Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI

Johnson, G., Wetzel, S. G., Cha, S., Babb, J. and Tofts, P. S. (2004) Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magnetic Resonance in Medicine, 51 (5). pp. 961-8. ISSN 0740-3194

Full text not available from this repository.

Abstract

Dynamic, contrast-enhanced MRI (deMRI) is increasingly being used to evaluate cerebral microcirculation. There are two different approaches for analyzing deMRI data. Intravascular indicator dilution theory has been used to estimate blood volume (and perfusion), usually from T(2)- or T(2) (*)-weighted images of the first pass of the bolus. However, the theory assumes that the tracer (i.e., contrast agent) remains intravascular, which is often not the case when the blood-brain barrier (BBB) is damaged. Furthermore, the method provides no information on the vascular transfer constant. Pharmacokinetic modeling analyses of T(1)-weighted images after first pass do give values of the vascular transfer constant and the volume of the extravascular, extracellular space (EES), but they generally are unable to give estimates of blood volume. In this study we apply pharmacokinetic modeling to dynamic T(2) (*)-weighted imaging of the first pass of a tracer bolus. This method, which we call first-pass pharmacokinetic modeling (FPPM), gives an estimate of the blood volume, vascular transfer constant, and EES volume. The method was applied to a group of 26 patients with surgically proven tumors (10 glioblastomas multiforme (GBMs), six lymphomas, and 10 meningiomas). The measurements of the blood volume and transfer constant were consistent with the known physiology of these tumors.

Item Type: Article
Keywords: Blood Volume/ physiology Brain Neoplasms/physiopathology Cerebrovascular Circulation/ physiology Contrast Media Extracellular Space/physiology Humans Magnetic Resonance Imaging Microcirculation/physiology Models, Biological
Schools and Departments: Brighton and Sussex Medical School > Brighton and Sussex Medical School
Depositing User: Paul Stephen Tofts
Date Deposited: 28 Feb 2007
Last Modified: 30 Nov 2012 16:50
URI: http://sro.sussex.ac.uk/id/eprint/811
Google Scholar:65 Citations
📧 Request an update