Cobaya: code for Bayesian analysis of hierarchical physical models

Torrado, Jesus and Lewis, Antony (2021) Cobaya: code for Bayesian analysis of hierarchical physical models. Journal of Cosmology and Astroparticle Physics, 2021. pp. 1-28. ISSN 1475-7516

[img] PDF - Published Version
Restricted to SRO admin only

Download (1MB)
[img] PDF - Accepted Version
Restricted to SRO admin only until 21 May 2022.

Download (797kB)

Abstract

We present, a general-purpose Bayesian analysis code aimed at models with complex internal interdependencies. Without the need for specific code by the user, interdependencies between different stages of a model pipeline are exploited for sampling efficiency: intermediate results are automatically cached, and parameters are grouped in blocks according to their dependencies and optimally sorted, taking into account their individual computational costs, so as to minimize the cost of their variation during sampling, thanks to a novel algorithm. Cobaya allows exploration of posteriors using a range of Monte Carlo samplers, and also has functions for maximization and importance-reweighting of Monte Carlo samples with new priors and likelihoods. Cobaya is written in Python in a modular way that allows for extendability, use of calculations provided by external packages, and dynamical reparameterization without modifying its source. It can exploit hybrid OpenMP/MPI parallelization, and has sub-millisecond overhead per posterior evaluation. Though Cobaya is a general purpose statistical framework, it includes interfaces to a set of cosmological Boltzmann codes and likelihoods (the latter being agnostic with respect to the choice of the former), and automatic installers for external dependencies.

Item Type: Article
Keywords: cosmological parameters from CMBR, cosmological parameters from LSS
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
SWORD Depositor: Mx Elements Account
Depositing User: Mx Elements Account
Date Deposited: 12 Jul 2021 07:22
Last Modified: 26 Jul 2021 15:15
URI: http://sro.sussex.ac.uk/id/eprint/100281

View download statistics for this item

📧 Request an update