise and motivation

There are two elements to the issue of low expertise and motivation. First, there is a lack of skilled human resources, both in terms of PhD holders in the research sector and those with technical skills. These gaps are blamed on poor levels of technical and vocational training and a more general issue of poor education standards across the board. This raised a question, asked by one respondent, with respect to what type of skills and qualifications are important for Tanzania’s development. Second, a number of interviewees noted that it was difficult to be research active due to levels of teaching and administration required.

Research funding priorities

Funding is crucial in sustaining researchers and research activities. Insufficient funding reduces the quality of the research output. It was noted that often research focus areas are determined by those providing the funding and not necessarily by the research needs arising from national priorities. This issue was deemed to be compounded by the long timeframes required for much research as opposed to government and private sector expectations for “quick wins”.

National innovation system and policy environment

Interviewees characterised the Tanzanian national innovation system as nascent. They highlighted various limitations of the system including institutional issues, difficulties with infrastructure and poor linkages between key actors. In addition, they said that the different sectors and associated ministries operate in silos.

One reason for this might be the allied issue of difficulty implementing STI-related policy, which a number of respondents raised. They argued that knowledge of the field is poor as most policy makers have limited understanding of the STI concept. Some have argued for the need to reconceptualise and expand the limited understanding of STI in Africa (e.g. see Daniels, 2017). A related argument made by respondents is that the general public’s awareness of organisations like COSTECH is limited. Specifically, they argued that, potentially, the fact that COSTECH only has an office in Dar es Salaam, and lacks regional or zonal offices, limits their ability to serve the entire country.
Summary

Since the PE1 report, Tanzania’s ranking in the Global Innovation Index improved, rising 27 positions to 92 from the previous recorded rank of 123 in 2013, despite the findings of this report that highlight a significantly unfavourable environment for research and STI. Tanzania, therefore, risks slipping back down the Innovation Index at a time when the efforts of the country to work towards sustainable industrialization place a focus squarely on the importance of STI and research. Revision of the STI policy – ongoing at the end of 2019 – will be highly important in this respect. The key finding in this follow-on study is that the successful implementation of any revised STI policy is likely to be possible only if the bottlenecks relating to the policy environment (notably the resourcing of COSTECH and its autonomy) are satisfactorily addressed.

Recommendations for STI actors in Tanzania

Science Granting Council: COSTECH

COSTECH needs to cement its place within the STI system in Tanzania. If it can enhance its position so as to become the effective “go-to” place for anything relating to research and STI, it will be able to leverage increased numbers of collaborations which, in turn, will strengthen the STI system. This may involve moving its location to within the Office of the President, as other countries have done. There is need for enhanced collaboration between COSTECH and appropriate ministries in order to work towards industrialization. In addition to this, donor requirements for multidisciplinary teams could encourage these collaborations.

Private sector

The private sector needs to increase their support for research and development through funding. Those involved in R&D need to continue advocating for the government and private sector to understand the importance of research, and the importance of collaborations between these two groups of actors.

Policy makers

There is need to enhance capacity building to ensure that the policies developed can be easily implemented, starting with the revised STI policy. An enhanced focus on the influencing factors during the policy design, development, implementation and evaluation processes are essential together with development of corresponding mitigation strategies.

3.3 Key themes from the national case studies

Having provided brief summaries of each of the case studies, in this section, we discuss five themes that emerge from across all of them. The discussion here is based primarily on the interview material, especially as it is from this material that we are able to gain a clearer picture of what STI stakeholders themselves are thinking and why they are acting in particular ways. The themes we discuss are (1) governance and development strategies, (2) human resources, (3) funding, (4) research excellence, and (5) innovation systems. After discussing each of these themes, in the section that follows, we analyse the political economy factors that we determine are at play in the five case study countries.

3.3.1 Governance and development strategies

There is a recognition across those interviewed for the case studies that STI is cross-cutting and so needs to be considered by all government ministries. However, although this recognition exists – amongst the interviewees and many others – we were told that it remains largely rhetorical. That is, the recognition of STI as cross-cutting and important is clear in policy and political discourse, but many
interviewees argue it is lacking in implementation. Where implementation is happening, there tends to be only weak coordination and collaboration, with STI bodies and institutions working in silos. Consequently, many interviewees suggest that, to help achieve better coordination and collaboration, there is a need for clearly defined roles and responsibilities amongst the various actors involved in STI. This speaks to an overall governance challenge to which we return shortly.

Commenting on what is happening in practice in the STI field, many interviewees observe that economic development is mainly occurring in the informal sector, in service industries, and mainly involves “low” technology. Although these observations are likely to be disappointing to SGCs and other STI stakeholders, the observations do not necessarily mean that no “higher” formal-economy technology or innovation development is taking place. Nevertheless, it does raise the question that if such higher technology development is happening then why is it difficult to see? And interviewees were concerned that there needs to be a focus on development problems and the type of industrialisation that is promoted, which are issues closely connected to interviewees’ views on what constitutes research excellence (see the research excellence discussion below).

It also brings us back to the issue of governance we mentioned above. Here, interviewees highlighted the need for alignment between STI policy and long-term national strategy. Interviewees in Senegal and Kenya gave examples of how this alignment has not been achieved. Senegal’s 2035 PES is in place but there is no STI policy yet. In Kenya, the “Big Four” agenda was formulated after the STI Act, an Act that was in place before the (still ongoing) formulation of STI policy. And, as noted in the brief summaries in the previous section, Ethiopia and Tanzania are in the process of updating their STI policies but have not yet done so, and Rwanda has not yet gazetted its 2013 STI policy.

In terms of whether STI policy and implementation are taken seriously, interviewees tended to argue that organisations such as SGCs would be best located at a high political level, such as in or close to the national leader’s office (whether president or prime minister). This is the case in Ethiopia and Rwanda, but not so in Kenya, Senegal and Tanzania. Whilst such location of an SGC is likely to mean there is more chance of STI policy and implementation, there is also the question of whether STI agendas could be captured by narrow interests. At the very least, there is a tension here between a structure that provides the power and resources needed to act, and the importance of independence in setting agendas and promoting a strong and credible scientific and research sector.

Finally, in regard to governance, although gender did not appear strongly in interviewee’s comments, it did arise. Specifically, some interviewees argued that there is a need to get women into decision making roles. This will not, in itself, address all the complex challenges of gender inequality. However, as one interviewee argued, if women get into decision making roles they are more likely than men to try to achieve wider changes that will benefit more women as they understand the effects of gender inequality in ways men may not. Participation of more women in decision making positions will be an important step in beginning to address gender inequality, assuming those women do have real power.

3.3.2 Human resources

Capacity constraints are cited by many interviewees as an important feature of the political economy of SGCs. There are various views on what the specifics of these constraints are and how to address them. These include claims about university access and the quality of university education, arguments for the kinds of courses that should be offered throughout education systems – from primary to higher levels – and the kinds of skills training needed, and critiques of the pay and working conditions in the STI field that create a brain drain.
Access to university, according to several interviewees, is constrained in different and to some extent interrelated ways including by geography, socio-economic status and gender. Many universities are located in large urban areas where accommodation is expensive, and the number of student accommodation places on many university campuses falls far short of demand. The costs for many of attending university are therefore prohibitive for students from poor families or when students have to spend much of their time commuting because they have to live far from campuses where accommodation is cheaper. For women from poor rural families, the situation is significantly more challenging. If the family has to choose between supporting one child in further education, a male child will almost always be preferred to a female regardless of ability. And rural families tend to prefer their daughters do not spend long periods in the city away from the home. Although not expressed in interviews, we might expect that similar, or perhaps more difficult, challenges face students living with disabilities.

One partial solution to some of these access constraints could be virtual universities, several of which have been in operation across the African region. The African Virtual University (AVU) is the longest-established, with 19 countries having signed its Charter. But other country-based virtual universities exist in Africa, including the Virtual University of Senegal (UVS), which will be linked with at least 50 ENOs (Espace Numérique Ouvert, or Open Digital Spaces) located across the country (there are currently 13 according to one interviewee) to provide students with access points to UVS (Hanlin and Sawadogo, 2017, Cissé et al., 2019). We do not have any indication of the extent to which the UVS, for example, has made access to university education easier for those with disabilities, but Cissé et al. (2019) claim that “female students represent 47% of the UVS”, in contrast to the average of about 30 per cent across the country.

