STOCHASTIC CHOICE AND CONSIDERATION SETS

BY PAOLA MANZINI AND MARCO MARIOTTI

We model a boundedly rational agent who suffers from limited attention. The agent considers each feasible alternative with a given (unobservable) probability, the attention parameter, and then chooses the alternative that maximizes a preference relation within the set of considered alternatives. We show that this random choice rule is the only one for which the impact of removing an alternative on the choice probability of any other alternative is asymmetric and menu independent. Both the preference relation and the attention parameters are identified uniquely by stochastic choice data.

KEYWORDS: Discrete choice, random utility, logit model, Luce model, consideration sets, bounded rationality, revealed preferences.

1. INTRODUCTION

We consider a boundedly rational agent who maximizes a preference relation but makes random choice errors due to imperfect attention. We extend the classical revealed preference method to this case of bounded rationality, and show how an observer of choice frequencies can (i) test, by means of simple axioms, whether the data can have been generated by the model, and (ii) if the answer to (i) is in the affirmative, infer uniquely both preferences and attention.

Most models of economic choice assume deterministic behavior. Choice responses are a function \(c \) that indicates the selection \(c(A) \) the agent makes from menu \(A \). This holds true both for the classical “rational” model of preference maximization (Samuelson (1938), Richter (1966)) and for more recent models of boundedly rational choice. Yet there is a gap between such theories and real data, which are noisy: individual choice responses typically exhibit variability, in both experimental and market settings (McFadden (2000)). We assume choice responses to be given by a probability distribution \(p \) that indicates the probability \(p(a, A) \) that alternative \(a \) is selected from menu \(A \), as in the pioneering work of Luce (1959), Block and Marschak (1960), and Marschak (1960), and more recently Gul, Natzenzon, and Pesendorfer (2010) (henceforth, GNP).

The source of choice errors in our model is the agent’s failure to consider all feasible alternatives. For example, a consumer buying a new PC is not aware of...
all the latest models and specifications; a time-pressured doctor overviews the relevant disease for the given set of symptoms; an ideological voter deliberately ignores some candidates independently of their policies. In these examples, the agent is able to evaluate the alternatives he considers (unlike, e.g., a consumer who is uncertain about the quality of a product). Yet, for various reasons, he does not rationally evaluate all objectively available alternatives in \(A \), but only a (possibly strict) subset of them, the consideration set \(C(A) \). Once a \(C(A) \) has been formed, a final choice is made by maximizing a preference relation over \(C(A) \), which we assume to be standard (complete and transitive).

This two-step conceptualization of the act of choice is rooted in psychology and marketing science, and it has recently gained prominence in economics through the works of Masatlioglu, Nakajima, and Ozbay (2012) (henceforth, MNO) and Eliaz and Spiegler (2011a, 2011b). The core development in our model with respect to earlier works is that the composition of \(C(A) \) is stochastic. Each alternative \(a \) is considered with a probability \(\gamma(a) \), the attention parameter relative to alternative \(a \). For example, \(\gamma(a) \) may indirectly measure the degree of brand awareness for a product, or the (complement of) the willingness of an agent to seriously evaluate a political candidate. The assumption that \(\gamma(a) \) is menu independent is a substantive one. It does have, however, empirical support in some contexts. And, at the theoretical level, the hypothesis of independent attention parameters is a natural starting point. Unrestricted menu dependence yields a model with no observable restrictions (Theorem 2), while it is not clear a priori what partial restrictions should be imposed on menu dependence.

MNO’s (2012) work is especially relevant for this paper, as it was the first to study how attention and preferences can be retrieved from choice data in a consideration set model of choice. However, like in many other two-stage deterministic models of choice, it is not possible in that model to pin down the primitives by observing the choice data that it generates. An attractive feature of our approach is that it affords a unique identification of the primitives. In particular, the preference for \(a \) over \(b \) is identified by the fact that removing \(a \) from a menu containing \(b \) increases the probability that \(b \) is chosen (this change in probability is called the impact of \(a \) on \(b \)). Our main result (Theorem 1) characterizes the model with two simple axioms, which state the asymmetry and menu independence of the impacts.

