Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends

Stefano Mattarocci†, Julia K. Reinert2†, Richard D. Bunker2†, Gabriele A. Fontana2†, Tianlai Shi2,3,4†, Dominique Klein2, Simone Cavadini2, Mahamadou Faty2, Maksym Shyian1, Lukas Hafner1, David Shore1*, Nicolas H. Thomà2*, and Ulrich Rass2*

1Department of Molecular Biology and Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland.
2Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
3Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
4present address: Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland

†These authors contributed equally to this work.
* to whom correspondence should be addressed:
David.Shore@unige.ch, Nicolas.Thoma@fmi.ch, Ulrich.Rass@fmi.ch
Abstract

In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric but suppresses DNA end-resection at chromosomal breaks, promoting repair by non-homologous end-joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ~125 kDa N-terminal domain of Rif1 from *Saccharomyces cerevisiae* (Rif1-NTD), revealing an α-helical fold shaped like a shepherd’s crook. We identify a high-affinity DNA-binding site in the Rif1-NTD, which fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions.
Introduction

Across organisms Rif1 participates in a multitude of seemingly unrelated genome maintenance processes ranging from DNA replication to DNA repair and telomere integrity\(^1\). During G1, Rif1 targets protein phosphatase 1 (PP1) to replication origins, thereby controlling the timing of origin firing, a role shared between yeast and mammalian cells\(^2-9\). In contrast, Rif1 functions in repair and telomere maintenance differ between organisms.

In yeast, but not in mammals, Rif1 is integral to the proteinaceous telosome structure that protects chromosome ends. Telomeres in budding yeast are organized around Rap1, which binds directly to double-stranded DNA (dsDNA) TG\(_{1-3}\) repeat sequences\(^10\). Rap1, through protein-protein interactions, recruits Rif1 and another protein, Rif2\(^11,12\). Together they form a protein meshwork that gives rise to a functional telomeric architecture\(^13\). Originally identified through a prominent role in telomere length regulation\(^11\), Rif1 has the ability to inhibit the recruitment of telomerase and is involved in silencing the DNA damage checkpoint at telomeres\(^14-17\). The molecular processes underlying these activities remain unclear.

In mammalian cells, Rif1 modulates pathway choice in DNA double-strand break (DSB) repair, promoting NHEJ over homologous recombination (HR)-mediated repair. Mammalian Rif1 co-localizes with 53BP1 at DSBs\(^18-22\), where its presence antagonizes DNA end-resection through an undefined mechanism. Rif1 thus stabilizes DNA ends and favors the repair of breaks through simple re-ligation\(^23-26\). There is currently no evidence for an analogous function of yeast Rif1 in DSB repair pathway choice, although Rif1 has been detected at DSBs in yeast\(^27,28\).

Rif1 orthologs are highly divergent at the primary sequence level, but share a predicted N-terminal helical domain\(^29\) of unknown function. Using budding yeast Rif1 as a model system, we identify the Rif1-NTD as a general modulator of DNA end-processing. Our structural and biochemical characterization demonstrates how Rif1-NTD restricts access of end-processing factors to DNA, providing Rif1 with a means to control diverse biological functions at telomeres as well as DSBs.
Results

Rif1-NTD forms an elongated, crook-shaped structural domain

All Rif1 orthologs contain a largely uncharacterized domain containing helical repeat elements\(^{18,29}\). In \textit{S. cerevisiae} Rif1, this domain is predicted to reside within the first 1400 residues of its 1916 amino acids (Fig. 1a). An RVxF/SILK PP1 (Glc7 in yeast) binding motif (residues 116-118 and 147-149), which is found at varying positions in different Rif1 orthologs, precedes this putative domain and is essential for the replication timing function of Rif1\(^{2-9,29}\). The remaining C-terminal \(~600\) residues, which are largely unstructured, are specific to the budding yeast protein and contain the primary Rap1-binding motif (RBM; residues 1752-1772) with a major role in Rif1 telomere localization, and the Rif1 C-terminal domain (CTD; residues 1857-1916), a tetramerization module and low-affinity Rap1 binding site\(^{13}\). We identified the N-terminal domain comprising residues 177-1283 by limited proteolysis (data not shown; herein referred to as Rif1-NTD) and determined its crystal structure using a selenium multiple-wavelength anomalous dispersion approach. The model was built manually and refined at 3.95 Å resolution (Table 1). The Rif1-NTD assumes an extraordinarily elongated, crook-shaped fold spanning 238 Å (Fig. 1b). This domain, which is formed entirely by \(\alpha\)-helices and connecting loops, contains a mixture of two-helix HEAT-like and three-helix armadillo-like modules. Rif1-NTD has three distinct regions: (i) a curved N-terminal region (the ‘HOOK’: helical units 1-12, residues 185-874), (ii) a straight C-terminal portion (the ‘SHAFT’: units 16-23, residues 976-1272), and (iii) a boundary region marked by a kink followed by eight helices (‘Transition’: units 13-16, residues 875-975) oriented perpendicular to the other major helices in the domain. The HOOK is decorated by two insertion loops: Loop-I (residues 469-498), emerging from its convex face, and Loop-II (residues 676-715), emerging from its concave face. The HOOK contains the most conserved region (designated Rif1_N (PF12231) in Pfam\(^{30}\)) (Supplementary Fig. 1a, 1b), comprising a sequence signature present in all Rif1 orthologs.

Rif1-NTD contains a DNA-binding site

Rif1-NTD co-purified with nucleic acids from insect cells, prompting us to explore a DNA-binding role. Following extensive screening with single-stranded (ss) DNA, dsDNA, and ssDNA/dsDNA junction substrates, crystals were obtained by mixing a Rif1 construct spanning amino acids 100-1322 with a 30 bp dsDNA carrying a 24 nt or 30 nt 3’ ssDNA tail (Rif1-NTD–DNA-1 and -2; Table 1). The crystals contained two conformationally distinct Rif1-NTD protomers in a figure-8-
shaped head-to-tail dimer arrangement, with DNA threaded through the two internal channels (designated DNA-binding channel I and II in Fig. 1c – e). Unequivocal electron density was found for linear dsDNA after refinement with an optimized bulk solvent model to ~6.5 Å resolution, enabling the entire 30 bp dsDNA portion of the crystallized construct to be modeled (Fig. 1d). No interpretable density was found for the ssDNA portion of the substrate, which is likely disordered (Supplementary Fig. 1c and Methods). Seeking independent evidence for functionally relevant Rif1-NTD–DNA configurations, we used negative stain electron microscopy (EM) (Supplementary Fig. 2a – h). Two-dimensional class averages and three-dimensional reconstructions confirmed the crook-shaped appearance of monomeric Rif1-NTD (Supplementary Fig. 2a, d), and established that it predominantly forms a figure-8-shaped head-to-tail dimer in the presence of DNA (ssDNA/dsDNA junction substrate) (Supplementary Fig. 2b, e), indicating that DNA binding in solution closely reflects the arrangement seen in the Rif1-NTD co-crystals with DNA (Fig. 1c).

The figure-8-shaped Rif1-NTD dimer bound DNA through DNA-binding channels I and II, each of which captures one of two distinct DNA molecules in the crystal. Each of the DNA molecules threads through channel I of one Rif1-NTD dimer and into channel II of a neighboring dimer, bridging adjacent Rif1-NTD dimers (Fig. 1d, e). Conformational differences between the Rif1-NTD dimer mates influence the architecture of the internal channels, which differ and vary from 34 to 42 Å in diameter (Supplementary Fig. 1d). Combined with the periodicity of the DNA and the offset of the two Rif1-NTD dimers bound to the same DNA (Supplementary Fig. 1e), this leads to variable DNA-binding in channel I and II in the crystal. Regardless of this apparent flexibility in DNA binding, dsDNA in each channel is surrounded by Rif1 with a 16 bp footprint.