Even where there is access to education, a number of interviewees made the point that there is a lack of courses and training on STI at all levels from primary to higher education. The point about starting such education early is perhaps most important in countries like Senegal where education is based on the French system, which channels students in specific directions from a young age. According to an interviewee, only about 5000 college students per year take the Maths and Science route. This has implications for the extent to which the country can nurture its capabilities to exploit natural resources for economic development, and a similar lack of capabilities was something echoed by many interviewees across all the case studies in regard to their own countries. The aspiration in Africa for transformation from natural resource-based to knowledge-based economies (AUC, 2014, AUC, 2015) has resulted in many of the countries rethinking their approaches to STI policy making and capabilities building, and a growing interest in “transformative innovation policy” (Daniels et al., 2020).

According to many interviewees, and across all the case study countries, insufficient provision of STI courses and training has in part resulted in a mismatch of skills between those of graduates and those needed by industry. However, even where students graduate from relevant STI training, there is a lack of the kinds of technical skills that industry needs. As one interviewee expressed it, universities are focussed too much on “white collar courses” to the neglect of technical skills training. Interviewees offered different reasons for the inadequate supply of skills they see are needed. One explanation offered lays blame with universities – and perhaps governments – who, it is claimed, charge higher fees for STI-related courses thus incentivising students to choose cheaper options. Another reason suggested is that students themselves do not believe STI-related courses will equip them with marketable skills. Yet another reason, given by a Tanzanian interviewee, identifies a change in the structure of the tertiary education system for the inadequate supply of technical skills. In this case, most of the technical colleges have been upgraded to universities resulting in an over-supply of engineers, although another interviewee said the proportion of graduates from tertiary education is low in Tanzania. Either way,
both interviewees spoke of an under-supply of technicians who, one interviewee claimed, are a major source of innovation as they are involved in the daily handling of machines and technology development.

To address the mismatch of skills, various strategies and solutions were mentioned by interviewees. Stronger links between university and industry were suggested, with references to specific country programmes that are already underway, and we will return to this in the section below on innovation systems. The most cited strategy, however, was to strengthen Technical and Vocational Education and Training (TVET), sometimes for university graduates as well as at the technician level. In terms of university courses and graduates, some interviewees suggest incorporating structured internships for students in industry and in SMEs, the involvement of industry in setting degree-course curricula and developing training, and moving to competency-based curricula – at least in Kenya and Rwanda – as a way to connect academia and research to national development goals as well as promote critical thinking.

Some interviewees also highlighted specific programmes, already in operation or planned, that aim to enhance TVET. Examples include plans for a TVET college in every one of Senegal’s 45 departments, where each college will link to the local economy; an ongoing national employment programme in Rwanda to provide TVET capacity building to graduates; graduate training in entrepreneurship and innovation management, run by the University of Dar es Salaam Innovation and Entrepreneurship Centre; and international links such as between the Ethiopia Textile Industry Development Institute and an Indian leather institute through which 60 students are being trained at masters level in fashion technology, garment manufacturing, and chemical engineering.

Much of the concern with inadequate human resources is focussed on STEM subjects, but some interviewees noted there is also a lack of expertise and capacity in STI at the policy level. This includes the role of researchers, with one interviewee suggesting there is a need for experts to conduct research that informs STI policy. But there is also a lack of expertise in policy formulation, meaning that government officials need to be better informed and knowledgeable about STI. Furthermore, one interviewee claimed there are frequent changes of government personnel, resulting in poor institutional memory and a slowdown of policy implementation processes.

One more issue raised by some interviewees was that of brain drain, where there is a risk that those who do have relevant expertise and skills go abroad, further exacerbating the scarcity of skills. The few interviewees who mentioned the brain drain issue did so in relation to the science and research systems rather than industry and so the problem might be more acute when it comes to retaining university-based researchers. In explaining brain drain, two reasons were offered by interviewees. One relates to the lack of STI training in-country such that students must go abroad but then fail to return. The second explanation concerns those who are already qualified researchers. Because of the lack of research infrastructure – something mentioned by many interviewees across all the case study countries – researchers “go to the West” or elsewhere in search of better working conditions, which could include better salaries, opportunities and more prestige, not just better research infrastructure. And it is likely that the better working conditions abroad, to the extent that they do indeed exist, act as an incentive for students trained abroad to remain there. But a further issue related in a sense to brain drain is the risk of “poaching” that local organisations face when nurturing the development of their staff. In this case, a local organisation might be reluctant to invest effort in upgrading the skills of their staff, even if this is needed, because those staff then become attractive to other local organisations who might offer better salaries or career opportunities. At a system level, there is a benefit in terms of skills and expertise available in the system – an example of brain circulation – but it amounts to something of a zero-sum game at the organisational level.
3.3.3 Funding

Funding for research, and STI more broadly, remains low across the case study countries. SGCI is especially interested in the level of private sector funding and this, according to practically all our interviewees, is very low or negligible. Where there is private sector funding, it tends to be sourced externally or spent in-house by large multinational companies who have subsidiaries in the case study countries. Most research funding comes from donors – e.g. foundations or bilateral and multilateral development partners – and flows directly to researchers or research organisations rather than through governments. Much of the little funding provided by the case study country governments is for staff costs, not for research itself. Many of our interviewees provided reasons for why funding is so low, especially from private sector sources, and offered thoughts on how the situation could be improved. These included comments on the ways in which the funding systems themselves are functioning.

As mentioned, private sector funding of STI activities remains low or negligible in all the case study countries. Various reasons were suggested for this situation, three of which were most widely offered: the local private sector is dominated by SMEs who do not have the financial capacity to invest in R&D or other STI activities, with interviewees from Rwanda and Senegal further observing that their formal private sectors are too small or undeveloped to be concerned with research; private sector actors do not see the business value in research; and the private sector does not trust government research organisations, thereby making it difficult to establish private sector-research linkages. But several other reasons for a lack of private sector funding in STI were suggested by some interviewees. These included a lack of R&D or STI expertise in local firms, poor or non-existent incentives for private sector investment in R&D (whether local or international private sector), and a fear among university researchers – in Senegal at least – that conducting R&D for private firms would constrain their academic freedom and autonomy. Although not widely expressed by interviewees, this fear is a potentially important issue in need of careful reflection and debate if some of the outcomes described by Jasanoff (2005) in relation to the repercussions of the 1980 US Bayh-Dole Act, which deals with patenting of discoveries resulting from federal research grants, are to be avoided. The Bayh-Dole Act, according to Jasanoff’s account, had profound effects on the US university and – to some commentators at least – seriously eroded the science system’s Mertonian ideals, attracting large private investments into university-based R&D, with claimed negative impacts on academic disinterestedness, peer-review and the robustness of scientific findings, among others.

Solutions to raising private sector STI investments included policy changes to create better incentives. Few interviewees gave concrete suggestions for incentives but those who did mentioned examples such as public-private partnerships for STI activities, tax reductions for firms engaged in R&D, and government subsidies for private sector R&D. Beyond direct financial incentives, some interviewees suggested government investment in research infrastructure could help, such as the nurturing of innovation or incubation hubs that would, presumably, relieve private sector actors of the expense of establishing their own research facilities and so help to encourage private sector STI activities. Such measures could also include public sector support for commercialisation of STI. Also, some interviewees claimed there is a need to establish a clear legal framework that could form the basis for foreign investment in local R&D as well as foster stronger local research-industry linkages. And many interviewees suggested that researchers and other STI actors need to persuade private sector actors of the benefits to their businesses of investing in research, with some interviewees referring to what they perceive to be a need to develop a better research culture.