3Goeree (2008) quantified this phenomenon with empirical data.
4Wilson (2008) reported that African Americans tend to ignore Republican candidates in spite of the overlap between their policy preferences and the stance of the Republicans, and even if they are dissatisfied with the Democratic candidate.
5See, for example, van Nierop, Bronnenberg, Paap, Wedel, and Franses (2010).
6For example, our own “shortlisting” method (Manzini and Mariotti (2007)).
7We give an example in Section 6. Tyson (2013) clarified the general structure of two-stage models of choice.
The model can also be viewed as a special type of Random Utility Maximization (see Section 7.1) and it rationalizes some plausible types of choice mistakes that cannot be captured by the Luce (1959) rule (the leading type of restriction of Random Utility Maximization), in which
\[p(a|A) = \frac{u(a)}{\sum_{b \in A} u(b)} \]
for some strictly positive utility function \(u \). The Luce rule is equivalent to the multinomial logit model (McFadden (1974)) popular in econometric studies, which assumes the maximization of a random utility with additive and Gumbel-distributed errors. This is a very specific error model and it is plausible to conjecture that an agent may make different types of mistakes. The Luce rule is incompatible, for example, with choice frequency reversals of the form
\[p(a|\{a, b, c\}) > p(b|\{a, b, c\}) \]
and
\[p(b|\{a, b\}) > p(a|\{a, b\}) \]
Because in our model the preference relation is asymmetric but it is not revealed by crude choice probabilities, such reversals can be accommodated (Example 1). Choice frequency reversals of various kinds have been observed experimentally and they are natural when attention influences choice. For example, a superior but unbranded cereal \(a \) may be chosen less frequently than a mediocre but branded cereal \(b \), simply because \(a \) is not considered. But if a third intermediate cereal \(c \) becomes available, then \(b \) will be chosen less often (it will not be chosen whenever \(c \) is considered), while \(a \) will be chosen with the same frequency as before, so that a reversal may occur. Similarly, in spite of the transitivity of the underlying preference, the random consideration set model is compatible with forms of stochastic intransitivity that are instead excluded by Luce (Section 4.2). Finally, a third important behavioral distinction from the Luce rule concerns the well-known blue bus/red bus example (Section 4.1).

2. RANDOM CHOICE RULES

There is a nonempty finite set of alternatives \(X \), and a domain \(D \) of subsets (the menus) of \(X \). We will assume that the domain satisfies the following “richness” assumption: \(\{a, b, c\} \in D \) for all distinct \(a, b, c \in X \), and \(A \in D \) whenever \(B \in D \) and \(A \subseteq B \). We allow the agent not to pick any alternative from a menu, so we also assume the existence of a default alternative \(a^* \) (e.g., walking away from the shop, abstaining from voting, exceeding the time limit for a move in a game of chess). Denote \(X^* = X \cup \{a^*\} \) and \(A^* = A \cup \{a^*\} \) for all \(A \in D \).

DEFINITION 1: A random choice rule is a map \(p: X^* \times D \to [0, 1] \) such that:
\[\sum_{a \in A^*} p(a, A) = 1 \text{ for all } A \in D; \]
\[p(a, A) = 0 \text{ for all } a \notin A^*; \]
and \(p(a, A) \in (0, 1) \) for all \(a \in A^* \), for all \(A \in D \setminus \emptyset \).

The interpretation is that \(p(a, A) \) denotes the probability that the alternative \(a \in A^* \) is chosen when the possible choices (in addition to the default \(a^* \))
faced by the agent are the alternatives in A. Note that a^* is the action taken when the menu is empty, so that $p(a^*, \emptyset) = 1$.