Biochemical validation of high-affinity Rif1-NTD–DNA interactions

Rif1-NTD (construct spanning residues 100-1322) avidly bound the 3′-tailed ssDNA/dsDNA junction (30 bp + 30 nt tail) it crystallized with in vitro (Fig. 2a, b). Electromobility shift assays (EMSAs) showed up to four distinct retarded DNA species, consistent with multiple, oligomeric protein-DNA interactions as predicted by the structure. Quantification yielded an apparent K_d of ~20 nM for Rif1-NTD and the 3′-tailed ssDNA/dsDNA junction substrate. DNA binding as a function of protein concentration was non-hyperbolic and best fitted to the Hill equation assuming cooperative binding of Rif1-NTD to DNA (Methods). Rif1-NTD binding was also observed for duplex and ssDNA substrates (Supplementary Fig. 2i) with 3′-tailed ssDNA/dsDNA junctions exhibiting the strongest association with Rif1 (Supplementary Fig. 2j, k). Rif1 bound
DNA independently of the presence or absence of yeast telomeric TG\textsubscript{1-3} repeats (Supplementary Fig. 2l).

The Rif1-NTD–DNA co-crystal structure shows that the DNA is wedged into the concave face of the HOOK by Loop-II emerging from helical unit 9, identifying these regions as predominant protein-DNA interaction sites (Fig. 2c). Here, we identified clusters of positively charged amino acids as potential protein-DNA contacts found within 8 Å of the DNA bound in channel I or II of the Rif1-NTD dimer (Supplementary Fig. 1f). In contrast, the less conserved (Supplementary Fig. 1a) and more flexible SHAFT element, which closes like a lid over the DNA buried inside the HOOK of the dimer mate (Fig. 1c), places different residues proximal to the DNA in channels I and II across crystals (Supplementary Fig. 1d). This makes it difficult to pinpoint key residues in the SHAFT that might mediate DNA interactions at the current resolution, and the SHAFT was omitted from further analysis.

On the concave face of the HOOK, the DNA is bound closest to helical units 4-8, which are part of the Rif1\textsubscript{N} signature region defined by Pfam (helical units 1-8, Supplementary Fig. 1b). Twelve positively charged residues in helical units 4-8 are strategically positioned as potential DNA backbone contacts (R401, K406, K437, K451, K452, H561, K514, K518, K563, R565, K570, and R573; Supplementary Fig. 2m). These were targeted, and among several mutant versions of Rif1, a protein with amino acid substitutions K437E, K563E, and K570E (designated Rif1\textsubscript{HOOK}; Fig. 2c, d) could be stably expressed in recombinant form for biochemical investigation (Supplementary Fig. 2n). Loop-II (residues 677-714, hereafter termed LOOP) bears a cluster of six positively charged residues (K680, R688, K689, K691, K692, K706, and K708), and we mutated two DNA-facing lysine residues (K691E and K692E) to generate a mutant designated Rif1\textsubscript{LOOP} (Fig. 2c and Supplementary Fig. 2n). Compared to wild-type Rif1-NTD, ~4-8-fold higher protein concentrations of Rif1\textsubscript{HOOK} and Rif1\textsubscript{LOOP} were needed to fully retard the labeled DNA in EMSAs (Fig. 2e). Rif1\textsubscript{HOOK} and Rif1\textsubscript{LOOP} therefore have compromised DNA-binding activity, showing that the regions within Rif1-NTD involved in duplex DNA interactions in the crystal are also involved in DNA binding in solution. We note that we have not been able to express stable constructs of Rif1 containing a minimal DNA binding domain consisting of only the HOOK domain, eliminating potential Rif1 dimerization surfaces. Rif1 dimerizes on DNA (Supplementary Fig. 2b, e), but we could hence not assess whether dimerization is strictly required for DNA binding.

Rif1-NTD is required for telomere length regulation
To assess the in vivo functions of the Rif1-NTD and its capacity to bind DNA, we first addressed its potential involvement in telomere length control, the canonical role of Rif1 in yeast. Consistent with previous results, Rif1 occupancy at native telomeres, measured by chromatin immunoprecipitation (ChIP), was reduced by 97% compared to wild-type Rif1 when the major Rap1 binding site was disrupted (Rif1_{RBM} mutant I1762R, I1764R) (Fig. 3a, Supplementary Fig. 3a for protein expression). The Rif1_{HOOK} DNA-binding mutant reduced the ChIP signal more moderately (~30%; Fig. 3a). The Rif1_{HOOK}/RBM double mutant further diminished the residual telomere occupancy of Rif1_{RBM}, indicating that the Rif1_{HOOK} and Rif1_{RBM} together anchor Rif1 at telomeres (Supplementary Fig. 3b). Unexpectedly though, cells harboring the rif1_{HOOK} allele exhibited a more severe telomere elongation phenotype (gain in length ~250 bp, phenocopying rif1_Δ cells) than rif1_{RBM} mutant cells (gain in length of ~150 bp) (Fig. 3b and Supplementary Fig. 3c). Cells expressing Rif1_{LOOP} showed an intermediate telomere elongation phenotype, suggesting that Rif1_{HOOK} is the more severely compromised Rif1-NTD mutant in vivo (Supplementary Fig. 3c). Thus, while the Rif1 RBM represents the major means of Rif1 recruitment to telomeres, the DNA-binding HOOK region and its ability to properly engage DNA is essential for mediating telomerase inhibition.

Rif1-NTD mediates the telomeric anti-checkpoint function of Rif1

In addition to inhibiting telomerase at normal-sized telomeres, Rif1 serves an anti-checkpoint function at eroded telomeres. This is evident in a model for critically short telomeres at HO endonuclease-induced DSBs flanked by short (80 bp) telomere repeat tracts (TG80), where Rif1 attenuates a transient DNA damage checkpoint response. We determined cell-cycle restart times following induction of the HO endonuclease and found significant anti-checkpoint defects for cells harboring the rif1_{HOOK} or rif1_{LOOP} mutant alleles (Fig. 3C). In contrast, rif1_{RBM} mutant cells behaved like RIF1 wild-type cells, whereas rif1_{HOOK}/RBM double mutant cells displayed a G2/M cell-cycle delay greater than that of either of the single mutants, approaching a rif1_Δ phenotype (Fig. 3c). Checkpoint activation at TG80-flanked DSBs in the absence of Rif1 involves 5' end-resection, generating 3'-terminated ssDNA bound by RPA, which provides the signal for activation of the apical ATR (Mec1) checkpoint kinase. We observed an increase in both ssDNA (Fig. 3d) and RPA binding (Fig. 3e) at TG80 ends after HO cut induction in the rif1_{HOOK} mutant compared to wild-type or the rif1_{RBM} mutant, despite Rif1_{RBM} and Rif1_{HOOK} exhibiting a similar level of recruitment (Fig. 3f; Supplementary Fig. 3d – f). These findings are consistent with a Rif1 HOOK anti-checkpoint effector function.
We then used strains carrying cdc13 temperature-sensitive (ts) mutations, which exhibit no overt telomere abnormalities at the permissive temperature, but show telomere uncapping and synthetic lethality following deletion of RIF1. We found that the Rif1 HOOK, but not the Rif1 RBM, is required for viability in cdc13-ts strains (Supplementary Fig. 4a, b), and that Rif1 attenuates resection of chromosome ends and RPA binding upon depletion from the nucleus (Supplementary Fig. 4c – g). Thus, different models of critically short and uncapped telomeres show that the Rif1 HOOK domain and its ability to directly engage with its DNA substrate is required to counteract DNA end-resection and silence the DNA damage checkpoint.