On this point about improving the research culture, some interviewees said this not only needs extending into the private sector but also needs fostering among those in the science systems of the case study countries. According to some interviewees, the poor research culture they claim exists within the
science systems is in part an outcome of the ways in which the government funding systems work. For example – at least in Ethiopia, Rwanda and Tanzania – several interviewees claimed that accessing government funding is highly bureaucratic and so, together with the low level of government funds available, many researchers look to sources other than research grants to supplement their income. The resulting “loss of research focus” as one interviewee put it tends to weaken the research culture (see the section on research excellence for more on research culture). But other problems with government funding were identified by our interviewees such as the funds mainly paying salaries rather than for research (Kenya), recall of research funds (Tanzania) or failure to disburse promised funds (Ethiopia), low priority for STI compared with other demands such as education (Kenya and Tanzania), and poor high-level political commitment to, or understanding of, STI and its role in national development (Tanzania).

And the problems with low and uncertain government funding have consequences for the sectoral distribution of research funds. As discussed in the first political economy study (Chataway et al., 2019, Chataway et al., 2017), the agricultural and health sectors receive by far the most money and this, according to our interviewees, has not changed. A common reason expressed in interviews is that these are priority sectors in all the case study countries. However, some interviewees also said that this means other important objectives are being neglected and many STI system actors are unable to get access to research funding. For example, the drive for industrialisation in the case study countries, for which STI could play a crucial role, is undermined because of weak government support. Competitive bidding for the small amount of money available means the relatively undeveloped areas such as engineering or policy research lose out to actors in the more developed agricultural and health research sectors. To address this problem, several interviewees suggested that there needs to be capacity building for researchers in these neglected areas to be able to write better proposals. The need for government support of this kind is perhaps underlined when we consider that, according to some interviewees, donors are less interested in funding research in areas beyond health and agriculture.

3.3.4 Research excellence

The issue of research excellence emerged out of the work for the first political economy study (Chataway et al., 2017, Chataway et al., 2019) and is further explored in Chataway and Daniels (2020). In essence, the issue centres on a definition of excellence as used by some science funders in which there is only one measure and that is the traditional notion of scientific excellence, judged by peer review, as opposed to an alternative definition of excellence that incorporates the impact of research. For this updated study, we asked about research excellence explicitly in the interviews and so we now have a stronger evidence base from which to highlight various aspects of the issue more specifically. These can be summarised as falling into three categories: research focus, research process and incentives, and research support.

On research focus, many interviewees questioned the relevance of the research being conducted and this relates strongly to whether research is focussed on “purely” academic problems or on variously addressing societal challenges and national development goals, or what could be described as the perceived dichotomy between basic versus applied research. Practically all our interviewees said research excellence meant having societal impact, if we can describe addressing societal challenges and national development goals in this way. Many of these interviewees did not dismiss publishing in journals; the two objectives are not necessarily in tension. For example, one interviewee said that good-quality journal papers can influence policy makers, implying at least an indirect societal impact. Any tensions that may arise could be between what many actors on the ground perceive as important and how some funding bodies assess research quality, something we noted in the first political economy
study (Chataway et al., 2017) in regard, for example, to the singular notion of excellence the Alliance for Accelerating Excellence in Science in Africa (AESA) appeared to be using.

Implicitly or explicitly, several interviewees argued that agenda-setting must be owned nationally in order to achieve the kind of research excellence they identify. The logic in this argument lies in the need to first understand the national (or sub-national) societal challenges that must be addressed and the control over allocation of funds to motivate research that answers those challenges. From this perspective, some interviewees suggested donors should fund such “baseline” studies and then allocate their research funding in accordance with their findings. Other interviewees argued for more national autonomy, whether in terms of research funding or agenda setting, or both.

Judging by comments in two of the Senegal interviews, this latter perspective seems to be based on the idea that it is not in the interests of foreign actors to either address national development challenges or help build local capacity to address them. The concern is that foreign actors – donors, private companies and others – currently benefit economically from holding the necessary expertise and so are less likely to promote, or might actively undermine, the development of local research excellence. This has some resonance with the argument made by an interviewee in our first political economy study that some donor-funded health research, for instance, is targeted at diseases of interest to the donor countries: that is, the research is motivated by a desire to understand diseases that might in time affect the populations of the donor countries. But not all foreign funding is necessarily so deliberately self-interested. One of the Senegal interviewees noted that the research themes of international funding calls or scholarships are difficult to align with national needs. Nevertheless, it brings us back to the issue of ownership – or sovereignty as the Senegal interviewee expressed it – and an argument that research excellence is something of a governance issue.

In addition to the focus of research, several interviewees from across the country case studies related research excellence to the process of how research is or should be done. There seem to be two aspects to this: (1) research culture, and (2) the need to encourage research collaborations and interactions or working across different sectors. Two interviewees mentioned research culture explicitly and a further five interviewees referred indirectly to research culture and its links to excellence. Those who spoke explicitly of research culture argued there is a need for researchers to be more committed to research and develop a culture of high quality, productivity and efficiency in their work. There was no space in the interviews to explore what these things mean and how they could be assessed, if at all. Nevertheless, several interviewees pointed to the importance of incentives to improve research culture, whether they mentioned culture explicitly or implicitly. At present, according to interviewees in all the case study countries except Ethiopia, such incentives are not in place. Incentives range from the less material, such as encouraging curiosity and creativity at an early age, to monetary inducements that will motivate researchers to be more proactive and engage in meaningful research. And one interviewee argued for a change in leadership mentality in organisations, something that is arguably another dimension of research culture. The point here is that organisations need visionary leaders who will mobilise resources to fund impact-based research.

On the aspect of collaborations, many interviewees see these as ways to ensure the research process achieves excellent outcomes. Many suggested the need to improve university-industry links as one strategy to promote research collaborations, and several interviewees mentioned the need to work across silos such as those between industry, government, communities and academia. Some interviewees also see working across silos as a way to improve policy implementation, again speaking to governance issues. One Senegal interviewee cited a concrete example of the potential benefits of collaborations amongst researchers. The collaborations were facilitated through the SGCI and included researchers from Burkina Faso and Senegal:
The collaboration initiative … did not get much funding. Nevertheless, it has enabled us to identify the researchers, finding the financial means, and create a community of researchers in projects for health and agriculture. We, and even researchers who were not selected, have welcomed this initiative. A total of 17 research projects with researchers from both countries were submitted. They really appreciated to work together. But the budget only allowed for the funding of 2 projects. This stifles enthusiasm/motivation. If at least it was 50% but 2 out of 17 – for high level researchers – this needs to be addressed to have adequate resources and have organisational capacities to address STI challenges [otherwise], for others, the door is closed.

This relates to research support, the third broad category of issues relevant to research excellence. In the view of several interviewees, lack of or weak research infrastructure is one of the more important issues that needs addressing. The specifics of what this means seem to vary but they include establishing laboratories with testing and other equipment, R&D facilities, and centres of excellence. Perhaps with the exception of centres of excellence, the kinds of infrastructure suggested imply that many see research predominantly in terms of the natural and physical sciences, and how this relates to achieving societal impact implies “innovations” (and perhaps STI generally) are widely understood to mean marketable products and services. There is more evidence from our interviews to support this interpretation and we will return to this in the section below analysing the political economy of SGCs. But, besides a need to improve infrastructure, some interviewees referred to the importance of establishing research teams and a conducive research environment, as well as building capacity for administrative support for teams and research projects, and the need to create technical and innovation support units in governmental institutions.

3.3.5 Innovation systems

Within all the themes so far discussed, a cross-cutting issue that has appeared several times is that of support systems for STI. Under the governance theme, for example, weak policy implementation is blamed in part on STI bodies and organisations working in silos, which leads to weak coordination and collaboration in STI governance. This silo problem – extended to include other sectors beyond governance – is also identified as an issue hindering the achievement of research excellence. Under the themes of human resources, funding and research excellence, more systemic issues were identified. These include poor university-industry linkages, and the need for more innovation or incubation hubs and centres of excellence. And more specific sub-systems were identified as problematic. Here, many interviewees cited issues with intellectual property rights (IPRs), product commercialisation and, as noted under several themes, research support infrastructure. In this final theme discussion, we focus on issues we have so far not explored but have emerged strongly from our interviews: university-industry linkages, IPRs and product commercialisation.

Various problems with linkages in STI systems were mentioned by interviewees across all case study countries, and weak system linkages would certainly be seen as a problem by analysts in the innovation systems literature. However, the most common kind of linkage discussed in interviews was between universities and industry. The reason this kind of linkage seems to be important, at least according to our interviewees, is that innovations are assumed by many to originate in university-based research. This resonates with the point made towards the end of the previous theme discussion on research excellence that innovations are widely understood to mean marketable products and services. In this view, which came across strongly in the interviews, university researchers are expected to produce high-quality science that can eventually lead to innovative and marketable products and services. In turn, these products and services will address societal challenges and contribute to economic growth and
development. We will explore these ideas further below in this theme discussion but, first, we discuss university-industry linkages specifically.

The general diagnosis of the state of university-industry linkages across the case study countries is that they are poor or weak and so, according to the widely-held view that they are key to generating innovations, STI systems are not producing the expected products and services needed to meet societal challenges. On the university side of these linkages, some interviewees suggested there is too much emphasis on disciplinary education that is also lacking, as we said earlier, in the development of TVET skills relevant to industry. The reasons for this are many but include little power and few resources for STI government departments within ministries, no policy frameworks for knowledge or technology transfer from academia to industry, no incentives for academia to work with industry and, as we discussed in the Senegal case earlier, some reluctance among academics to enter into relationships with private sector actors.

On the industry side of the linkage, according to our interviewees, the private sector has little understanding of STI needs and, as we discussed earlier, either sees no business case for investing in STI in universities or is dominated by SMEs who have no resources to invest in STI activities. And, mirroring academic reluctance to enter into relationships with the private sector, some interviewees suggested that industry does not trust public research organisations. As a Rwanda interviewee said, “the networks are full of suspicion”.

In a partial answer to some of these issues, interviewees highlighted several efforts aimed at strengthening university-industry linkages. In Ethiopia, the University-Industry Linkage (UIL) initiative has, according to an interviewee, been established in all public universities and has strengthened links between academia and several industries, with manufacturing, service, hotel and health specifically mentioned. Also in Ethiopia, according to another interviewee, at the governmental level, the separation into a Ministry of Innovation and Technology and a Ministry of Science and Technology has meant more effective implementation of STI policy, which includes more efficient management of UIL. In Kenya, Linking Industry with Academia (LIWA) promotes a triple-helix model of innovation – where government, industry and academia form the three helixes – and is working to increase private sector engagement in the national innovation system, amongst other activities. And one interviewee pointed to a policy in Kenya that mandates universities to involve the private sector in research.

In Rwanda, an interviewee noted an initiative led by the Ministry of Education and funded by the African Development Bank (AfDB) to increase linkages between higher education and industry. And the Government has launched the National Industrial Research and Development Agency (NIRDA) that, among other activities, aims to encourage collaborations between private and public sectors. According to the interviewee, R&D funding has increased over the years but, as we have noted elsewhere in our discussion, the private sector in Rwanda is small and so has limited capacity to support R&D. In Tanzania, we have no specific details. One interviewee did say, “There are some programmes here and there but there is a huge need to have proper coordination and collaboration between players”. Unfortunately, we have no data to explore the extent to which any of the initiatives mentioned here are succeeding in strengthening university-industry linkages.

As we said above, the outcomes of university-industry linkages are expected to include innovations that will become products and services to address societal challenges. And such products and services might also originate from the private sector without the involvement of universities or other research institutes. Many of our interviewees had thoughts on these processes, and it is here that the issues of IPRs and product commercialisation were raised. It is clear from our interviews that many actors are focussed on
technologies of various kinds when they discuss innovations: technologies such as drugs for curing diseases, technological consumer products and technologies to improve manufacturing. And, because these products are expected to be released into the market by private sector actors, the health of the business environment features in many interviewees’ comments. From this view, the importance of IPRs and patents is paramount. Without strong IPR protection, the argument is that research is unlikely to lead to marketable products because innovators fear they will be copied and so innovators will be unable to appropriate enough profit to recoup their investments. In addition to this risk, innovating from research to market is seen as expensive and so it is difficult for the many SMEs who populate the case study countries to engage in innovation. And, even if innovators do attempt to get intellectual property protection, patenting processes can be bureaucratic, time-consuming and expensive.

Some interviewees offered either thoughts on ways to address these challenges or mentioned specific efforts that are in operation to do so. For example, a number of interviewees called for more innovation or incubation hubs that could be used to help innovators turn their ideas into commercial products. Such hubs could be provided through public organisations and some interviewees pointed to such hubs now in place. However, one Tanzania interviewee also noted that innovation hubs lack the skills necessary to commercialise products. One Rwanda interviewee said there was a need for a national body to support innovators (the interviewee did not mention NIRDA), something that Kenya has introduced – Kenya National Innovation Agency (KeNIA).

In Tanzania, one interviewee mentioned the Small Industry Development Organisation (SIDO) and the Tanzanian Industrial Support and Development Organisation (TIRDO) as potential support organisations for innovators. However, the interviewee noted that SIDO does not have an official mandate to support business and technological development, and TIRDO’s research output is not used. In terms of strengthening university-industry links, one Kenya interviewee argued for better technology transfer offices and suggested that universities could be good locations for incubators. And another Kenya interviewee called for simplifying the patenting process and reducing its cost or waiving the fee altogether.

Overall, when interviewees talked of some of the problems in an innovation system, they focussed on a small part it – the university-industry linkage or, in a few cases, the triple helix. And much of the discussion assumed innovation to mean marketable products. Little mention was made of wider innovation system actors beyond universities, industry and the government. No interviewees talked of other kinds of innovation, such as in policies or social practices. Although it could be argued that innovative and marketable products are the most economically significant, and therefore most important, and that these are most likely to emerge from a well-functioning triple helix, there are potential risks in this view. In our political economy analysis, to which we now turn, we will explore these risks more fully.
4 Analysis and Discussion of the Political Economy of SGCs

4.1 Introduction

We begin our analysis and discussion of the political economy of SGCs by examining what we can deduce about the dominant ideas shaping efforts to strengthen STI systems in our five country cases. As we discussed in Section 2, where we explained our conceptual approach, ideas can be revealed by, or inferred from, the ways in which actors talk about the system in which they wish to intervene, what strategies or interventions they think are needed to change the system, and why they believe such interventions are needed. Combining what we deduce about these ideas with evidence on what is being implemented, we can better identify actors’ understandings of STI systems to provide a basis upon which we can highlight possible tensions and synergies between the strategies employed and the realisation of desired outcomes. In this section, we first analyse what we can discern about the dominant ideas of innovation and innovation systems. We then briefly discuss some of the alternative understandings before considering what policies (or institutions) are being implemented as a result of these dominant ideas. This brings us to a consideration of some of the policy risks associated with the dominant ideas and what adopting a broader understanding of innovation and innovation systems might mean. We then reflect on how different structures are affecting STI in the case study countries, and then consider different actors’ interests and roles in strengthening STI systems. We end the section with a focus on research excellence and what issues arise from efforts to achieve it.

4.2 Ideas: understandings of innovations and innovation systems

As we noted at the end of the previous section, there seems to be a specific concept of innovations (as outputs or outcomes) dominating actors’ narratives. Judging by the comments of those we interviewed, innovations are widely understood to be technological products marketed by private firms, and the hope seems to be that such products will enable citizens to improve their lives in some way, thereby achieving societal impact and national development. In the case of some interviewees, the concept of innovations extends to include services and, in the view of a few other interviewees, incorporates manufacturing technologies or perhaps manufacturing processes. In line with this understanding of innovations, science and research are expected to generate the raw materials with which to develop technologies that can become marketable products or can facilitate service-provision.