We define a new type of random choice rule by assuming that the agent has a strict preference ordering \succ on A. The preference \succ is applied only to a consideration set $C(A) \subseteq A$ of alternatives (the set of alternatives the decision maker pays attention to). We allow for $C(A)$ to be empty, in which case the agent picks the default option a^*, so that $p(a^*, A)$ is the probability that $C(A)$ is empty. The membership of $C(A)$ for the alternatives in A is probabilistic. For all $A \in \mathcal{D}$, each alternative a has a probability $\gamma(a) \in (0, 1)$ of being in $C(A)$. We state this formally as follows.

Definition 2: A random consideration set rule is a random choice rule $p_{\succ, \gamma}$ for which there exists a pair (\succ, γ), where \succ is a strict total order on X and γ is a map $\gamma : X \rightarrow (0, 1)$, such that

$$p_{\succ, \gamma}(a, A) = \gamma(a) \prod_{b \in A : b \succ a} (1 - \gamma(b))$$

for all $A \in \mathcal{D}$, for all $a \in A$.

3. Characterization

3.1. Revealed Preference and Revealed Attention

Suppose the choice data are generated by a random consideration set rule. Can we infer the preference ordering from the choice data? One way to extend the revealed preference ordering of rational deterministic choice to stochastic choices is to declare $a \succ b$ iff $p(a, A) > p(b, A)$ for some menu A (see GNP (2010)). However, depending on the underlying choice procedure, a higher choice frequency for a might not be due to a genuine preference for a over b, and indeed, this is not the way preferences are revealed in the random consideration set model. The discrepancy is due to the fact that an alternative may be chosen more frequently than another by virtue of the attention paid to it as well as of its ranking. We consider a different natural extension of the deterministic revealed preference that accounts for this feature while retaining the same flavor as the standard nonstochastic environment.

In the deterministic case, the preference for a over b has (among others) the observable feature that b can turn from rejected to chosen when a is removed. This feature reveals unambiguously that a is preferred to b, and has an analog in our random consideration set framework. When a is ranked below b, there is no event in which the presence of a in the consideration set matters for the choice of b; therefore, if removing a increases the choice probability of b, it means that a must be better ranked than b. And conversely, if $a \succ b$, then excising a from A removes the event in which a is considered (in which

9We use the convention that the product over the empty set is equal to 1.
case b is not chosen), so that the probability of choosing b increases. Thus, $p(b, A \setminus \{a\}) > p(b, A)$ defines the revealed preference relation $a > b$ of our model. We will show that this relation is revealed uniquely.\footnote{It is easy to see that $p(a, A) = p(a, A \setminus \{b\})$ also reveals the preference for a over b in our model (again in analogy to rational deterministic choice).}

Next, given a preference \succ, the attention paid to an alternative a is revealed directly by the probability of choice in any menu in which a is the best alternative. For example, in Theorem 1, we admit all singleton menus, so that $\gamma(a) = p(a, \{a\}) = 1 - p(a^*, \{a\})$. However, $\gamma(a)$ may be identified even when the choice probabilities from some menus (singletons, in particular) cannot be observed. Provided that there are at least three alternatives and that binary menus are included in the domain, identification occurs via the formula

$$\gamma(a) = 1 - \sqrt{\frac{p(a^*, \{a, b\}) p(a^*, \{a, c\})}{p(a^*, \{b, c\})}},$$

which must hold since, under the model, $p(a^*, \{b, c\}) = (1 - \gamma(b))(1 - \gamma(c))$, and therefore,

$$(1 - \gamma(a))^2 p(a^*, \{b, c\})
= (1 - \gamma(a))^2 [(1 - \gamma(b))(1 - \gamma(c))]
= [(1 - \gamma(a))(1 - \gamma(b))][(1 - \gamma(a))(1 - \gamma(c))]
= p(a^*, \{a, b\}) p(a^*, \{a, c\}) .$$

This identification strategy can be further generalized using any disjoint menus B and C instead of the alternatives b and c in the formula.\footnote{We thank two referees for suggesting these points.}

These considerations suggest that the restrictions on observable choice data that characterize the model are those ensuring that, first, the revealed preference relation \succ indicated above is well-behaved, that is, it is a strict total order on the alternatives; and, second, that the observed choice probabilities are consistent with this \succ being maximized on the consideration sets that are stochastically generated by the revealed attention parameters.