An evolutionary conserved role of Rif1 in DSB repair, mediated by the Rif1-NTD

A Rif1 HOOK-mediated mechanism of attenuating DNA end-resection at TG80-flanked DSBs and eroded telomeres, independent of Rap1-binding, suggested a possible role of Rif1 at DNA breaks outside telomeric settings, akin to the DNA repair role of mammalian Rif1. We used a reporter strain in which an HO endonuclease-induced DSB at the MAT locus can only be repaired by NHEJ (Fig. 4a), providing a cell survival-based readout for NHEJ efficiency. Compared to RIF1 wild-type cells, we observed a ~40% drop in cell survival for rif1Δ mutants as measured by colony outgrowth following 2 h or 4 h of transiently induced HO endonuclease expression (Fig. 4b). Following chronic HO endonuclease expression, which only allows survival through rare imprecise NHEJ events that alter the DNA sequence of the HO cut site, we also observed a significant decrease in viability for rif1Δ compared to RIF1 wild-type cells (Supplementary Fig. 5a). As expected, survival under acute or chronic HO endonuclease expression conditions was fully dependent on the core NHEJ factor Ku70 (Fig. 4b, Supplementary Fig. 5a). These findings establish Rif1 as a modulator of DSB repair by promoting NHEJ in yeast.

In a structure-function analysis, we found that cells expressing a C-terminally truncated Rif1 missing the Rap1 interaction motifs (RBM and CTD) did not exhibit a NHEJ phenotype (Supplementary Fig. 5b). The ability of Rif1 to modulate NHEJ thus resides in its N-terminal region, and is independent of Rap1. Expression of Rif1RVxF/SILK also gave no phenotype, demonstrating that recruitment of PP1/Glc7 to DSBs is not required for Rif1 to facilitate NHEJ repair (Fig. 4b). In contrast, cells expressing the Rif1HOOK DNA-binding mutant were as compromised in survival by NHEJ as rif1Δ cells (Fig. 4b). Consistent with a previous report, ChIP analyses showed that Rif1 accumulated at chromosome-internal DSBs (Fig. 4c, Supplementary Fig. 5c). Rif1 binding at chromosome-internal sites devoid of telomeric DNA sequences was independent of the RBM Rap1 interaction motif (Supplementary Fig. 5c, d).
Importantly, however, DSB binding required the Rif1 HOOK, and the NHEJ defect of the Rif1\textsubscript{HOOK} mutant correlated with ~50% reduction in Rif1 protein levels at DSBs at the MAT locus and elsewhere in the genome (Fig. 4c, Supplementary Fig. 5c). We conclude that the Rif1-NTD, and its DNA binding ability, is necessary and sufficient for the role of Rif1 in promoting NHEJ at induced DSBs.

We then examined the effect of Rif1 at stochastic breaks. Genetic disruption of NHEJ in yeast does not cause overt DNA damage sensitivity, but instead leads to a survival advantage in the presence of exogenous DSBs, consistent with HR being the preferred pathway for DSB repair under these conditions41,42. The contribution of NHEJ to break repair is evident in HR-deficient cells, where loss of NHEJ factors causes increased DNA damage sensitivity38-40. We found that deletion of RIF1 increased cell survival upon chronic exposure to the radiomimetic drug Zeocin ~2-fold compared to wild-type cells. This effect was very similar to the phenotype caused by disruption of core end-joining factors such as YKU70 (Fig. 4d), and was mediated by the Rif1 HOOK domain, but independent from PP1/Glc7 and Rap1 interactions (Supplementary Fig. 5e). In HR-deficient cells, which depend on NHEJ for DSB repair, loss of RIF1 increased sensitivity to Zeocin (Supplementary Fig. 5f). These results demonstrate that the Rif1-NTD also functions in NHEJ at stochastic DNA breaks.

We found that loss of Rif1 or introduction of the HOOK mutation, resulted in a marked increase in ssDNA accumulation compared to RIF1 wild-type at the HO endonuclease cleavage site near the MAT locus (Fig. 4a, e). Similar results were obtained at the MNT2 locus (Supplementary Fig. 5g). Consistent with these findings, Southern blot analyses showed that the stability of a genomic fragment harboring the MAT locus after HO endonuclease cleavage was reduced in rif1Δ and rif1\textsubscript{HOOK} mutant cells compared to RIF1 wild-type cells (Fig. 4f). Taken together, these findings show that Rif1 binds DSBs in vivo and attenuates DNA end-resection, facilitating re-ligation by the NHEJ pathway. The role of Rif1 in DSB repair pathway choice is thus conserved from yeast to human, and the Rif1-NTD DNA-binding domain is required for all functions of Rif1 involving telomeric and non-telomeric DNA ends.
We identify the budding yeast Rif1-NTD as a high-affinity DNA-binding module that influences the processing of both chromosome breaks and telomeres. The structure of Rif1-NTD reveals a remarkably extended architecture (238 Å) that consists of an irregular α-helical repeat fold shaped like a shepherd’s crook (Fig. 1b). In the presence of DNA, Rif1-NTD forms a figure-8-shaped head-to-tail dimer, encasing 16 bp segments of dsDNA (Fig. 1c – e, Supplementary Fig. 2a – h), primarily through interactions with its curved HOOK region. By successive loading of Rif1 molecules (Fig. 1d, e, 2a, b), arrays of yeast Rif1 would allow to form a protein sheath that, according to the structure, renders DNA inaccessible to other proteins.

In cells, we find that the Rif1-NTD promotes Rif1 accumulation at DNA ends, both as a standalone recruitment module, or supported by local interactions with Rap1 where telomeric DNA sequences are present (Fig. 3a, 4c, Supplementary Fig. 5c). In biochemical experiments, the Rif1-NTD exhibits preference for 3’-tailed ssDNA/dsDNA junctions relative to simple ssDNA or dsDNA substrates of similar length (Supplementary Fig. 2j, k). As we find no evidence for telomere sequence-specific binding (Supplementary Fig. 2l), such structural preference for junction DNA provides a mechanism to guide Rif1 to its target sites at both telomeric ends and DNA breaks. Consistently, we find in vivo that Rif1 targets non-telomeric DSBs (Fig. 4c and Supplementary Fig. 5c), and show that yeast Rif1, like its mammalian counterpart, is involved in DSB repair pathway choice. This function strictly depends on the Rif1-NTD and its ability to properly engage DNA (Fig. 4b). At critically short telomeres, resected chromosome ends, and DSBs, the engagement of Rif1 with DNA attenuates DNA end-resection, which at DSBs imposes bias to NHEJ repair (Fig. 3d, e, 4e, f, Supplementary Fig. 4d – g, 5g).