Considering, then, the relationship between science and innovations, the understanding we have just described suggests that the most important actors in an STI system are researchers (whether in universities or research-based organisations), technology-development support organisations, private (entrepreneurial) firms, business incubators and policy makers. The roles and responsibilities in this chain of actors are assumed to begin with researchers making discoveries from which they refine technical principles. These can be used by technology-development support organisations to design technological prototypes. Private firms can then work with business incubators to turn these prototypes into marketable products and viable businesses that can attract finance. These products are then released into the market where customers can buy them, assuming the products are both well-marketed and of some value to customers. Policy makers set the terms under which these different activities unfold and the regulatory frameworks that ensure fair play, safety, and relevance to national development. Importantly, the particular understanding that seems to dominate is that the direction of flow is from science through to products in the market. In other words, as we suggested in the first political economy study, there appears to be a dominant understanding of innovation as a unidirectional science-push process, the so-called “linear model of innovation” long-ago discredited in the innovation studies literature. As Daniels (2017) argues, there is a need to broaden the conceptualisation of innovation in
Africa, partly to go beyond the linear science-push framing and narrow view of innovation as products, but also to ensure that innovation address issues related to inclusive development (Daniels et al., 2017).

Although these understandings seem to be dominant, we should note that some interviewees expressed alternative or broader ideas. Interestingly, those with slightly different ideas were all in Tanzania. This might be significant of some wider phenomenon in the country or could just be an artefact of the interviews we happen to have managed to secure. In any case, an interviewee from an organisation trying to promote business solutions to development challenges, when asked who the main actors involved are, included technology enthusiasts, the public and development partners along with the kinds of actors we listed in the previous paragraph. Another interviewee emphasised the importance of policy-focussed research, not just research in the natural and physical sciences, and how neglect of this was a problem for improving the STI system. And one other interviewee expressed a similar view, identifying a misconception of innovation as a problem, and saying:

most people think that innovation is only for engineers and scientists. Most of the financial support for innovation is directed towards applied research (product development) and small amount goes into financing the qualitative research (policy research and system analysis) in innovation.

The same interviewee also pointed to a lack of intermediaries in the STI system, another kind of actor whose role would be to broker knowledge between others. And the interviewee further identified weak connectivity between the different elements in the STI system.

Policy recommendations that flow from the dominant understanding of innovation and the innovation system, as we have characterised them above, would rest on assuming that more funding of science-based R&D – and therefore more activity in science-based R&D – would lead to more discoveries or refinements of technical principles. Then, assuming the rest of the science-to-innovation system is working well, the outputs of science-based R&D would eventually lead to more products appearing in the market and there would be more chance of addressing development challenges. As such, science-based R&D needs more funding, and there needs to be more funding for the technology and product development process as well as better linkages between the actors along the innovation chain. All of this needs to be tied to national development goals so that public money is spent on addressing relevant national challenges. Attention also needs to be given to support systems, such as education (from primary through to higher education), and to specific policy instruments such as private and intellectual property protection. And private investment is needed to supplement scarce public money to support R&D as well as to finance product commercialisation.

4.3 Institutions: policy risks associated with the dominant understandings

The evidence gathered for our five country case studies, especially in interviews, suggests that the above interpretations of the dominant understanding of both innovation and innovation systems in those countries are plausible. And the nature of the policy problems identified by our interviewees in the five countries resonates with what policy recommendations we would expect to flow from this understanding. Although we do not wish to argue that the dominant view of innovation is in some sense “wrong” or that the policy recommendations associated with this view are inappropriate, we do wish to argue there are risks that need to be examined if they are not to undermine the strengthening of STI systems. Certainly, innovative products and services do make both a difference to people’s lives and can have significant impacts on economic growth and development.

Such products and services can have roots in science-based R&D, and support throughout the innovation chain, as characterised above, can help to usher science-based ideas into innovations in the
market. But if these outcomes fail to materialise or materialise in ways deemed insufficient by political and policy actors there is a risk that support for STI will either continue to be weak and unstable (at best) or perhaps be withdrawn altogether. It is well-understood in the innovation studies literature that innovation is a risky and highly uncertain process. Iconic or celebrated innovations that have significant economic impacts – e.g. the Internet, smart mobile phones, mobile money – happen rarely and, incidentally, when they do they are often the result of significant public investment (Mazzucato, 2013). In this sense, confining the understanding of innovation to marketable products and services, and the innovation process to a science-push model, looks like an “all-eggs-in-one-basket” strategy: i.e. that everything rests on one approach that could fail.

Broadening both the concept of what counts as an innovation and how an innovation system works (Daniels, 2017) could help STI stakeholders to better understand the roles of science and research in STI systems as well as foster more ways in which innovations are realised. For example, few interviewees talked about innovations in public services but the introduction in Senegal of a virtual university (the UVS) could be seen as one such outcome. According to the information we have about its impacts, the UVS has enabled thousands of Senegalese in rural areas to access higher education and, importantly, has raised the proportion of women studying for degrees. There are likely problems with the UVS model, but it is not clear that it would even exist if all efforts to promote innovation were focussed on generating marketable products from science-based R&D as per the characterisation we discussed above. Innovations in other public services across our case study countries could have important societal impacts too. This underlines the point made by two of our Tanzania interviewees on the importance of policy-focussed research, and not just for STI policy.

But another aspect of the risks associated with too narrow a focus on science as the origin of marketable innovations arises from the reported suspicion amongst Senegalese academics of working with private sector actors, and the reference to the US Bayh-Doyle Act as discussed by Jasanoff (2005). In this respect, if the science system is expected to work closely with private sector actors to generate products then it could become overly instrumentalised and captured by private interests. This could fundamentally undermine the science systems, compromising notions of scientific excellence that could have implications for the place of African science globally. We do not wish to argue that this danger is imminent. Rather, it is something that policy makers and STI actors may need to reflect upon when advocating for ways in which STI systems – and research excellence – can be improved.

4.4 Structures: geographical, social, political and organisational influences

Whatever understanding of innovation and innovation systems is dominant, there are several structural issues that also condition what is possible or desirable in the STI systems that SGCs are seeking to achieve. We have already mentioned something about geography, and how this can affect access to services, when we discussed the UVS. Another aspect of geographical structures relates to resource endowments. In several of our case study countries, oil and gas deposits offer economic opportunities those countries wish to exploit. To this end, some of the countries are developing elements of innovation systems centred on oil and gas exploitation, such as establishing degree and postgraduate courses to nurture capabilities in these sectors. This raises difficult questions that policy makers and STI actors may need to consider. If STI systems around oil and gas are successfully developed, there is the question of whether such systems would then need to be dismantled as climate change action intensifies. Considering the enormous amount of work needed to establish STI systems, dismantling them will not be easy: not only will they be economically important, thus creating the challenge to replace them with equally important economic sectors, they will also create powerful vested interests and, if they do become obsolete, there is the risk of creating stranded STI systems not just stranded assets. More
generally, STI actors may need to consider the extent to which they wish to develop systems based on other resource endowments or, perhaps more usefully, how they will ensure that reliance on such endowments is sustainable.

We have also seen some effects of social structures. In this case, it was around gender roles and access to higher education. Women tend to enjoy less access to education than men because of gendered practices in the home, but also in terms of how gender relations are understood to play out in urban areas, making it less safe for women to live alone in cities far from their families. There may be similar or more severe effects for people living with disabilities. Other studies could investigate these issues more specifically. Without equality of access to education and other public services, and without equality in governance roles, apart from the ethical and justice issues raised, STI systems will not benefit from the best available human resources.

In terms of political structures, we noted the comments by some interviewees in regard to the position of SGCs in their national governance systems. There is a potential tension here between locating an SGC close to the highest level of political power, which would provide the SGC with the authority and resources to act more effectively on STI policy, and locating it in a position where it can act autonomously. The risk of location at the highest level of power is that it could then be easily captured by whatever is the prevailing political interest of the time. Locating the SGC away from such dangers could mean it is unable to function, especially if it is unable to secure the support of the highest political level. This clearly points to the need for strong institutions so that SGCs are buttressed against daily political dynamics.

