University of Sussex
Browse
stx3274.pdf (997.88 kB)

Cosmic CARNage I: on the calibration of galaxy formation models

Download (997.88 kB)
journal contribution
posted on 2023-06-09, 14:39 authored by Alexander Knebe, Frazer R Pearce, Violeta Gonzalez-Perez, Peter ThomasPeter Thomas, Andrew Benson, Rachel Asquith, Jeremy Blaizot, Richard Bower, Jorge Carretero, Francisco J Castander, Andrea Cattaneo, Sofía A Cora, Darren J Croton, Weiguang Cui, Daniel Cunnama, Julien E Devriendt, Pascal J Elahi, Andreea Font, Fabio Fontanot, Ignacio D Gargiulo, John Helly, Bruno Henriques, Jaehyun Lee, Gary A Mamon, Julian Onions, Nelson D Padilla, Chris Power, Arnau Pujol, Andrés N Ruiz, Chaichalit Srisawat, Adam R H Stevens, Edouard Tollet, Cristian A Vega-Martínez, Sukyoung K Yi
We present a comparison of nine galaxy formation models, eight semi-analytical, and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of comoving width 125h-1 Mpc, with a dark-matter particle mass of 1.24 × 109h-1M) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some ‘memory’ of any previous calibration that served as the starting point (especially for the manually tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3s. The second calibration extended the observational data to include the z = 2 SMF alongside the z ~ 0 star formation rate function, cold gas mass, and the black hole–bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models, we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available.

Funding

Astrophysics and Cosmology - Sussex Consolidated Grant; G1291; STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCIL; ST/L000652/1

History

Publication status

  • Published

File Version

  • Published version

Journal

Monthly Notices of the Royal Astronomical Society

ISSN

0035-8711

Publisher

Oxford University Press

Issue

3

Volume

475

Page range

2936-2954

Department affiliated with

  • Physics and Astronomy Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2018-08-22

First Open Access (FOA) Date

2018-08-22

First Compliant Deposit (FCD) Date

2018-08-17

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC