Numerical and Experimental Time-Domain Characterization of Terahertz Conducting Polymers

Abstract—A comprehensive framework for the theoretical and experimental investigation of thin conducting films for terahertz applications is presented. The electromagnetic properties of conducting polymers spin-coated on low-loss dielectric substrates are characterized by means of terahertz time-domain spectroscopy and interpreted through the Drude-Smith model. The analysis is complemented by an advanced finite-difference time-domain algorithm, which rigorously deals both with the dispersive nature of the involved materials and the extremely subwavelength thickness of the conducting films. Significant agreement is observed among experimental measurements, numerical simulations, and theoretical results. The proposed approach provides a complete toolbox for the engineering of terahertz optoelectronic devices.

Index Terms—Transparent electrodes, terahertz science, finite-different time-domain method, time-domain spectroscopy.

I. INTRODUCTION

Rapid advances are observed in the field of terahertz (THz) technology and its applications in fields such as spectroscopy, wireless communications, and bioimaging [1]. Much of this progress relies on the development of functional materials, e.g., thin conducting films (TCF) that serve the key role of transparent electrodes for the application of control electric signals in THz optoelectronic devices [2], [3]. A primary, but not sole, candidate for this scope is poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) [4].

The performance of TCF is determined mainly by their conductivity and transparency, which in turn depend on the film thickness, the substrate, and the device layout. Hence, the theoretical and experimental characterization of TCF electromagnetic (EM) properties is indispensable for the engineering of THz optoelectronic devices. Compared to bulky conducting materials, such as metals, whose EM response follows the Drude model (electron gas), carriers in TCF can be localized and trapped leading to back-scattering events. This behavior can be captured by an extended Drude-Smith (DS) model [5], which has provided excellent fits for numerous TFC, among which Ag nanowires [6], PEDOT:PSS [4], [7], ZnO films and nanowires [8], [9], ITO nanowhiskers [10], phase transitions in vanadium oxide films [11], and silicon nanocrystals [12].

One of the most popular THz characterization techniques, also routinely employed to investigate TCF, is time-domain spectroscopy (THz-TDS), where the material under test (MUT) is probed with picosecond pulses of THz radiation. The MUT properties are deduced by processing the information on the amplitude and the phase of the transmitted wave [13]. The numerical counterpart of the THz-TDS experimental studies is the finite-difference time-domain (FDTD) method [14], [15], a powerful tool for the time-domain studies of complex EM structures. However, the direct implementation of FDTD in the study of THz-TCF is hindered by two issues: i) the incorporation of the DS dispersive model and ii) the treatment of extremely sub-wavelength TCF thicknesses, typically more than three orders of magnitude smaller than the THz wavelength. The latter, in particular, imposes unnecessarily small temporal steps, by virtue of the Courant-Friedrichs-Lewy condition, which lead to very long computational times in the case of standard FDTD formulations [14].

In this work we provide a framework for the study of THz-TCF, tested on commercially available PEDOT:PSS polymers characterized via THz-TDS. The experimentally measured properties are fitted to the DS model, yielding results consistent with the polymer nominal properties. The investigation is backed by a subcell FDTD formulation that tackles both the dispersive nature and arbitrary TCF thicknesses, being more robust than its conventional uniform-grid counterpart. Although subcell FDTD techniques for thin films are known [16], [17], the proposed algorithm enables the modelling of DS-TCF placed between a Debye medium and a plain dielectric. Hence, it addresses the relevant paradigm for the study of THz-TCF, without being restricted to the specific choice of materials and frequencies. Very good agreement is observed between theoretical, numerical, and experimental results, highlighting the validity of the proposed approach.

II. THEORETICAL AND EXPERIMENTAL STUDIES OF TERAHERTZ THIN CONDUCTING FILMS

The sample geometry and the THz-TDS setup for its characterization are shown in Fig. 1(a,b). A thin layer of PEDOT:PSS is spin-coated on a dielectric substrate, the thicknesses of the two layers being t_1 and t_2, respectively. Figure 1(c) shows the FDTD Yee cell of the employed subcell modelling technique that encompasses the TCF ($\delta_2 \equiv t$). The total cell thickness is $\Delta z = \delta_1 + \delta_2 + \delta_3$, with Δz being the FDTD spatial discretization step. The TCF medium #2 lies between two
are well approximated as Debye media. Last, medium #3 is a many dielectric substrates in the microwave and THz spectrum Debye relative permittivity given by equation in the integral form reads

$$\varepsilon_D(\omega) = \varepsilon_{D,\infty} + \frac{\omega_p^2}{j \omega (\gamma + j \omega)} \left(1 + \frac{c \gamma}{\gamma + j \omega} \right)$$

where ω_p is the electron plasma frequency, γ is the damping rate, c is the fraction of the initial velocity of carriers ($-1 \leq c \leq 0$) and $\varepsilon_{D,\infty}$ is the relative permittivity at infinite frequency. The term χ_{DS1} is the standard Drude expression of the electric susceptibility, while χ_{DS2} is a third-order term with respect to the angular frequency ω, corresponding to the extension proposed by Smith [5].

Medium #1 is considered to be a dielectric substrate with Debye relative permittivity given by

$$\varepsilon_D(\omega) = \varepsilon_{D,\infty} + \frac{\varepsilon_{DS,s} - \varepsilon_{D,\infty}}{1 + j \omega \tau} = \varepsilon_{D,\infty} + \chi_D(\omega),$$

where $\varepsilon_{D,\infty}$ and $\varepsilon_{DS,s}$ are the relative permittivities at the high and low frequency limit, respectively, and τ is the characteristic relaxation time of the medium. This selection significantly broadens the applicability of the algorithm, as many dielectric substrates in the microwave and THz spectrum are well approximated as Debye media. Last, medium #3 is a non-dispersive dielectric.

Here, we briefly provide the salient points for the derivation of the proposed FDTD formulation. Ampère-Maxwell's equation in the integral form reads

$$\int \int_S \frac{\partial \mathbf{D}}{\partial t} dS = \oint_C \mathbf{H} dl$$

where the contour C and the surface S are shown in the Fig. 1(c). The contour integral I_c at time step $n + 1/2$ is

$$I_c^{n+1/2} = \oint_C H^{n+1/2} dl$$

$$= H_y^{n+1/2} (i + \frac{1}{2}, j, k) \Delta y - H_z^{n+1/2} (i + \frac{1}{2}, j, k) \Delta z$$

$$- H_y^{n+1/2} (i + \frac{1}{2}, j, k) \Delta y + H_z^{n+1/2} (i + \frac{1}{2}, j, k) \Delta z$$

where Δy is the cell size in y-direction. The left-hand side of (4) is discretized using central differences

$$D_t^{n+1} (i + \frac{1}{2}, j, k) = D_t^n (i + \frac{1}{2}, j, k) - \frac{\Delta t}{\Delta y \Delta z} I_c^{n+1/2}$$

where D_t is the total dielectric displacement perpendicular to the surface S and Δt is the time step of the FDTD algorithm. D_t is defined as the sum of its x-components in the three media, weighted by the partial surfaces s_1, s_2 and s_3, i.e., $D_t = s_1 D_{tx} + s_2 D_{tx} + s_3 D_{tx}$, where

$$s_1 = \frac{1}{2} \frac{\delta_2 + \delta_3}{\Delta z}, s_2 = \frac{\delta_3}{\Delta z}, s_3 = \frac{1}{2} + \frac{\delta_3}{\Delta z}.$$
TABLE I
FITTED DS PARAMETERS FOR EXPERIMENTALLY INVESTIGATED PEDOT:PSS SAMPLES.