At the organisational level, we did not reveal much about how structures affect implementation of STI activities. One exception, perhaps, was in the way academics are expected to work. Several interviewees spoke about universities being focussed on education (teaching) to the neglect of research, with academics expected to deliver heavy teaching loads. In Kenya, academics are apparently not relieved of teaching duties even if they win research grants. Such organisational arrangements are not conducive to fostering a research culture let alone the production of excellent research.

The extent to which these various structural factors condition STI systems is a matter of discussion. Some of them are likely to be more important than others: resource endowments, for instance, could have profound impacts; structural inequalities could have significant practical impacts but are also issues of justice in their own right. However, we cannot suggest what might be the right kind of structures, and so recommend what should be done to create or shape them, because the same challenges seem to be present across all the case study countries. Instead, we would suggest there needs to be specific research done to understand the effects of different structures on the development of STI systems.

In summary, therefore, structure is important because difference structures can condition how, for example, funding flows, accountability is exercised, coordination is enabled, or high-level political support is achieved. In principle, structures that embed STI governance within the presidency or prime minister’s office, for instance, risk capture of STI actors to narrow interests and reduced autonomy. On the other hand, structures that place STI governance far removed from such high-level positions risk low levels of support for STI actors and poor access to resources such as funding. Interestingly, although each of the countries studied has its own structure, some of these issues seem to be present across all of the cases. This suggests that, regardless of the structure, emphasis needs to be put on addressing the specific issues, rather than focussing too much on structure itself. In other words, it is important not to over- emphasise the significance of structure.
4.5 Interests: understanding different actors’ roles in strengthening STI systems

The final political economy factor we should note is that of interests. These are apparent in all aspects of the STI systems of the case study countries. It is unsurprising to state that every actor has their own interests and also that these various interests do not always align with each other. We have already discussed some of these in the thematic section. For example, we discussed the claim that donors are not always funding activities relevant to national interests because they have their own interests at heart, and international actors could also have their own interests to protect, meaning they are less likely to help local actors develop their own capabilities. We also heard that local private sector actors do not see the business case for investing in R&D; they do not see their interests being furthered by such activities. And researchers, or academics who could engage in research, are not incentivised to conduct research; their interests are not being served by their national STI systems.

Many interviewees suggested solutions to these issues, but these solutions were general in nature – e.g. creating incentives – or targeted at one specific part of the system such as improving IPR regimes. We would suggest that more careful and in-depth study of the interests of different STI system actors, and the ways these interests interact with others, would be of benefit to SGCs and other STI stakeholders. Such a study could include attention to how interests are aligned in examples where there has been success and attention to how more problematic interests have been managed. One specific issue that arises from our study is that the private sector is more complex than it is often portrayed. In our country cases, for example, there was discussion of international companies, local large and powerful companies, local formal sector SMEs and local informal SMEs. Each will have different kinds of interests, different capabilities and different resources at their disposal. Understanding how to get the private sector to invest more in R&D will therefore require a much more nuanced understanding of these interests and resources.

4.6 Summary: narratives about science and STI systems

The key messages flowing from this analysis of the political economy of SGCs bring us back to the notion of research excellence, as it is understood by practically every one of our interviewees. On this basis, it seems clear that STI stakeholders are primarily interested in seeing societal impact; in addressing national development challenges. They believe that well-functioning STI systems can contribute profoundly to achieving these goals. The question is what SGCs can do to help strengthen STI systems, given the political economy contexts in which they are working. From our analysis here and from our first political economy study, we would suggest there is a need for a clearer and widely adopted understanding of what innovation and innovation systems mean. Within this clearer understanding, the role of science and research needs to be better articulated, as do the roles of the many other kinds of actors involved, not just the private sector. A clearer understanding of this kind could help to define what research excellence is, how it relates to scientific excellence, and how STI systems can be shaped to achieve these desired outcomes. In turn, STI stakeholders may be better able to construct more realistic narratives that can be used to persuade policy makers of the importance of science, research and innovation, and the ways in which these can help or not to meet development challenges. Over-promising in regard to STI, as it appears some of the narratives at play are currently doing, risks losing the support of policy makers if the kinds of outcomes depicted in such narratives do not materialise as expected.
5 Conclusions and Recommendations Arising from the PE Study

5.1 Concluding remarks and general recommendations for STI stakeholders in SSA

i. Innovation systems and development: STI plays a crucial role in addressing a range of development challenges. However, current understandings of innovation and STI systems, as expressed by the SSA actors covered in this study, could be characterised as narrow, partial and linear, a reflection of the ideas and narratives at play. Broadening understandings of innovation beyond consumer products and industrial production technologies, and understandings of STI systems beyond university-industry linkages, could help science system stakeholders better articulate the role of science in achieving development goals. This, in turn, could help stakeholders participate more effectively in debates about science funding and other interventions aimed at strengthening STI systems in SSA.

ii. Capabilities and skills: Strengthening STI or, more specifically, science systems, requires building a wide range of capabilities and skills. At present, approaches to capability building and strengthening tend to reflect the current understandings of innovation and innovation systems. In line with broadening these understandings, capability building must critically examine what people are being trained to do and why. Capability building that achieves systems-level impact will require all stakeholders to work together in the design and delivery of training, adopting a co-learning approach. Another important aspect of skills development relates to the training of policymakers (including leaders, decision-makers, and parliamentarians) and SGCs in innovation systems thinking. This is complementary but different from training of those within the system such as students or private sector employees.

iii. Gender and inclusion: Gender and inclusivity issues do not yet seem to feature fully in the operations and activities of some science system actors in SSA. If this is indeed the case, urgent action is needed in at least three respects. One, it is important to understand why these issues are seemingly neglected or not considered a priority. Two, stakeholders would need to formulate and implement policies and strategies to mainstream gender and inclusivity in their programmes, projects and activities. And, three, action needs to be reflexive so as to understand what works and why, and under what circumstances, so that lessons learned can be shared and good practices replicated where applicable.

iv. Research excellence: The findings of this report suggests a widespread view that research excellence is achieved not only by publication in high-quality academic journals but also by achieving societal impact. However, realising research excellence in these terms, according to those we interviewed, means change is needed on many fronts. Significant improvements are needed, for example, in research environments (e.g. research cultures, organisational structures), research infrastructures (e.g. laboratories and other facilities), and research incentives (e.g. funds, prestige, career opportunities, possibility to buy out teaching time).

v. Structure, in relation to governance and policymaking: Structure is an important conditioning factor for effective governance (including accountability, autonomy, coordination, and transparency), efficiency, and resource (such as human, financial, technological) management. Structure can affect the operations of SGCs and their ability to effectively manage science and research, reduce fragmentation and silo mentality, and actively engage with policy processes and policy making. All STI stakeholders in SSA are therefore encouraged to work collaboratively in seeking out structural configurations that foster effective performance of SGCs in SSA, starting at national levels, moving on to regional (RECs) levels and to the African Union level. Achieving this will require innovation, experimentation, mutual learning and reflexivity.
5.2 Recommendations for STI Stakeholders in SSA

In this section we outline some specific actions that stakeholders could take. The recommendations focus on how each stakeholder could contribute to addressing the general recommendations provided in Section 5.1 above. The list below is not exhaustive, and so stakeholders are encouraged to do more.

5.2.1 Recommendations for SGCI and International Development Partners

i. Commission and help to facilitate further research, stakeholder engagement events, and policy interventions that contribute to addressing the five general recommendations above.

ii. Support training and capability strengthening initiatives that help improve stakeholders’ understanding of broader views of innovation and science systems.

iii. Ensure that gender and inclusion are addressed in every programme or project commissioned, in terms of participation and representation, and in (research, programme or project) design.

5.2.2 Recommendations for SGCs

i. Continue to strengthen organisational capabilities and individual’s skills in STI and policy.

ii. Re-evaluate and, if necessary, redesign programmes, projects and activities to ensure they are in line with a broad view of innovation and science systems, as discussed in this study.

iii. Re-examine issues related to structure and governance in ways that help to address silos and the fragmented nature of STI institutions and accompanying policies.

iv. Address the many existing issues of gender inequality and the related but separate issue of inclusion in STI.

