Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach

Cuadrado, Antonio, Manda, Gina, Hassan, Ahmed, Alcaraz, María José, Barbas, Coral, Daiber, Andreas, Ghezzi, Pietro, León, Rafael, López, Manuela G, Oliva, Baldo, Pajares, Marta, Rojo, Ana I, Robledinos-Antón, Natalia, Valverde, Angela M, Guney, Emre and Schmidt, Harald H H W (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacological reviews, 70 (2). pp. 348-383. ISSN 1521-0081

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB)

Abstract

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.

Item Type: Article
Schools and Departments: Brighton and Sussex Medical School > Clinical and Experimental Medicine
Subjects: R Medicine
R Medicine > RM Therapeutics. Pharmacology
Depositing User: Pietro Ghezzi
Date Deposited: 26 Mar 2018 15:24
Last Modified: 26 Mar 2018 15:24
URI: http://sro.sussex.ac.uk/id/eprint/74652

View download statistics for this item

📧 Request an update