<table>
<thead>
<tr>
<th>Material</th>
<th>(\varepsilon_{DS,\infty})</th>
<th>(\omega_p/2\pi)</th>
<th>(\gamma/2\pi)</th>
<th>(c)</th>
<th>(\sigma_{0,DS})</th>
<th>(\sigma_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orgacon HIL-1005[7]</td>
<td>470</td>
<td>53</td>
<td>2.2</td>
<td>-0.23</td>
<td>547</td>
<td>540</td>
</tr>
<tr>
<td>Clevios P Jet 700</td>
<td>293</td>
<td>54.59</td>
<td>1.4</td>
<td>-0.44</td>
<td>663</td>
<td>667</td>
</tr>
</tbody>
</table>

where

\[a_0 = a_1 = (\varepsilon_{D,s} - \varepsilon_{D,\infty}) \Delta t \]
\[b_0 = \Delta t + 2\gamma, b_1 = \Delta t - 2\gamma \]
\[c_0 = c_2 = \omega_p^2 \Delta t^2, c_1 = 2c_0, \]
\[d_0 = 4 + 2\gamma \Delta t, d_1 = -8, d_2 = 4 - 2\gamma \Delta t \]
\[e_0 = \omega_p^2 c_1 \Delta t^3, e_1 = 3c_0, e_2 = 3c_0, e_3 = c_0 \]
\[f_0 = 8 + 8\gamma \Delta t + 2\gamma^2 \Delta t^2, \]
\[f_1 = -24 - 8\gamma \Delta t + 2\gamma^2 \Delta t^2, \]
\[f_2 = 24 - 8\gamma \Delta t - 2\gamma^2 \Delta t^2, \]
\[f_3 = -8 - 8\gamma \Delta t - 2\gamma^2 \Delta t^2 \]

By transforming (13) into the time domain we obtain the update equations for \(F_D \), \(F_1 \) and \(F_2 \) through

\[F_{D}^{n+1} = \frac{a_0}{b_0} E_0^{n+1} + \frac{a_1}{b_0} E^n - \frac{b_1}{b_0} F_D^n, \]
\[F_{1}^{n+1} = \sum_{m=0}^{2} \frac{c_m}{d_0} E_0^{n+1-m} - \sum_{m=1}^{2} \frac{d_m}{d_0} F_1^{n+1-m}, \]
\[F_{2}^{n+1} = \sum_{m=0}^{3} \frac{e_m}{f_0} E_0^{n+1-m} - \sum_{m=1}^{3} \frac{f_m}{f_0} F_2^{n+1-m}, \]

which are then fed back into (11) for the final update equation of the electric field \(E \). Note that in 3D problems, a special treatment is required at the interfaces between DS and dielectric materials on the \(x-y \) plane, whose update equations are also obtained from the integral form of Maxwell’s equations by proper volume averaging the values of media parameters.

The algorithm’s validity is demonstrated by calculating the transmittance \(T(f) \) of a 100-nm film of PEDOT:PSS, whose DS parameters are given in Table 1 [7]. The substrate is a 545-\(\mu \)m slice of lossless silica (\(\varepsilon_s = 3.842 \)). Figure 2 shows the FDTD results compared to the analytical solution given by

\[\frac{t_{0123}}{t_{0123}} = \frac{t_{0123} P_1}{1 - r_{10} r_{23}}, \]

where \(t_{ij} = 2n_i/(n_i + n_j) \) and \(r_{ij} = (n_j - n_i)/(n_i + n_j) \) are the Fresnel transmittance and reflectance coefficients, respectively, at the interface between media \(i \) and \(j \) and \(n_{i,j} \) their complex refractive indices. The rest of the parameters in (17) are \(t_{123} = t_{12} t_{23} P_3/(1 - r_{12} r_{23} P_3^2), r_{123} = (r_{12} + r_{23} P_3^2)/(1 + r_{12} r_{23} P_3^2) \), where \(P_3 = \exp(i\kappa n_i d_i) \), \(d_i \) being the thickness of medium \(i \) and \(k \) the free-space wavenumber. The FDTD spatial step \(\Delta x = 1 \) \(\mu \)m, i.e., one order of magnitude larger than the film thickness. The maximum error of the FDTD results in the examined spectrum is less than 0.7%. The oscillations in \(T(f) \) stem from the Fabry-Pérot effect in the substrate. The spectra for \(c = 0 \) (Drude) and \(c = -1 \) (full backscattering) are also included, in order to demonstrate the algorithm’s capability of modelling the full range of DS media.