3.2. Axioms and Characterization Theorem

Our axioms constrain the impact

$$\frac{p(a, A \setminus \{b\})}{p(a, A)}$$
that an alternative \(b \in A \in \mathcal{D} \) has, in menu \(A \), on another alternative \(a \in A^* \), with \(a \neq b \). If \(\frac{p(a,A \setminus \{b\})}{p(a,A)} > 1 \), we say that \(b \) boosts \(a \), and if \(\frac{p(a,A \setminus \{b\})}{p(a,A)} = 1 \), that \(b \) is neutral for \(a \). The axioms are intended for all \(A, B \in \mathcal{D} \) and for all \(a, b \in A \cap B \), \(a \neq b \).

I-ASYMMETRY: \(\frac{p(a,A \setminus \{b\})}{p(a,A)} \neq 1 \Rightarrow \frac{p(b,A \setminus \{a\})}{p(b,A)} = 1. \)

I-INDEPENDENCE: \(\frac{p(a,A \setminus \{b\})}{p(a,A)} = \frac{p(a,B \setminus \{b\})}{p(a,B)} \) and \(\frac{p(a^*,A \setminus \{b\})}{p(a^*,A)} = \frac{p(a^*,B \setminus \{b\})}{p(a^*,B)}. \)

i-Asymmetry says that if \(b \) is not neutral for \(a \) in a menu, then \(a \) must be neutral for \(b \) in the same menu. Note how this axiom rules out randomness due to “utility errors,” while it is compatible with “consideration errors.” It is a stochastic analog of a property of rational deterministic choice: if the presence of \(b \) determines whether \(a \) is chosen, then \(b \) is better than \(a \), and therefore, the presence of \(a \) cannot determine whether \(b \) is chosen.

i-Independence states that the impact of an alternative on another cannot depend on which other alternatives are present in the menu. It is a simple form of menu independence, alternative to Luce’s IIA (Luce (1959)):

LUCE’S IIA: \(\frac{p(a,A)}{p(a,B)} = \frac{p(a,B)}{p(b,B)}. \)

i-Independence is structurally similar to Luce’s IIA except that it relates to the impacts \(\frac{p(a,A \setminus \{b\})}{p(a,A)} \) instead of the odd ratios \(\frac{p(a,A)}{p(b,A)} \). These two properties appear to be equally plausible ways to capture aspects of menu independence. If one thinks that preference should be menu independent, then the a priori appeal of one or the other axiom hinges on a hypothesis about what pattern reveals preference in the data. And, in turn, this rests on a hypothesis on the cognitive process underlying choice. In the next section, we discuss further the relationship between the two properties.

A first interesting implication of the axioms (valid on any domain including all pairs and their subsets) is instructive on how they act and will be used in the proof of the main result:

I-REGULARITY: \(\frac{p(a,A \setminus \{b\})}{p(a,A)} \geq 1 \) and \(\frac{p(a^*,A \setminus \{b\})}{p(a^*,A)} \geq 1. \)

i-Regularity yields, by iteration, the standard axiom of Regularity (or Monotonicity), and says that if an alternative is not neutral for another alternative, then it must boost it. While it is often assumed directly, this is not a completely

12 On our specific domain, which contains singleton menus, **i-Asymmetry** could be weakened to \(\frac{p(a,a)}{p(a,a') \neq 1} \Rightarrow \frac{p(b,b')}{p(b,b') = 1} \) thanks to **i-Independence**.