5.2.3 Recommendations for Academia

i. Play a more active role in the development of curricula in STI training, skills development and capability strengthening for stakeholders (SGCs, policymakers, decision-makers, etc.).

ii. Continue work on research excellence to ensure that knowledge generated is diffused across SSA and that progress made is embedded at appropriate levels, and in institutions and agencies.

iii. Carry out policy research to support the work of SGCs and STI policy making.

5.2.4 Recommendations for Industry

i. Commission (alone or in collaboration with other stakeholders), fund and support research and other initiatives that help to improve knowledge and understanding on the notion of the “private sector” in SSA in relation to STI.

ii. Increase engagements and collaborations with STI stakeholders (academia and SGCs in particular), as this contributes to strengthening the innovation, science and research systems.

iii. Strengthen the capabilities and skills of the sector in STI and policy.

5.2.5 Recommendations for other Stakeholders

This group includes civil society, NGOs, grassroots innovators, entrepreneurs, and community leaders.

i. Continue to highlight issues sometimes ignored by stakeholders: e.g. gender and inclusion.

ii. Strengthen capabilities and skills in STI and policy, and engage in policy processes.

iii. Engage in discourses that shape STI ideas. This helps to ensure that innovation in SSA is for development and transformation, and that excellent research contributes (or leads) to impact.

To all stakeholders: disseminate this report widely and help actors implement the findings.
5.3 Limitations

Information and data collection

Information and data collection from interviewees and secondary sources was a major challenge during the study. In spite of the extensive knowledge and networks of the research team, it was difficult to secure interview respondents and conduct the interviews via the preferred channel of telephone. Eventually, some interviews had to be done via face-to-face meetings, which resulted in additional travel, costs and time delays. In terms of secondary sources, as at the time of carrying out the PE2 study, work on the Africa Innovation Outlook III (AIO3), for example, was still in progress. This meant that more up to date STI data from AIO3 could not be used and integrated into the study. In addition, concerted efforts to obtain information and data related to the AIO3 and other sets of STI data (at mostly regional, but also national levels) from Collaborating Technical Agencies (CTAs) were unsuccessful, as CTAs did not respond to our requests or engage with the study team as expected. Access to data from CTAs on indicators such as changes in R&D and research grants, for instance, could have helped in updating the funding flows developed in the PE1 study.

Therefore, due to the extremely limited resources (time, finance, and access to some data) for this study, the researchers took a pragmatic approach as to how information and data were collected. The team made a differentiation between what kind of information to gather during interviews and what could be gathered from literature and available data sources. In general, it was determined that asking questions in interviews that could be answered by reviewing reports, for example, is likely to be a less efficient use of time (although sometimes helpful for triangulation). The interview protocol was therefore focussed by taking these considerations into account.

5.4 Further Study

Further studies that seek to improve the knowledge and understanding of the political economy of STI and SGCs in SSA may focus on one or more of the topics outlined below.

1. Broaden the current narrow view, focus and understanding of science and innovation systems, and the role of science and innovation in development. Research of this nature can potentially inform future STI policies and policy making in SSA.

2. Unpack the notion of “the private sector” further and deepen the understanding on the sector in SSA. This could help shed more light on questions such as: how best to categorise, collect data, and manage the knowledge from this sector; what counts as R&D in this sector; strategies to increase R&D funding from the sector; and the role of SMEs and informal sector in innovation.

3. Gain deeper understanding on new and alternative structural configurations and the implications on governance, covering the 15 SGCs and, if possible, the whole of SSA. Further research in this area might improve our knowledge of the effects of different structures on the development and strengthening of science and innovation systems, and STI policies in SSA.

4. Despite the progress on research excellence (RE) in recent years, what RE is and how to achieve it are still unclear. Further research could deepen our understanding of impediments to RE, incentives that could accelerate good practices, diffusion mechanisms and possible routes to mutual learning, and structures that best promote RE in SSA.

5. Examine the interactions between and among the five key themes emerging from this study, how they influence each other, and the possible implications for SGCs and the SGCI.

6. Deepen research on (a) gender, and (b) inclusivity in SSA’s STI systems to better understand why gender and inclusion are not considered important by some STI stakeholders; what political
economy-related regime structures and lock-ins need changing; what routines, behaviours and practices require change; and what ideas, narratives, institutions, and rules may be impeding progress.

7. Commission and fund research on data and indicators in STI. Not only do we need more data (on the current indicators that we already know about and use), we also need a more diverse range of indicators. In addition, there is need for a broader set of data on what works and what does not, why, and in what contexts; and data on how SGCs measure their performance. Furthermore, it is important to undertake more quantitative studies that examine the treatment of indicators.
References

EAS. 2019. Declaration launched to enable an equitable research system in Ethiopia.

Annexes

Annex 1: National case study report on Ethiopia
Annex 2: National case study report on Kenya
Annex 3: National case study report on Rwanda
Annex 4: National case study report on Senegal
Annex 5: National case study report on Tanzania
Annex 6: PE2 Interview protocol

The interview explored changes in the landscape for STI support (research funding, policy support, skills availability etc.) over the last few years. The questions focussed on:

1. The challenges that organisations face
2. What is behind the challenges and the organisation’s ability to overcome the challenges
3. Other challenges that might be facing the actors working in the STI space

INTERVIEW GUIDE

NB: If an interviewee was unfamiliar with STI as a phrase the researchers considered using the term R&D. However, R&D is highly limiting. Therefore, R&D was used with care.

Part A: Challenges faced

Preamble, in the lines of:

As you may know, innovation (or the search and subsequent utilisation of new ideas, products or ways of working) and its related areas of research, science and technology, are seen as extremely important mechanisms through which a country can develop economically. Examples are often given of Korea that successfully utilised the latest science and technology to transform its manufacturing sector and became a high income country within a couple of decades. In Africa, examples of Mpesa in Kenya and biotechnology in South Africa are often given as similar (albeit smaller scale) examples. Within this context...

1. What are the main challenges within the national science, technology, and innovation (STI) or research and development (R&D) environment that your or organisation is trying to address? Why are these challenges important?
2. What are the main challenges within the national STI or research environment generally? – For those who are being interviewed for their more general/overarching understanding of the environment
3. What is the most important of these challenges to your organisation? Why?
4. How does your organisation address [this main STI/ R&D challenge]?
 a. Do you think this approach works well? If not, why not?
5. How do you evaluate the success of your activities? Specifically, how do you know if your approach to addressing this [main STI/R&D challenge] has worked?

Part B: Interrogation of the key challenge

6. Who are the main actors involved in this [main STI/R&D challenge]?
 a. What roles have key actors played, or been unable to play, in this problematic STI situation?
 b. Who is benefiting from the current problematic STI/R&D situation and who is not benefiting?
 c. What needs to change and why?
 d. What has changed over the past two years?
7. Does the structure of your organisation, or that of any other organisation or institution, impact positively or negatively on your ability to address this [main STI/R&D challenge]?
 a. What are the constraints arising from the country’s natural-resource endowments (or other natural and geographic conditions), and its economic, political and social structures that are causing this problematic STI/R&D situation?
 b. What changes are needed and why?
 c. What has changed over the past two years?
8. In what ways has the policy environment at the national level (and above) caused or neglected this problematic STI/R&D situation?
 a. What needs to change and why?
 b. What has changed over the past two years?
 c. What roles have political, organisational, social and cultural practices played in this problematic STI/R&D situation?

Part C: Other challenges

9. In an earlier study, we found that there were three major challenges impacting STI activity in [Kenya/ Tanzania/ Rwanda/ Ethiopia/ Senegal]. You [have/ have not] already mentioned [one/ two] of these:
 a. Private funding
 At the national and regional level there is reference to the important role that the private sector could play. However, private sector funding is low and engagement is patchy across countries. Has the situation changed?
 b. Sector funding distribution or allocation (e.g. health, agriculture, water, energy, etc.)
 Health and agriculture are the sectors which receive most resource in the SSA region but this may change over the coming years. Has the situation changed?
 c. Research excellence
 There are different views about what constitutes scientific excellence and the criteria for funding. National funders express a desire to build capacity and address national issues while some regional funders have distinct strategies for building the scientific profile and presence in the region. Has the situation changed?