Next, we experimentally study a thin layer of PEDOT:PSS (Clevios™ P Jet 700 conducting sulfonate polymer by Heraeus), having a nominal DC conductivity \(\sigma_{DC} = 667 \) S/cm. The substrate is a 100-\(\mu \)m film of the cyclo-olefin polymer Zeonor (2F14-100), an excellent substrate for THz components thanks to its record-low absorption losses, mechanical flexibility, and heat resistance [18]–[20]. First, the Zeonor substrate was treated with reactive ion-etching (O₂ ions for 90 sec) to promote adhesion of PEDOT:PSS on the hydrophobic substrate. Then, the PEDOT:PSS solution was spin-coated at 500 rpm for 60 sec for a nominal thickness of 50 nm. Finally, the sample was baked at 120°C for 15 min.

The sample was placed in the free-space beam path of a home-built THz-TDS setup, based on a mechanically tunable delay line as in Fig. 1(b). The setup employed a linearly-polarized fs-pulse laser at 800 nm and InGaAs photoconductive antennas with a peak response at 0.5 THz and a signal-to-noise ratio SNR > 40 dB. The measurements were performed in N₂ environment at a relative humidity of 0.1% at 22.5°C. A fast Fourier transform of the time-domain measured signal was employed to calculate the spectral characteristics of the transmitted THz wave transmitted. The total time scan was 100 ps, corresponding to a spectral resolution of 10 GHz.

The experimentally measured values were then fitted in the 0.3-1 THz window to the DS model using the nonlinear optimization Nelder-Mead technique implemented in the fminsearch function of Matlab™. The free variables were the DS parameters \(\varepsilon_{DS,\infty}, \omega_p, \gamma \) and \(c \), plus the film thickness \(t \), which was constrained in a \(\pm 10\% \) interval around 50 nm to account for small inaccuracies in the process of spin-coating. The minimized objective function was defined as

\[F = \sum_{i=1}^{N} \left| \frac{T_{m,i} - T_{c,i}}{T_{m,i}} \right| + \left| \frac{P_{m,i} - P_{c,i}}{P_{m,i}} \right|, \]

where the subscripts \(m \) and \(c \) refer to the TDS measured values of \(T(f) \) and the accumulated phase \(P(f) \) and those calculated via the analytical solution at each iteration of the optimization process. The sum runs for \(N = 72 \) values in the
0.3–1 THz window ($\Delta f = 10$ GHz), in which the SNR was greater than 20 dB. The fitting parameters are given in Table 1 for a derived thickness of $t = 47$ nm. The resulting DC conductivity $\sigma_{0,DC} = (1 + \epsilon)\epsilon_0\omega_0/\gamma$, is 663 S/cm, i.e., very close to the manufacturer’s nominal value $\sigma_0 = 667$ S/cm.

Figure 3 provides a comparison of the sample characterization by means of THz-TDS, the FDTD algorithm ($\Delta z = 0.5\mu m$), and the analytical solution. In the FDTD calculations, Zeonor was modeled as a Debye medium ($\varepsilon_{D,\infty} = 2.322$, $\varepsilon_{D,\infty} = 2.329$, and $\tau = 0.29$ ps), describing the very low dispersion of the material around the refractive index $n_Z = 1.525 - j0.001$ [21], [22]. Given that Zeonor’s dielectric properties are well-known, its Debye parameters were not included in the fitting algorithm in order to avoid convergence issues and/or spurious solutions due to the increased number of unknowns. To reproduce the exact conditions of the experiment, the TDS-measured reference pulse was fed as excitation in the FDTD algorithm. Excellent agreement between the analytical and numerical results is observed. The slight rippling of the TDS measured values is not of physical origin and it is attributed to measurement noise. To compare with, the algorithm ran almost 2500 times faster and showed better overall performance than a DS-FDTD simulation without the subcell formulation and a uniform step of $\Delta z = 10$ nm.

III. CONCLUSIONS

In brief, we provide a complete characterization of PEDOT:PSS conducting films for THz applications based on the DS model, which captures correctly their EM properties. The analysis is backed by a subcell-based FDTD algorithm, capable of describing the dispersive nature of both the TCF and the dielectric substrate. The proposed methodology can be directly applied to the design of THz optoelectronic devices employing TCF as transparent electrodes.

REFERENCES