13 **Regularity:** \(A \subset B \Rightarrow p(a, A) \geq p(a, B) \).
innocuous property: it excludes, for example, the phenomenon of “asymmetric dominance,” whereby adding an alternative that is clearly dominated by \(a \) but not by \(b \) increases the probability that \(a \) is chosen.

Lemma 1: If a random choice rule \(p \) satisfies \(i \text{-Asymmetry} \) and \(i \text{-Independence} \), then \(p \) also satisfies \(i \text{-Regularity} \).

Proof: Let \(p \) satisfy the assumptions in the statement. By \(i \text{-Independence} \), it is sufficient to show that \(\frac{p(a, \emptyset)}{p(a, \{a\})} \geq 1 \) and \(\frac{p(a^*, \emptyset)}{p(a^*, \{a\})} \geq 1 \) for all \(a, b \in X \). The latter inequality is immediately seen to be satisfied since, by the definition of a random choice rule and of \(a^* \),

\[
\frac{p(a^*, \emptyset)}{p(a^*, \{a\})} = \frac{1}{1 - p(a, \{a\})} > 1
\]

in view of \(p(a, \{a\}) \in (0, 1) \). Next, suppose, by contradiction, that there exist \(a, b \in X \) such that \(\frac{p(a, \{a\})}{p(a, \{a, b\})} < 1 \). By \(i \text{-Independence} \), we have

\[
p(a, \{a\}) = p(a^*, \emptyset) = p(a, \{a\}) \]

\[
\iff p(a^*, \{a\}) p(a^*, \{b\}) = p(a^*, \{a, b\})
\]

\[
\iff (1 - p(a, \{a\}))(1 - p(b, \{b\})) = 1 - p(a, \{a, b\}) - p(b, \{a, b\})
\]

\[
\iff p(a, \{a\}) + p(b, \{b\}) - p(a, \{a\}) p(b, \{b\}) = p(a, \{a, b\}) + p(b, \{a, b\})
\]

Moreover, the assumption \(\frac{p(a, \{a\})}{p(a, \{a, b\})} < 1 \) implies, by \(i \text{-Asymmetry} \), that \(p(b, \{b\}) = p(b, \{a, b\}) \). Therefore, formula (1) simplifies to

\[
p(a, \{a\})(1 - p(b, \{b\})) = p(a, \{a, b\})
\]

so that (since \((1 - p(b, \{b\})) < 1 \) \(p(a, \{a\}) > p(a, \{a, b\}) \), which contradicts \(\frac{p(a, \{a\})}{p(a, \{a, b\})} < 1 \). \(Q.E.D. \)

A useful additional observation is that formula (1) rules out \(\frac{p(a, \{a\})}{p(a, \{a, b\})} = 1 = \frac{p(b, \{b\})}{p(b, \{a, b\})} \), for otherwise, the contradiction \(p(a, \{a\}) p(b, \{b\}) = 0 \) would follow. Therefore, in the presence of \(i \text{-Independence} \), \(i \text{-Asymmetry} \) is, in fact, equivalent to the stronger version, as follows.

\(i \text{-Asymmetry}^* \): \(\frac{p(a, A \{b\})}{p(a, A)} \neq 1 \iff \frac{p(b, A \{a\})}{p(b, A)} = 1. \)

Our main result is the following.
THEOREM 1: A random choice rule satisfies i-Asymmetry and i-Independence if and only if it is a random consideration set rule $p_{\succ, \gamma}$. Moreover, both \succ and γ are unique, that is, for any random choice rule $p_{\succ', \gamma'}$ such that $p_{\succ', \gamma'} = p$, we have $(\succ', \gamma') = (\succ, \gamma)$.

