University of Sussex
Browse
Superfluid s41598-017-08941-8-published.pdf (2.14 MB)

Superfluid flow above the critical velocity

Download (2.14 MB)
journal contribution
posted on 2023-06-09, 15:35 authored by A Paris-Mandoki, J Shearring, F Mancarella, T M Fromhold, A Trombettoni, Peter KruegerPeter Krueger
Superfluidity and superconductivity have been widely studied since the last century in many different contexts ranging from nuclear matter to atomic quantum gases. The rigidity of these systems with respect to external perturbations results in frictionless motion for superfluids and resistance-free electric current flow in superconductors. This peculiar behaviour is lost when external perturbations overcome a critical threshold, i.e. above a critical magnetic field or a critical current for superconductors. In superfluids, such as liquid helium or ultracold gases, the corresponding quantities are a critical rotation rate and a critical velocity respectively. Enhancing the critical values is of great fundamental and practical value. Here we demonstrate that superfluidity can be completely restored for specific, arbitrarily large flow velocities above the critical velocity through quantum interference-induced resonances providing a nonlinear counterpart of the Ramsauer-Townsend effect occurring in ordinary quantum mechanics. We illustrate the robustness of this phenomenon through a thorough analysis in one dimension and prove its generality by showing the persistence of the effect in non-trivial 2d systems. This has far reaching consequences for the fundamental understanding of superfluidity and superconductivity and opens up new application possibilities in quantum metrology, e.g. in rotation sensing.

History

Publication status

  • Published

File Version

  • Published version

Journal

Scientific Reports

ISSN

2045-2322

Publisher

Nature Research

Issue

9070

Volume

7

Page range

195-11

Department affiliated with

  • Physics and Astronomy Publications

Research groups affiliated with

  • Atomic, Molecular and Optical Physics Research Group Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2018-10-23

First Open Access (FOA) Date

2018-10-23

First Compliant Deposit (FCD) Date

2018-10-22

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC