Lithium in drinking water and suicide rates across the East of England

Nikolett Kabacs, Anjum Memon, Thom Obinwa, Jan Stochl and Jesus Perez

Access the most recent version at doi:10.1192/bjp.bp.110.088617

References

This article cites 11 articles, 8 of which can be accessed free at:
http://bjp.rcpsych.org/cgi/content/full/198/5/406#References

Reprints/permissions

To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at

http://bjp.rcpsych.org/cgi/eletter-submit/198/5/406

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here

Downloaded from

bjp.rcpsych.org on May 9, 2011
Published by The Royal College of Psychiatrists
Lithium is found naturally in variable amounts in food and water; and is widely and effectively used in pharmacological doses in psychiatry for the treatment and prevention of manic and depressive episodes. Mood disorders are characterised by a 30–50 times increased risk of suicide that can be reduced with lithium treatment. Lithium has also been found to have an anti-suicidal property that might be independent from its mood-stabilising effect. The recommended serum levels for lithium range between 0.6 and 1.0 mmol/l for maintenance therapy of bipolar disorder. However, the optimal blood level at which lithium exerts a possible preventive effect against suicide has not been confirmed. In an ecological study in 1990, Schrauzer & Shrestha reported that the average suicide rates in 27 counties of Texas, USA, over a 10-year period, were consistently lower in counties with relatively high natural lithium content in the drinking water compared with those with medium or low content. Recently, Ohgami et al examined lithium levels in tap water in the 18 municipalities of Oita prefecture in Japan, and correlated these with the standardised mortality ratios (SMRs) for suicide in each municipality. They found that lithium levels in tap water have been significantly and negatively correlated with suicide. We measured lithium levels in tap water in the 47 subdivisions of the East of England and correlated these with the respective suicide standardised mortality ratio in each subdivision. We found no association between lithium in drinking water and suicide rates across the East of England from 2006 to 2008.

Declaration of interest

None.

Results

Overall, for the 3-year period 2006–2008 (pooled), the SMR for suicide in the East of England was 98, varying from 36 to 194 across all the subdivisions. The SMR in males was 95 (range 35–213) and in females 108 (range 0–292).

Lithium levels in drinking water ranged from <1 to 21 µg/l across the 47 subdivisions of the East of England. The distribution of these levels in this large geographical area revealed little or no variation if the water was supplied by the same company.

The analyses of these data showed that there was no correlation between lithium levels in drinking water and the suicide SMRs in the 47 subdivisions of the East of England ($r = -0.054$, $P = 0.715$ for males; $r = 0.042$, $P = 0.777$ for females; $r = -0.03$, $P = 0.838$ for both genders). Similarly, the bivariate scatter plots showed no association between lithium levels in drinking water and the suicide SMRs (Fig. 1).
been tested with serum levels that are considered effective for prevention of relapse in mood disorders (0.6–1.0 mmol/l).1,2–4

Drinking water is not the only dietary source of lithium. According to the US Environment Protection Agency, some grains and vegetables are much richer in lithium than drinking water. Moreover, daily lithium intake oscillates between 650 and 3100 µg in adults. This means that drinking water can only be a minor contributor to lithium consumption in humans.13

Implications

Further studies are required to relate specific dietary lithium consumption to expected serum lithium levels, as well as to ascertain at what range or threshold, if any, lithium could prevent suicidal behaviour at the population level. Future research may also benefit from accounting for other variables associated with possible variations in suicide rates, for example, sociodemographic characteristics or standards of care for people with mental disorders, specifically mood disorders, in each particular geographical area.

Discussion

Contrary to the two previous studies (from USA in 1990 and Japan in 2009), we found no association between lithium levels in drinking (tap) water and mortality from suicide in the East of England, a region with a total population of 5.7 million. A variety of factors may have played a part in these differing results. For example, Ohgami et al weighted data by population sizes within the 18 municipalities of the Oita prefecture (population 1.2 million).6 It raises the possibility that the apparent negative correlation was perhaps as a result of a single measurement point, i.e. Oita city had the largest population (n = 463,973, 38%). In the East of England, there was relatively little variation in population size across the 47 subdivisions. Also, the lithium levels in drinking water in Texas and in the Oita prefecture ranged from 0 to 160 µg/l, and 0.7 to 59 µg/l, respectively.5,6 These values represent a much wider range and higher top level than those found in the East of England (<1–21 µg/l). Accordingly, the normal distribution of serum levels of lithium in these populations might also differ, and be hypothetically responsible for the discrepancy between these results and the respective suicide rates.

All these populations could also differ with regard to ethnic, religious and social class distribution, prevalence and management of mental disorders and mobility patterns. In 2008, the East of England had one of the highest total net in-migration rates of all English regions, of which half was due to international in-migration (www.statistics.gov.uk). However, mobility patterns are unlikely to influence the regional suicide rates in the East of England, as an incident of suicide is only assigned to a particular subdivision if the individual has been resident in that subdivision for at least 6 months.

It is still not clear what amount of lithium in human serum can provide an independent protective effect for suicide. The naturally occurring serum levels of lithium in adults range between 7 and 28 µg/l (0.001–0.004 mmol/l);13 nonetheless, the supposedly preventive therapeutic level to prevent suicide has only

![Fig. 1 Lithium levels in drinking (tap) water and standardised mortality ratios (SMRs) for suicide from 2006 to 2008 (pooled) in the 47 subdivisions of the East of England. The size of the dot represents population size in each subdivision.](image-url)

Contrary to the two previous studies (from USA in 1990 and Japan in 2009), we found no association between lithium levels in drinking (tap) water and mortality from suicide in the East of England, a region with a total population of 5.7 million. A variety of factors may have played a part in these differing results. For example, Ohgami et al weighted data by population sizes within the 18 municipalities of the Oita prefecture (population 1.2 million).6 It raises the possibility that the apparent negative correlation was perhaps as a result of a single measurement point, i.e. Oita city had the largest population (n = 463,973, 38%). In the East of England, there was relatively little variation in population size across the 47 subdivisions. Also, the lithium levels in drinking water in Texas and in the Oita prefecture ranged from 0 to 160 µg/l, and 0.7 to 59 µg/l, respectively.5,6 These values represent a much wider range and higher top level than those found in the East of England (<1–21 µg/l). Accordingly, the normal distribution of serum levels of lithium in these populations might also differ, and be hypothetically responsible for the discrepancy between these results and the respective suicide rates.

All these populations could also differ with regard to ethnic, religious and social class distribution, prevalence and management of mental disorders and mobility patterns. In 2008, the East of England had one of the highest total net in-migration rates of all English regions, of which half was due to international in-migration (www.statistics.gov.uk). However, mobility patterns are unlikely to influence the regional suicide rates in the East of England, as an incident of suicide is only assigned to a particular subdivision if the individual has been resident in that subdivision for at least 6 months.

It is still not clear what amount of lithium in human serum can provide an independent protective effect for suicide. The naturally occurring serum levels of lithium in adults range between 7 and 28 µg/l (0.001–0.004 mmol/l);13 nonetheless, the supposedly preventive therapeutic level to prevent suicide has only

Contrary to the two previous studies (from USA in 1990 and Japan in 2009), we found no association between lithium levels in drinking (tap) water and mortality from suicide in the East of England, a region with a total population of 5.7 million. A variety of factors may have played a part in these differing results. For example, Ohgami et al weighted data by population sizes within the 18 municipalities of the Oita prefecture (population 1.2 million).6 It raises the possibility that the apparent negative correlation was perhaps as a result of a single measurement point, i.e. Oita city had the largest population (n = 463,973, 38%). In the East of England, there was relatively little variation in population size across the 47 subdivisions. Also, the lithium levels in drinking water in Texas and in the Oita prefecture ranged from 0 to 160 µg/l, and 0.7 to 59 µg/l, respectively.5,6 These values represent a much wider range and higher top level than those found in the East of England (<1–21 µg/l). Accordingly, the normal distribution of serum levels of lithium in these populations might also differ, and be hypothetically responsible for the discrepancy between these results and the respective suicide rates.

All these populations could also differ with regard to ethnic, religious and social class distribution, prevalence and management of mental disorders and mobility patterns. In 2008, the East of England had one of the highest total net in-migration rates of all English regions, of which half was due to international in-migration (www.statistics.gov.uk). However, mobility patterns are unlikely to influence the regional suicide rates in the East of England, as an incident of suicide is only assigned to a particular subdivision if the individual has been resident in that subdivision for at least 6 months.

It is still not clear what amount of lithium in human serum can provide an independent protective effect for suicide. The naturally occurring serum levels of lithium in adults range between 7 and 28 µg/l (0.001–0.004 mmol/l);13 nonetheless, the supposedly preventive therapeutic level to prevent suicide has only

Contrary to the two previous studies (from USA in 1990 and Japan in 2009), we found no association between lithium levels in drinking (tap) water and mortality from suicide in the East of England, a region with a total population of 5.7 million. A variety of factors may have played a part in these differing results. For example, Ohgami et al weighted data by population sizes within the 18 municipalities of the Oita prefecture (population 1.2 million).6 It raises the possibility that the apparent negative correlation was perhaps as a result of a single measurement point, i.e. Oita city had the largest population (n = 463,973, 38%). In the East of England, there was relatively little variation in population size across the 47 subdivisions. Also, the lithium levels in drinking water in Texas and in the Oita prefecture ranged from 0 to 160 µg/l, and 0.7 to 59 µg/l, respectively.5,6 These values represent a much wider range and higher top level than those found in the East of England (<1–21 µg/l). Accordingly, the normal distribution of serum levels of lithium in these populations might also differ, and be hypothetically responsible for the discrepancy between these results and the respective suicide rates.

All these populations could also differ with regard to ethnic, religious and social class distribution, prevalence and management of mental disorders and mobility patterns. In 2008, the East of England had one of the highest total net in-migration rates of all English regions, of which half was due to international in-migration (www.statistics.gov.uk). However, mobility patterns are unlikely to influence the regional suicide rates in the East of England, as an incident of suicide is only assigned to a particular subdivision if the individual has been resident in that subdivision for at least 6 months.

It is still not clear what amount of lithium in human serum can provide an independent protective effect for suicide. The naturally occurring serum levels of lithium in adults range between 7 and 28 µg/l (0.001–0.004 mmol/l);13 nonetheless, the supposedly preventive therapeutic level to prevent suicide has only

Contrary to the two previous studies (from USA in 1990 and Japan in 2009), we found no association between lithium levels in drinking (tap) water and mortality from suicide in the East of England, a region with a total population of 5.7 million. A variety of factors may have played a part in these differing results. For example, Ohgami et al weighted data by population sizes within the 18 municipalities of the Oita prefecture (population 1.2 million).6 It raises the possibility that the apparent negative correlation was perhaps as a result of a single measurement point, i.e. Oita city had the largest population (n = 463,973, 38%). In the East of England, there was relatively little variation in population size across the 47 subdivisions. Also, the lithium levels in drinking water in Texas and in the Oita prefecture ranged from 0 to 160 µg/l, and 0.7 to 59 µg/l, respectively.5,6 These values represent a much wider range and higher top level than those found in the East of England (<1–21 µg/l). Accordingly, the normal distribution of serum levels of lithium in these populations might also differ, and be hypothetically responsible for the discrepancy between these results and the respective suicide rates.

All these populations could also differ with regard to ethnic, religious and social class distribution, prevalence and management of mental disorders and mobility patterns. In 2008, the East of England had one of the highest total net in-migration rates of all English regions, of which half was due to international in-migration (www.statistics.gov.uk). However, mobility patterns are unlikely to influence the regional suicide rates in the East of England, as an incident of suicide is only assigned to a particular subdivision if the individual has been resident in that subdivision for at least 6 months.

It is still not clear what amount of lithium in human serum can provide an independent protective effect for suicide. The naturally occurring serum levels of lithium in adults range between 7 and 28 µg/l (0.001–0.004 mmol/l);13 nonetheless, the supposedly preventive therapeutic level to prevent suicide has only