Thus, Rif1-NTD acts as a recruitment module and as an effector module, which enables seemingly disparate Rif1 functions at DNA ends. Although Rif1 mutant proteins affected within the NTD HOOK region retain residual DNA binding in vitro (Fig. 2e) and in vivo (Fig. 3a, 3f, 4c, Supplementary Fig. 3e, 5c), their binding defects elicit severe and sometimes fully penetrant loss of function phenotypes in vivo (Fig. 3b, c, 4b, d, e, Supplementary Fig. 3c). This is most evident at telomeres, where the rif1_{HOOK} allele conferred a more severe telomere length defect than the Rap1-binding defective rif1_{RBM} allele, whereas the latter reduces Rif1 occupancy at telomeres more drastically (Fig. 3a, b). Our findings therefore support an end-effector function of the Rif1-NTD that goes beyond a mere recruitment role.
On the structural level, the Rif1-NTE DNA-binding mode is reminiscent of Ku70/8043. The Ku70/80 heterodimer encircles DNA within a ring-like channel, albeit using different structural motifs, binding with high-affinity and preventing access of other DNA repair factors. We propose an analogous model, where the diverse functions of Rif1 in telomere homeostasis, checkpoint control, and DSB repair are all mediated by directly blocking DNA end-processing factors (Fig. 5). Although DNA end-protection by Rif1 is ubiquitous, its ability to interact with Rap1 allows it to fulfill a specialized role at telomeres, which is unique to yeast. The biochemical properties of Rif1 described here help target Rif1 to diverse DNA ends, where its ability to cooperatively engage DNA enables protective binding along surrounding ssDNA and dsDNA regions. Our structural and functional studies in yeast thus reveal a unified mechanism underlying the diverse biological roles of Rif1 at telomeres and repair sites based on its ability to modulate access and processing of DNA ends.
Acknowledgements

We thank the following Technology Platform members of the Friedrich Miescher Institute: A. Graff-Meyer and A. Schenk (Electron Microscopy Facility) for assistance in the collection of the negative stain EM data and analysis; D. Hess (Proteomics and Protein Analysis) for support with protein analyses; H. Gut and J. Keusch (Protein Structure) for support with protein crystallization and crystallographic data collection.Crystallographic experiments were performed at beamline X06SA and X06DA of the Swiss Light Source, Paul Scherrer Institut, Switzerland. J.K.R. was supported by a Boehringer Ingelheim Fonds PhD fellowship, L.H. by an Excellence Master fellowship from the University of Geneva. Work in the laboratory of U.R. is supported by the Swiss Cancer League & Swiss Cancer Research, and the Novartis Research Foundation. The laboratory of N.H.T. is supported by the Novartis Research Foundation. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 666068, N.H.T.). Work in the laboratory of D.S. and N.H.T was supported by the Swiss National Science Foundation (grant 31003A_149463 to D.S., and Sinergia grant CRSII3_160734 to D.S. and N.H.T.). We thank S. Gasser for providing yeast strains and reagents, and for fruitful discussions. We would like to thank all members of the Gasser, Thomä, Rass, and Shore laboratories for valuable input and technical assistance.

Author Contributions

U.R., N.H.T., and D.S., conceived this study. J.K.R and T.S. expressed and purified recombinant proteins helped by M.F and produced crystals helped by R.D.B. J.K.R., T.S. and R.D.B. collected crystallographic data. R.D.B. carried out the crystallographic analysis and interpreted the results. J.K.R. designed, performed and analyzed electromobility shift assays helped by D.K. J.K.R. designed and performed the negative stain EM experiments and analyzed the results helped by S.C. S.M. designed, performed and analyzed Western Blot and ChIP experiments helped by M.S. and L.H. S.M. designed, performed and analyzed the assay to measure checkpoint activation, the assays to score the viability of ts mutants and the Southern blots to assess telomere length. S.M. and G.A.F. performed and analyzed the qPCR experiments to measure ssDNA formed by DNA end-resection. G.A.F. designed and analyzed the colony outgrowth assays to score NHEJ efficiency and DNA damage resistance; data collection was performed with blinding by G.A.F. and D.K. G.A.F. designed, performed and analyzed DSB stability experiments by Southern blotting helped by D.K. S.M., J.K.R., R.D.B.
and G.A.F contributed equally to this work. All the authors discussed the data. U.R., N.H.T. and D.S. wrote the manuscript with input from S.M., J.K.R., R.D.B. and G.A.F.

Competing Financial Interest Statement

The authors declare no competing financial interest.
References

Figure 1: Crystal structures of Rif1-NTD in isolation and in complex with DNA. (a) Rif1 domain organization with the RVxF/SILK, Rap1 binding motif (RBM), C-terminal domain (CTD) (green) and Rif1-NTD (blue) functional regions. A sequence identity histogram from a structure-guided sequence alignment of 17 yeast Rif1 orthologs is shown above (details in Supplementary Fig. 1a). The expanded view shows the organization of the two- and three-helix units found in the crystal structure. The HOOK region (dark blue), SHAFT region (light blue), insertion loops I and II (mauve), and a transition region (gray) are indicated. (b) Rif1-NTD overall fold and (c) Rif1-NTD in complex with DNA in cartoon representation (see also Supplementary Fig. 1c to 1e). (d) Cross-section of the two Rif1-NTD dimers bound to each 30 bp dsDNA with an unbiased segment of its 2mFo-DFc electron density (gray mesh) contoured at 0.8 r.m.s.d and shown at a 4 Å radius around the DNA (see also Supplementary Fig. 1c and Methods). The Rif1-NTD surface within 8 Å of the DNA is shown in red. No interpretable electron density was found for the 30 nt ssDNA 3′-tail of the crystallized dsDNA. (e) View of c expanded by crystallographic symmetry showing how multiple Rif1-NTD dimers (blue surfaces) bind the same two DNA molecules in the Rif1-NTD co-crystals with DNA.

Figure 2. The Rif1-NTD HOOK domain binds DNA. (a) EMSA analysis using 1 nM of a 32P labeled 3′-tailed 30 nt + 30 bp ssDNA/dsDNA junction substrate with increasing concentrations of Rif1-NTD (4-40 nM). (b) Rif1-NTD binds 3′-tailed DNA cooperatively with low nanomolar affinity. Band intensities were quantified relative to total signal in each lane and plotted. The resulting binding curve was best accounted by a Hill slope (see Online Methods). (c) Rif1-NTD surface electrostatic potential with close-up view of the Rif1 HOOK domain. (d) Schematic representation of Rif1-NTD (residues 100 to 1322) indicating the location of the Rif1_HOOK (blue) and Rif1_LOOP (green) mutations and their position in the Rif1 crystal structure relative to the DNA. (e) Rif1_HOOK and Rif1_LOOP mutants have lower binding affinity for dsDNA than wild-type Rif1. EMSA analysis using 1 nM 32P-labeled 30 bp dsDNA with increasing concentrations (5, 10, 20 and 40 nM) of wild-type or mutant Rif1-NTD with quantification (individual values plotted and mean values presented as curves, n = 2, independent experiments). (a, e) Uncropped gel images are in the Supplementary Data Set.

Figure 3. Rif1-NTD is an effector of telomere homeostasis at native and critically short telomeres. (a) ChIP analysis of Myc-tagged wild-type Rif1, or the indicated mutants, at native telomeres VI-R (blue) and XV-L (red). Results are reported as average fold-enrichment relative to ACT1 ± s.d. (n = 5). (b) Telomere length analyzed at telomeric Y′ elements. Southern blots were performed with genomic DNA digested with Xhol using a radiolabeled TG1-3 repeat probe. Uncropped gel image is shown in the Supplementary Data Set. (c) Percentage of large-budded, G2/M-arrested cells following HO endonuclease induction in wild-type or rif1 mutant cells presented as Kaplan-Meier survival analysis. Average G2/M to G1 transition times (t), number of cells examined for each sample (n) and P-values are indicated. (d) Percentage of ssDNA formed at three sites of increasing distance from a TG80-flanked DSB HO cut site, reported as mean values ± s.d. (n = 4). (e) ChIP analysis of RPA recruitment at a TG80-flanked DSB in the
indicated strains. Results for centromere-proximal (green) and telomere-proximal (blue) RPA accumulation are reported as average fold-enrichment relative to ACT1 ± s.d. (n = 4). (f) ChIP analysis at either side of a TG80-flanked DSB of cells expressing Myc-tagged Rif1 wild-type and the indicated mutants before (0 h) and after (2 h) HO endonuclease induction, reported as average fold-enrichment relative to ACT1 ± s.d. (n = 4). Experiments in panels (a) and (d – f) were performed as independent biological replicates.

Figure 4. Rif1-NTD attenuates end-resection at chromosome-internal DSBs to promote DNA repair by NHEJ. (a) Overview of S. cerevisiae chromosome III harboring the MATα HO endonuclease cut site and deleted for the homologous donor loci (hmlΔ/hmrΔ). HO endonuclease is induced by galactose addition and the resulting DSB can only be repaired by NHEJ. Primer pairs used for ChIP analyses of Rif1-Myc recruitment (blue) and qPCR to study DNA end-resection (red) are indicated. DNA end-resection progressively destroys the annotated AluI restriction sites, leading to increased qPCR product yield, which serves as a measure for the level of ssDNA formation44. (b) NHEJ efficiency measured by colony outgrowth after acute HO endonuclease induction. Data are presented as mean values ± s.e.m. (n = 6). PE, plating efficiency, PE0, plating efficiency before HO endonuclease induction. (c) ChIP analysis of the recruitment of Myc-tagged wild-type and mutant versions of Rif1 at the MATα HO endonuclease cut site. Results are reported as average fold-enrichment relative to the ACT1 gene ± s.d. (n = 3). (d) Cell viability in the presence of 70 μg/mL Zeocin. Data are presented as mean values ± s.e.m. (n = 6). (e) ssDNA formed by DNA end-resection as measured by qPCR. Data are presented as mean values ± s.e.m. (n = 4). (f) Analysis of DSB ends destabilization by Southern blotting. Top left, Schematic representation of the MATα locus. The location of the Southern probe, the EcoRV restriction sites used for DNA digestion, and the size of the detected bands are indicated42. Bottom left, percentage of remaining DNA relative to the 1 h time point. Data are presented as mean values ± s.e.m. (n = 4). Right, representative Southern blots. The SMC2 locus (designated S) served as loading control and for normalization. Experiments in panels (b – f) were performed as independent biological replicates. Uncropped gel images are in the Supplementary Data Set.

Figure 5. Rif1-NTD controls the fate of DNA ends at telomeres and chromosome breaks. (a) At native S. cerevisiae telomeres, Rap1 recruits Rif1 and Rif2 to form an intricate protective protein sheath13, while Cdc13-Strn1-Ten1 (CST) cover the ssDNA overhang. Telomerase inhibition is dependent on the newly identified Rif1-NTD DNA-binding activity, which may contribute to telomere architecture by engaging unoccupied dsDNA and ssDNA proximal to Rap1 sites. Note that while one dsDNA is shown bound per Rif1-NTD dimer, two DNA molecules could conceivably be bound by each Rif1-NTD dimer, as seen in the crystal structure. (b) The Rif1-NTD also engages DNA ends in a Rap1-independent manner, coating ssDNA/dsDNA junctions at chromosome-internal breaks. Rif1-NTD binding DNA at chromosome breaks blocks end-resection, stabilizes DNA ends and facilitates NHEJ. By binding cooperatively, Rif1 is equipped to spread into neighboring DNA regions, insulating the DNA and preventing access of processing factors, a mechanism shared between telomeres and chromosome breaks. Crystallographic models for Rif1-NTD, Rif1-CTD and RBM (blue)13, Rap1
(light gray), Rif2 (green) and CST (gray) are shown as solid outlines. Dotted lines indicate unstructured parts of Rif1 and Rif2.

Table 1. Crystallographic data collection and refinement statistics.

<table>
<thead>
<tr>
<th></th>
<th>RIF1-NTD-1 (PDB code 5NVR)</th>
<th>RIF1-NTD–DNA-1 (PDB code 5NW5)</th>
<th>RIF1-NTD–DNA-2 (PDB code 5NW5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collectiona</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.9790</td>
<td>1.0000</td>
<td>0.9186</td>
</tr>
<tr>
<td>Space group</td>
<td>P6$_3$22</td>
<td>$P2_1; 2_1; 2_1$</td>
<td>$P2_1; 2_1; 2_1$</td>
</tr>
<tr>
<td>Unit cell (Å)</td>
<td>$a = b = 203.57, a = 81.93, c = 197.723$</td>
<td>$b = 157.60, b = 169.88, c = 385.19$</td>
<td>$c = 390.26$</td>
</tr>
<tr>
<td>Resolution (Å)b</td>
<td>50–3.94 (4.16–3.94)</td>
<td>58.02–4.40 (7.27–6.50)</td>
<td>43.25–6.50 (7.27–6.50)</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>21894 (3132)</td>
<td>32678 (4704)</td>
<td>12703 (3529)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>50.6 (42.7)</td>
<td>6.3 (5.8)</td>
<td>11.9 (12.5)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (100)</td>
<td>99.9 (100)</td>
<td>99.6 (100)</td>
</tr>
<tr>
<td>$\langle I/\sigma(I) \rangle$</td>
<td>14.4 (1.3)</td>
<td>5.5 (0.6)</td>
<td>8.0 (0.5)</td>
</tr>
<tr>
<td>CC$_{1/2}$ outer shell; no. of pairs</td>
<td>0.497; n = 3129</td>
<td>0.172; n = 4689</td>
<td>0.142; n = 3529</td>
</tr>
<tr>
<td>Resolution (Å) when $\langle I/\sigma(I) \rangle > 2.0$</td>
<td>4.16</td>
<td>6.10</td>
<td>7.56</td>
</tr>
<tr>
<td>$\langle I/\sigma(I) \rangle > 2.0$ (along h)</td>
<td>6.11</td>
<td>7.83</td>
<td></td>
</tr>
<tr>
<td>$\langle I/\sigma(I) \rangle > 2.0$ (along k)</td>
<td>8.10</td>
<td>10.16</td>
<td></td>
</tr>
<tr>
<td>$\langle I/\sigma(I) \rangle > 2.0$ (along l)</td>
<td>5.25</td>
<td>7.11</td>
<td></td>
</tr>
<tr>
<td>CC$_{1/2} > 0.3$ (overall)</td>
<td>3.94</td>
<td>4.96</td>
<td>7.09</td>
</tr>
<tr>
<td>CC$_{1/2} > 0.3$ (along h)</td>
<td>4.76</td>
<td>7.19</td>
<td></td>
</tr>
<tr>
<td>CC$_{1/2} > 0.3$ (along k)</td>
<td>7.01</td>
<td>9.91</td>
<td></td>
</tr>
<tr>
<td>CC$_{1/2} > 0.3$ (along l)</td>
<td>5.25</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>R_{meas}</td>
<td>0.234 (4.131)</td>
<td>0.264 (3.294)</td>
<td>0.358 (6.001)</td>
</tr>
<tr>
<td>R_{pim}</td>
<td>0.033 (0.629)</td>
<td>0.114 (1.496)</td>
<td>0.101 (1.757)</td>
</tr>
<tr>
<td>Wilson B-factor (Å2)c</td>
<td>183</td>
<td>220</td>
<td>389</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>49.29–3.94 (4.09–3.94)</td>
<td>-</td>
<td>43.25–6.50 (7.15–6.50)</td>
</tr>
<tr>
<td>Reflections</td>
<td>21814 (2125)</td>
<td>-</td>
<td>8873 (732)</td>
</tr>
<tr>
<td>Reflections (R_{free})</td>
<td>1132 (115)</td>
<td>-</td>
<td>578 (59)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>100 (100)</td>
<td>-</td>
<td>70.0 (23.9)</td>
</tr>
<tr>
<td>Complete to resolution (Å)</td>
<td>3.94</td>
<td>-</td>
<td>9.09</td>
</tr>
<tr>
<td>$R_{\text{work}} / R_{\text{free}}$</td>
<td>0.2115 / 0.2609</td>
<td>-</td>
<td>0.2529 / 0.2772</td>
</tr>
<tr>
<td>No. non-hydrogen atoms</td>
<td>8691</td>
<td>-</td>
<td>18864</td>
</tr>
<tr>
<td>Average B-factor (Å2)d</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Protein / DNA</td>
<td>221 / -</td>
<td>-</td>
<td>316 / 547</td>
</tr>
<tr>
<td>R.m.s bonds (Å) / angles (°)</td>
<td>0.003 / 0.54</td>
<td>-</td>
<td>0.015 / 2.12</td>
</tr>
<tr>
<td>Ramachandran plot (%)d</td>
<td>Favored</td>
<td>91</td>
<td>85.8</td>
</tr>
<tr>
<td>Allow</td>
<td>7.2</td>
<td>-</td>
<td>11.3</td>
</tr>
<tr>
<td>Outliers</td>
<td>1.6</td>
<td>-</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Online methods