10. For the [one/two issues] you haven’t mentioned, why do you not see them as important barriers to STI activity?
 a. [If interviewed before] Was your view different in 2017? i.e. do you think it is no longer an issue? If so, why? (has something else become a more important issue?)

11. Is there anything else you expected us to ask you about but which we have not? If so, what was it?
Annex 7: List of kick-off workshop participants held in Nairobi on 27-28 March 2019

<table>
<thead>
<tr>
<th>First name</th>
<th>Family name</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann</td>
<td>Kingiri</td>
<td>ACTS</td>
</tr>
<tr>
<td>Ann</td>
<td>Numi</td>
<td>ACTS</td>
</tr>
<tr>
<td>Aschalew</td>
<td>Tigabu</td>
<td>ACTS</td>
</tr>
<tr>
<td>Boniface</td>
<td>Wanyama</td>
<td>NACOSTI</td>
</tr>
<tr>
<td>Chux</td>
<td>Daniels</td>
<td>SPRU, University of Sussex</td>
</tr>
<tr>
<td>Diakalia</td>
<td>Sanogo</td>
<td>IDRC</td>
</tr>
<tr>
<td>Donnelly</td>
<td>Mwachi</td>
<td>MEL Consultant</td>
</tr>
<tr>
<td>Ellie</td>
<td>Osir</td>
<td>IDRC</td>
</tr>
<tr>
<td>Loise</td>
<td>Ochanda</td>
<td>IDRC</td>
</tr>
<tr>
<td>Mary</td>
<td>Muthoni</td>
<td>ACTS</td>
</tr>
<tr>
<td>Rebecca</td>
<td>Hanlin</td>
<td>ACTS</td>
</tr>
<tr>
<td>Rob</td>
<td>Byrne</td>
<td>SPRU, University of Sussex</td>
</tr>
<tr>
<td>Ruth</td>
<td>Oriama</td>
<td>ATPS</td>
</tr>
<tr>
<td>Sandra</td>
<td>Pointel</td>
<td>SPRU, University of Sussex</td>
</tr>
<tr>
<td>Winnie</td>
<td>Khaemba</td>
<td>ACTS</td>
</tr>
</tbody>
</table>

Besides Professor John Mugabe (Kenya and South Africa), Professor Mamadou Sy (Senegal) and Professor Joanna Chataway (UK), the remainder of the Advisory Board members were drawn from the list of participants given above.
Annex 8: Executive Summary of Political Economy Study (Phase 1)

Executive Summary
This study supports the Canadian International Development Research Centre (IDRC), the UK Department for International Development (DfID) and South Africa’s National Research Foundation (NRF) Science Granting Councils Initiative (SGCI). The SGCI aims to strengthen Science Granting Councils (SGCs) in 14 countries in sub-Saharan Africa (SSA).

The SGCI aims to reinforce the ability of SGCs to: manage research; design and monitor research programmes based on the use of robust science, technology and innovation (STI) indicators; support exchange of knowledge with the private sector; and establish partnerships among SGCs, and with other science system actors. In line with these aims, the SPRU and ACTS consortium was commissioned to carry out research with the following specific objectives:

1) Advance existing knowledge on the political and economic context of SGCs in selected countries/regions, including the role and influence of key institutions, agents and structures

2) Through an understanding of this political and economic context, identify key considerations (e.g., opportunities, barriers, strengths) that can inform SGCI objectives

3) Provide baseline information to inform the overall evaluation of the SGCI, including recommendations for ongoing monitoring or ex post assessment (via a second series of case studies) to gauge the impact of SGCI activities

In order to characterise and understand the political and economic context of SGCs, the research team developed a conceptual approach to political economy that included structures, agents, institutions and ideas. Drawing on mixed methods, the study incorporates:

- A literature review, including a review of regional-level data
- Semi-structured interviews with representatives from regional and sub-regional science and policy funding bodies
- Five national case studies (Ethiopia, Kenya, Rwanda, Senegal and Tanzania) involving analysis of grey literature and key informant interviews

Key study findings

Although there are many emerging issues discussed in the report, we summarise here six key findings and the implications these have for the SGCI.

1. All case study countries are committed to increasing funding for science but overall levels of funding are still low.

National level SGCs are established or emerging in all countries and they are playing an increasingly prominent role in setting research agendas. Funding for SGCs, and the cost and effectiveness implications of different institutional configurations, could be tracked. SGC governance arrangements and spending on administration could also be monitored to enable analysis and comparison.

2. At the national and regional level there is reference to the important role that the private sector could play. However, private sector funding is low and engagement is patchy across countries.

Greater involvement from the private sector will take dedicated effort and there is a need for greater communication between private and public sectors about the value of different types of research.
SGCI may consider whether more resources need to be allocated to private sector engagement activities. The role of other civil society actors could also be explored.

3. There is increasing activity at the regional level and interest in supporting programmes that shift ownership to Africa.

Alongside increasing national funding, there are new regional level research funding and support actors emerging. SGCs can continue to leverage international funds. However, careful thought should be given to which international funders to prioritise in co-funding arrangements, and also what possible effects there may be on the level of national ownership. It is important for major regional funders to discuss between themselves and with national SGCs how best to reduce overlap in funding initiatives or conflicting goals of funding activity between regional and national efforts.

4. There are divergent agendas at national and regional levels.

SGCI could consider promoting discussion on the impact of various regional funders on national level SGCs. Alignment of agendas and a common understanding of “excellence” and criteria for funding cannot be assumed. Sub-regional bodies may play a role here in creating more specific agendas aligned with goals in East, South and West Africa and establishing locally relevant criteria.

5. There is no clear narrative about relative strengths of East, South and West Africa sub-regions.

There is a potential issue for SGCI in monitoring whether regional initiatives have an equalising effect. The issue is compounded by a lack of consensus about existing strengths and weaknesses in sub-regions. National, sub-regional and regional bodies will all have important roles to play in monitoring and evaluating the impact of funding. There may also be ways in which particular strengths emerge in different regions and if monitoring and evaluation capture these changes then this can be a source of learning.

6. Health and agriculture are the sectors which receive most resource in the SSA region but this may change over the coming years.

The traditional sector focus of research in SSA (health and agriculture) is likely to be complemented over the coming years by research in a variety of new areas. It will be important to build capacity amongst researchers and funders to fund science over these wider areas. New international funders may become more significant in relation to funding and influence. Early discussions about their interests and plans may be important. Looking for ways in which to build capacity across sectors in a way that makes research initiatives broadly relevant could be an important avenue to explore.

Recommendations for further research

The study highlights a number of areas where more research would be beneficial and would contribute further knowledge for the SGCI, the SGCs themselves and relevant funding agencies. In this summary we refer only to areas of future research that we consider essential.

Essential areas for further study

Funding numbers: Further work on the baseline indicators recommended in this study would be useful to fully interrogate their relevance, but work is also needed to significantly improve the collection and availability of data on regional funding activity and national level impacts. Indicators need to reflect regional realities and, for example, thinking is needed about how to incorporate indicators relating to
research and innovation in the informal sector. New indicators could be developed to reflect regional concerns with human and social development. This is urgently needed.

Further case studies: This study only considers five countries. If a full baseline is required as the SGCI takes off then further in-depth case studies of a larger number of countries across the continent are urgently required. This may involve additional resource and funds.

Further analysis of SGCs as policy advice agents and mediators of different science policy tensions: In this study, we only concentrate on the main political economy dynamics of the SGC landscape. But it is clear that SGCs play, or could play, many different roles. Understanding these different roles, and the possible diversity of models already in use, and the way in which they might interact with each other, is urgently needed as this has a significant bearing on the work of SGCs across the continent.