High capacity multiuser multiantenna communication techniques

Al-Hussaibi, Walid Awad (2011) High capacity multiuser multiantenna communication techniques. Doctoral thesis (DPhil), University of Sussex.

[img]
Preview
PDF - Published Version
Download (2MB) | Preview

Abstract

One of the main issues involved in the development of future wireless communication systems is the multiple access technique used to efficiently share the available spectrum among users. In rich multipath environment, spatial dimension can be exploited to meet the increasing number of users and their demands without consuming extra bandwidth and power. Therefore, it is utilized in the multiple-input multiple-output (MIMO) technology to increase the spectral efficiency significantly. However, multiuser MIMO (MU-MIMO) systems are still challenging to be widely adopted in next generation standards. In this thesis, new techniques are proposed to increase the channel and user capacity and improve the error performance of MU-MIMO over Rayleigh fading channel environment.

For realistic system design and performance evaluation, channel correlation is considered as one of the main channel impurities due its severe influence on capacity and reliability. Two simple methods called generalized successive coloring technique (GSCT) and generalized iterative coloring technique (GICT) are proposed for accurate generation of correlated Rayleigh fading channels (CRFC). They are designed to overcome the shortcomings of existing methods by avoiding factorization of desired covariance matrix of the Gaussian samples. The superiority of these techniques is demonstrated by extensive simulations of different practical system scenarios.

To mitigate the effects of channel correlations, a novel constellation constrained MU-MIMO (CC-MU-MIMO) scheme is proposed using transmit signal design and maximum likelihood joint detection (MLJD) at the receiver. It is designed to maximize the channel capacity and error performance based on principles of maximizing the minimum Euclidean distance (dmin) of composite received signals. Two signal design methods named as unequal power allocation (UPA) and rotation constellation (RC) are utilized to resolve the detection ambiguity caused by correlation. Extensive analysis and simulations demonstrate the effectiveness of considered scheme compared with conventional MU-MIMO. Furthermore, significant gain in SNR is achieved particularly in moderate to high correlations which have direct impact to maintain high user capacity.

A new efficient receive antenna selection (RAS) technique referred to as phase difference based selection (PDBS) is proposed for single and multiuser MIMO systems to maximize the capacity over CRFC. It utilizes the received signal constellation to select the subset of antennas with highest (dmin) constellations due to its direct impact on the capacity and BER performance. A low complexity algorithm is designed by employing the Euclidean norm of channel matrix rows with their corresponding phase differences. Capacity analysis and simulation results show that PDBS outperforms norm based selection (NBS) and near to optimal selection (OS) for all correlation and SNR values. This technique provides fast RAS to capture most of the gains promised by multiantenna systems over different channel conditions.

Finally, novel group layered MU-MIMO (GL-MU-MIMO) scheme is introduced to exploit the available spectrum for higher user capacity with affordable complexity. It takes the advantages of spatial difference among users and power control at base station to increase the number of users beyond the available number of RF chains. It is achieved by dividing the users into two groups according to their received power, high power group (HPG) and low power group (LPG). Different configurations of low complexity group layered multiuser detection (GL-MUD) and group power allocation ratio (η) are utilized to provide a valuable tradeoff between complexity and overall system performance. Furthermore, RAS diversity is incorporated by using NBS and a new selection algorithm called HPG-PDBS to increase the channel capacity and enhance the error performance. Extensive analysis and simulations demonstrate the superiority of proposed scheme compared with conventional MU-MIMO. By using appropriate value of (η), it shows higher sum rate capacity and substantial increase in the user capacity up to two-fold at target BER and SNR values.

Item Type: Thesis (Doctoral)
Schools and Departments: School of Engineering and Informatics > Engineering and Design
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101 Telecommunication Including telegraphy, telephone, radio, radar, television
Depositing User: Library Cataloguing
Date Deposited: 09 Dec 2011 14:32
Last Modified: 21 Aug 2015 14:34
URI: http://sro.sussex.ac.uk/id/eprint/7489

View download statistics for this item

📧 Request an update