Rif1-NTD protein purification

Saccharomyces cerevisiae Rif1 N-terminal domain (Rif1-NTD) constructs (residues 177-1283 or 100-1322) and mutants (residues 100-1322 of HOOK, K437E/K563E/K570E; LOOP, K691E/K692E) were expressed as N-terminal Strep(II)-tag fusions in Trichoplusia ni High Five insect cells (Life Technologies). Bacmids, primary and secondary viruses were produced using the Bac-to-Bac system (Life Technologies) and Spodoptera frugiperda (Sf9) insect cells (ThermoFisher Scientific). High Five insect cells were grown in SF900-II medium (Life technologies) at 27°C and infected at a cell density of 4 x 10⁶ mL with 15 mL/L of P2 virus solution. Cells were harvested by centrifugation 48 h after infection and lysed by sonication in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine (TCEP), 1 mM phenylmethylsulfonyl fluoride, 1 × protease inhibitor cocktail (Sigma), 5 mM β-mercaptoethanol. After clarification by ultracentrifugation (45,000g for 45 min at 4°C), the Rif1-NTD was extracted by Strep-Tactin affinity (Strep-Tactin Sepharose, IBA). The fusion tag was removed by overnight incubation with 5% (w/w) TEV protease. The protein solution was concentrated by ultrafiltration (30 kDa molecular-weight cutoff concentrator; Macrosep, Pall) and separated by size exclusion chromatography (Superdex 200, GE Healthcare) in 50 mM HEPES pH 7.4, 310 mM NaCl, 1 mM TCEP (storage buffer). Purified Rif1-NTD was concentrated by ultrafiltration to 60 μM, flash-frozen in liquid nitrogen and stored at -80°C.

Expression and purification of selenomethionine-labeled Rif1-NTD
Selenomethionine-substituted (SeMet) Rif1-NTD (residues 177-1283) was produced according to the procedure in Cronin et al.47 except infected High Five cells were cultured in methionine and cysteine-free SF900–II medium supplemented with 2 mM L-glutamine, 2 mM L-cysteine, and 20 mg/L L-selenomethionine and 8 h post-infection a further 40 mg/L L-selenomethionine was added. SeMet Rif1-NTD (residues 177-1283) was purified in the same manner as the native protein.

Rif1-NTD structure determination

Crystals of Rif1-NTD (residues 177-1283) were grown by hanging-drop vapor diffusion at 22°C from drops prepared by mixing 1 µL of protein solution (3.8 mg/mL in storage buffer) with 1 µL of reservoir solution (100 mM Tris-HCl, pH 7.5, 320 mM lithium sulfate, 850 mM potassium sodium tartrate). SeMet-substituted crystals were grown in the same conditions from seeds prepared from native Rif1-NTD (residues 177-1283) crystals, which were transferred into pre-equilibrated drops (4-16 h) with a cat whisker. Crystals appeared within 4 d and were harvested after two weeks. Prior to X-ray analysis, each crystal was swept briefly through a cryoprotectant solution composed of reservoir solution supplemented with 20% (v/v) ethylene glycol then flash-cooled in liquid nitrogen.

A gold derivative was prepared by soaking a native crystal with 1 mM KAu(CN)\textsubscript{2} in a stabilizing solution formulated to reproduce the crystal-growth condition as closely as possible (artificial mother liquor). Crystals were immersed in 4 µL drop of soaking solution and incubated for 1.5 h at 20°C with hanging-drop vapor diffusion over a reservoir of stabilizing solution. The crystals were back-soaked for 5 min in a fresh 10 µL drop of stabilizing solution before proceeding to X-ray analysis as for other crystals.

Diffraction data were collected at the Swiss Light Source, Switzerland, from beamline PXII with a Pilatus 6M detector (Dectris) or PXIII with a Pilatus 2M (Dectris) or MarCCD 225 detector (Mar...
Two related hexagonal crystal forms that diffracted to 4 Å resolution were obtained from the same conditions: from A with unit cell dimensions $a = b = \sim 203$ Å, $c = \sim 197$ Å, and form B with unit cell dimensions $a = b = \sim 208$ Å, $c = \sim 167$ Å. The C-terminal region of the Rif1-NTD (Rif1-NTD SHAFT) in crystal form B was disordered and these crystals were only used for early phase improvement by cross-crystal averaging.

Diffraction data sets to a maximum resolution (d_{min}) of 5.35 Å resolution were obtained from a SeMet-substituted Rif1-NTD (residues 177-1283) crystal (data set SeMet-1) at the absorption peak and inflection point of the selenium K-edge. In a MAD phasing approach, heavy atom sites located by SHELXD52 using the anomalous differences between 15-6.7 Å resolution were refined with autoSHARP53. From a substructure of 20 atoms, this gave an electron density map at 5.35 Å resolution and established the space group as $P6_522$ with a single Rif1-NTD copy in the asymmetric unit with $\sim 70\%$ solvent. The α-helical disposition of the Rif1-NTD was readily identified from the arrays of tubular electron density in the initial map. Side chain features were, however, absent. Starting with the initial electron density map and the SeMet-1 absorption peak data, the anomalous substructure was re-determined using MR-SAD with PHASER54, which located the 23 unique selenium positions in the crystal. A model was built from ideal polyalanine α-helices into the initial electron map with COOT55, relating the spacing of the selenium sites to the methionine positions in the Rif1-NTD amino acid sequence to infer its directionality. The MR-SAD phases were improved by cross-crystal averaging with a form B crystal ($d_{\text{min}} = 4.0$ Å) using DMMULTI56, which produced an electron density map showing some side chain protrusions. The α-helical model was extended into this map and the amino acid sequence was assigned in regions supported by electron density using the selenium substructure as...
methionine markers. Further details of phasing, model building and refinement procedures are in the Supplementary note.

The final model contains all residues from 185 to 1273 except residues 685-693 of insertion Loop-II (LOOP) and residues 1245-1275 of the final loop, which were unmodeled because of disorder. Owing to conformational flexibility, the quality of the electron density for the C-terminal SHAFT domain was considerably poorer than other regions of the Rif1-NTD. Data collection and refinement statistics are in Table 1.

Rif1-NTD–DNA structure determination

Rif1-NTD (residues 100-1322) formed crystals with 30 bp dsDNAs bearing a 24 or 30 nt 3'-tail (oligonucleotides 15+2 or 1+2 in Supplementary Table 1). The crystals were grown from a mixture of 43.5 µM protein and 65 µM DNA in storage buffer by dehydrating a 1 µL of Rif1-NTD–DNA solution by sitting drop vapor diffusion over a reservoir containing 10 mM NiCl₂, 100 mM Tris-HCl, pH 8, 20% (w/v) polyethylene glycol MME 2000. Crystals appeared within 3 d and were harvested after 1 week. For cryo-protection, the crystal-growth drop was covered with a thin layer of 25% (v/v) PEG 400 made up in storage buffer after which a single crystal was quickly removed and flash-cooled in liquid nitrogen.

Diffraction data were collected and processed as described for the Rif1-NTD in isolation except the averaged intensities were corrected for anisotropy and converted to structure factor amplitudes with **STARANISO** (v. 1.0.4, Global Phasing Ltd.), applying a 1 I/σI anisotropic high-resolution cut-off.

The Rif1-NTD–DNA crystals were similar: all belonged to space group *P2₁2₁2₁* and had approximate unit cell parameters *a* = 87 Å, *b* = 164 Å, *c* = 387 Å. Diffraction was weak and strongly anisotropic. Two crystals were characterized: Rif1-NTD–DNA-I containing 30 bp dsDNA with a 24 nt 3'-tail that diffracted to 5.2 Å resolution; and Rif1-NTD–DNA-II containing 30 bp
dsDNA with a 30 nt 3′-tail that diffracted to 7.5 Å resolution (assuming an isotropic high-resolution CC$_{1/2}$ cut-off of 0.3 in both cases). Details of molecular replacement, DNA identification, model building, and refinement procedures are in the Supplementary note. Full details of the data collection and refinement statistics, including anisotropy analysis for Rif1-NTD–DNA-II are in Table 1.

Surface electrostatic potentials were calculated with APBS57. Structural figures were prepared with PyMOL (v. 1.8.2, Schrödinger).

DNA substrates for electromobility shift assays (EMSA)

Polyacrylamide gel electrophoresis (PAGE)-purified DNA oligonucleotides were obtained from Microsynth (Switzerland) (Supplementary Table 1). DNA concentration was measured by UV absorption using a Nanodrop spectrophotometer (Thermo Scientific). For EMSA, oligonucleotides were labeled by T4 polynucleotide kinase (New England Biolabs) and (γ-32P)ATP at 37°C for 1 h. Reactions were stopped by adding 20 mM EDTA. Oligonucleotides were desalted into 10 mM Tris-HCl pH 8.0, 1 mM MgCl$_2$ and 50 mM NaCl using an Illustra MicroSpin G-25 column (GE healthcare). DNA oligonucleotides at 2 µM were mixed in the combinations listed in Supplementary Table 2 and annealed in 10 mM Tris-HCl pH 8, 1 mM MgCl$_2$, 50 mM NaCl by heating for 5 min to 98°C and cooling at 1°C/min to 4°C. Annealed DNA substrates (20 µL) were purified by 14% PAGE electrophoresis at 4°C and stored in 10 mM Tris-HCl pH 8.0, 1 mM EDTA at 4°C.

Electromobility shift assays (EMSAs) and quantification

Protein concentrations were measured by the Bradford method with a bovine serum albumin (BSA) standard and UV absorption Nanodrop spectrophotometer (Thermo Scientific). EMSAs were performed in a buffer containing 20 mM Tris-HCl pH 8.0, 100 mM NaCl, 2.5 mM MgCl$_2$, 10 mM CaCl$_2$, 0.1 mg/mL BSA, 1 mM TCEP. For simple EMSA titrations (Fig. 2a, e and
Supplementary Fig. 2i), the labelled DNA at a final concentration of 1 nM was added to the
serially diluted protein to obtain the concentrations indicated. The mixture was incubated for 20
min at 20°C prior to analysis. For equimolar titrations (Supplementary Fig. 2j, l), labelled DNA (1
nM final concentration) was added to the protein to obtain the final concentrations indicated.
Serially diluted unlabeled DNA was then added to the mixture at the indicated concentrations.
The mixture was incubated for 20 min at 20°C prior to analysis.

Preincubated protein-DNA solutions were mixed with glycerol at a final concentration of 8% (v/v)
and 10 µL sample was separated by 1.2% (w/v) agarose gel electrophoresis in 0.5 × TBE at 4°C
for 2 h at 150 V. The gels were dried on DE81 chromatography paper (Whatman), exposed to
storage phosphor screens (GE Healthcare), scanned by a Typhoon phosphor imager (GE
Healthcare).

EMSA images were quantified with ImageJ\(^{58}\). Bands were defined across the gel and noise was
subtracted. The intensity of the analyzed bands was normalized to the total intensity of the lane.
The percentages of intensities were plotted (Fig. 2b, 2e and Supplementary Fig. 2k) using
GraphPad Prism 6. The \(K_d\) was calculated assuming specific binding with a Hill slope (\(Y =
B_{max} \times X^h / (K_d^h + X^h)\)) (Fig. 2b). The mean and standard error of the mean were calculated with
GraphPad Prism (Fig. 2e and Supplementary Fig, 2k).

Negative stain EM

For negative stain EM without DNA, Rif1-NTD (residues 100-1322) was re-purified by size
exclusion chromatography (Superdex 200, GE Healthcare). For EM with DNA, oligonucleotide
no. 2 and 4 (Supplementary Table 1) were equilibrated against 50 mM HEPES pH 7.4, 150 mM
NaCl, 10 mM MgCl\(_2\), 1 mM TCEP and annealed in this buffer by heating for 5 min to 98°C and
cooled at 1°C/min to 4°C, forming a 30 bp dsDNA bearing a 30 nt 3'-tail. A sample of suitable
homogeneity for EM analysis was obtained by mixing Rif1-NTD with a threefold molar excess of
3'-tailed DNA. For EM sample preparation, 20 μM of Rif1-NTD was mixed with 60 μM of annealed DNA and was incubated for 15 min on ice prior to separation in a glycerol gradient (10-20% w/v) by ultracentrifugation for 16 h at 214000g (4°C). Fractions containing Rif1-NTD with or without DNA were diluted to ~0.1 mg/mL and absorbed to glow-discharged Quantifoil grids coated with a continuous thin carbon film (S7/2, Cu 400 mesh, 2 nm carbon film, Quantifoil Micro Tools). A 4 μL sample was applied to a grid and negatively stained with 2% (w/v) uranyl acetate. Data were acquired using a Philips CM200FEG transmission electron microscope operated at 200 kV. Images were recorded in low-dose mode with a TVIPS F416 camera (Tietz Video and Image Processing Systems) at a nominal magnification of 50,000×, resulting in a pixel size of 2.2 Å at the sample. A defocus range -0.5 μm to -5 μm was used for data acquisition.

For Rif1-NTD in isolation, 10091 particles were manually selected from 100 micrographs using e2boxer.py from EMAN2 and extracted with a box size of 150 × 150 pixels. For the sample with DNA 39981 particles were selected from 500 micrographs and extracted with a box size of 180 × 180 pixels. A detailed description of the negative stain analysis using SPARX and RELION can be found in the Supplementary note.

The models shown in Supplementary Fig. 2d and 2e were auto-refined by RELION to a maximum resolution of 36 Å Rif1-NTD in isolation and 33 Å for Rif1-NTD+DNA. DNA was not visible, as expected given the resolution and the negative stain conditions.

Yeast techniques

Genotypes of all *Saccharomyces cerevisiae* strains are given in Supplementary Table 3. All strains are long-term stored at -80°C using glycerol-based storage medium. General yeast manipulations were done according to standard methods. Deletions and epitope tagging of genes of interest were done by one-step PCR gene replacement. Point mutations and
deletions in the RIF1 gene were introduced using the delitto perfetto method. Rapid depletion of endogenous Rif1 was achieved using the anchor-away method to sequester Rif1 by cytoplasmic anchoring. For drop assays, strains were grown exponentially (OD$_{600}$ ~0.4) and serial 10-fold dilutions were then spotted on agar plates containing YPAD or selective medium. Plates were recorded after 2-3 d incubation at the indicated temperatures.

Single-cell checkpoint arrest analysis (G2/M assay)

The G2/M cell-cycle arrest assay was performed as described with minor modifications. Cells containing a unique HO endonuclease site flanked by TG80 arrays were grown for 12-14 h in YPAD, then diluted to OD$_{600}$ = 0.1 in YPLG (2% lactic acid, 3% glycerol) and grown for 3 h before HO endonuclease induction by addition of 2% (w/v) galactose. After 2 h, single small-budded cells were dissected on a grid on YPAD plates and analyzed. Every 30 min, cells were checked for cell-cycle restart as indicated by a second round of budding.

Western blotting

Western blots were performed as described using the following antibodies: Anti-Myc (Cell Signaling, mAb #2276) and Anti-Actin (Abcam, Ab 8224).

Chromatin immunoprecipitation (ChIP)

To detect enrichment of proteins in proximity of HO endonuclease cut sites, cell cultures were grown in YPLG medium for 3 h and the HO endonuclease was then induced by adding 2% (w/v) galactose. ChIP was then performed as reported previously. For ChIP analyses at native telomeres, exponentially growing cells in YPAD at the indicated temperatures were collected and ChIP was performed as described. The following antibodies were used for ChIP analysis: Anti-Myc (9E10 from culture supernatant), Anti-Rap1 (culture supernatant) and Anti-RPA (Pierce Biotechnology, scRPA PA1-10301). Primer sequences are available upon request.
Quantification of ssDNA as a measure of 5′-3′ DNA end-resection

Genomic DNA was extracted by a phenol/chloroform and 2-propanol method from 25-50 mL of cell cultures and digested overnight with AluI\(^\text{44}\). qPCR was performed using GoTaq qPCR Master Mix (Promega). To detect the formation of ssDNA, primer pairs (sequences available upon request) flanking AluI in the proximity of an HO endonuclease-induced DSB were used. AluI sites that have been converted to ssDNA by end-resection are resistant to cleavage, leading to increased qPCR product yield. To normalize the data, qPCR amplifications of genomic regions devoid of AluI sites (located at the promoter region of the HMO1 gene or in the SMC2 locus) were performed. qPCR reactions were carried out to assess the efficiency of DSB induction by the HO endonuclease as described\(^\text{65}\). Calculation of % ssDNA was performed for each time point as described\(^\text{44}\).

NHEJ assays

The efficiency of NHEJ as measured by cell survival was determined as described\(^\text{35,36}\). JKM179-derived strains (see Supplementary Table 3) were grown overnight in YPAD, then diluted in YPLG and grown exponentially. For transient HO endonuclease expression, 2% (w/v) galactose was added to the culture medium. At the indicated time points, cells were plated on glucose-containing YPAD agar plates. For reference, cells were removed prior to HO endonuclease induction and plated on glucose-containing medium. HO endonuclease cut efficiency was routinely determined by qPCR\(^\text{65}\) and data were normalized accordingly. Colonies were counted 3 d after plating. NHEJ efficiency was calculated as described\(^\text{35}\). For chronic HO endonuclease expression, cells were plated on medium containing 2% (w/v) galactose and, in parallel, on medium containing glucose. Colonies were counted 3-4 d after plating, and the efficiency of imprecise NHEJ efficiency was calculated as described\(^\text{35}\).

Cell viability in the presence of Zeocin
Exponentially growing cells were plated on YPAD agar containing Zeocin (Zeocin Selection Reagent, ThermoFisher Scientific) and on drug-free plates to determine the plating efficiency by colony outgrowth after incubation for 3-4 d. Resistance of mutant strains to 70 μg/mL Zeocin (Fig. 4d and Supplementary Fig. 5e) was determined relative to wild-type cells. Cell survival on exposure to increasing Zeocin concentrations (Supplementary Fig. 5f) was measured by colony outgrowth against cells of the same strain grown on drug-free plates.

Southern blotting

For the analysis of telomere length, genomic DNA was digested with XhoI, separated on a 0.8% (w/v) agarose gel and transferred to nylon membrane. Transferred DNA was probed with a \(^{32}\)P-radiolabelled TG-repeat probe and detected by autoradiography. Analysis of DNA end-loss was performed as described\(^{42}\). Genomic DNA was digested with EcoRV, separated on 0.8% (w/v) agarose gels, and transferred overnight to nylon membranes. Transferred DNA was crosslinked to the membrane by baking (80°C, 1 h), and probed with \(^{32}\)P-radiolabeled DNA fragments mapping near the HO cut site at the MAT\(\alpha\) locus on chromosome III and the SMC2 locus on chromosome VI. The amount of DNA in each band was determined using a PhosphorImager with Fiji software. The percentage of remaining DNA ends was calculated as described previously\(^{42}\).

Statistical analysis

Quantification of average restart times (t) in single-cell checkpoint arrest assays (Figure 3c) and determination of P-values was done using a Kaplan-Meier survival analysis. A log rank test was used to compare the curves with each other using the Holm-Sidak method for pairwise comparisons as described previously\(^{15}\). Statistical analysis of the anchor-away assay results (Fig. Supplementary Fig. 4 d – g) was performed using an unequal variance t-test (Welch test) in GraphPad Prism 7, comparing cultures with and without depletion of Rif1. Statistical analysis
of NHEJ efficiency (Supplementary Fig. 5a) was performed using a one-way ANOVA test followed by a post-hoc Tukey-Kramer multiple comparison test. P-values and degrees of freedom are reported in the figure and figure legend.

Data availability

Atomic coordinates and structure factors have been deposited in the PDB under accession codes 5NVR and 5NW5. Uncropped images of EMSAs, Western and Southern blots are in the Supplementary Data Set. All reagents, protocols and other data in this study are available from the authors upon request.

Methods-only References

Figure 1

a) Schematic representation of the structure of Rif1-NTD dimer 1 and dimer 2, highlighting the regions of interest.

b) Close-up view of the Rif1-NTD dimer showing the DNA-binding channel I and II.

c) Detailed view of the DNA-binding channel I and II, with dsDNA (30 bp) bound.

d) Diagram illustrating the DNA-binding channels I and II, with dsDNA (30 bp) and dimer symmetry mates.

e) Overall view of the Rif1-NTD dimer with symmetry mates.
Figure 2

(a) Experiment showing different concentrations of Rif1-NTD.
(b) Graphic illustrating the fraction bound and Rif1-NTD concentration in nM.
(c) Image depicting electrostatic potential with specific amino acid substitutions.
(d) Schematic diagram highlighting Rif1 helical units and their interactions.
(e) Graph showing log2 transformation of unbound DNA.
Figure 3

(a) Rif1-Myc ChIP fold enrichment over ACT1

(b) TG13 repeats

(c) % single-large budded cells

(d) % ssDNA

(e) RPA ChIP fold enrichment over ACT1

(f) Rif1-Myc ChIP fold enrichment over ACT1
Figure 5

(a) Intact chromosome

(b) Telomerase

Chromosome break

Uncapped chromosome end

End-resection

Telomerase

Checkpoint-signalling

End-resection