All remaining proofs are in the Appendix. However, the logic behind the sufficiency part of the proof is simple. Under the axioms, the revealed preference relation described in Section 3.1 can be shown to be total, asymmetric, and transitive, so that it is taken as our preference ranking \succ. Given our domain, the attention value $\gamma(a)$ can be defined from the probabilities $p(a, \{a\})$. Then the axioms are shown to imply the following property: whenever b boosts a,

$$p(a, A \setminus \{b\}) = \frac{p(a, A)}{1 - p(b, \{b\})}.$$

This is a weak property of “stochastic path independence” that may be of interest in itself: it asserts that the boost of b on a must depend only on the “strength” of b in singleton choice. Finally, the iterated application of this formula shows that the preference and the attention parameters defined above retrieve, in any menu, the given choice probabilities via the assumed procedure.

4. EXPLAINING MENU EFFECTS AND STOCHASTIC INTRANSITIVITY

4.1. Menu Effects

Our model suggests that a reason why Luce’s IIA might not hold is that a third alternative may be in different positions (in the preference ranking) relative to a and b and thus may arguably impact on their choice probabilities in different ways. For a random consideration set rule, Luce’s IIA is only satisfied for sets A and B that differ exclusively for alternatives each of which is either better or worse than both a and b, but otherwise menu effects can arise. So if $a \succ c \succ b$ and $a, b, c \in A$,

$$\frac{p_{\succ, \gamma}(a, A)}{p_{\succ, \gamma}(b, A)} = \frac{\gamma(a)}{\gamma(b)(1 - \gamma(a)) \prod_{d \in A \setminus \{a\}, a \succ d > b} (1 - \gamma(d))} > \frac{\gamma(a)}{\gamma(b)(1 - \gamma(a)) \prod_{d \in A \setminus \{c\}, a \succ d > b} (1 - \gamma(d))} = \frac{p_{\succ, \gamma}(a, A \setminus \{c\})}{p_{\succ, \gamma}(b, A \setminus \{c\})},$$

14A similar stochastic path independence property appears as an axiom in Yildiz (2012).
violating Luce’s IIA. In fact, for certain configurations of the attention parameters, the addition or elimination of other alternatives can even reverse the ranking between the choice frequencies of two alternatives a and b:

EXAMPLE 1—Choice Frequency Reversal: Let $a > c > b$ and $\gamma(b) > \frac{\gamma(a)}{1-\gamma(a)} > \gamma(b)(1-\gamma(c))$. Then

$$p_{\gamma}(a, \{a, b, c\}) = \gamma(a) > \gamma(b)(1-\gamma(a))(1-\gamma(c)) = p(b, \{a, b, c\})$$

and

$$p_{\gamma}(a, \{a, b\}) = \gamma(a) < \gamma(b)(1-\gamma(a)) = p_{\gamma}(b, \{a, b\}).$$

The basis for the choice frequency reversal in our model is that while a better alternative a may be chosen with lower probability than an inferior alternative b in pairwise contests due to low attention for a, the presence of an alternative c that is better than b but worse than a will reduce the probability that b is noticed without affecting the probability that a is noticed, and possibly, if c attracts sufficiently high attention, to the point that the initial choice probability ranking between a and b is reversed.15

However, a random consideration set rule does satisfy other forms of menu independence and consistency that look a priori as natural as Luce’s IIA. In addition to i-Independence, it also satisfies the following, for all $A \in D$, $a \in A^*$, and $b, c \in A$:

I-Neutrality: $\frac{p(a, A^\setminus\{c\})}{p(a, A)} > 1 \Rightarrow \frac{p(a, A^\setminus\{c\})}{p(a, A)} = \frac{p(b, A^\setminus\{c\})}{p(b, A)}$.

i-Neutrality states that an alternative has the same impact on any alternative in the menu which it boosts. While an interesting property in itself, as it simplifies dramatically the structure of impacts by forcing them to take on only a single value in addition to 1, this is also a weakening of Luce’s IIA. In fact, i-Neutrality also states that $\frac{p(a, A^\setminus\{c\})}{p(b, A^\setminus\{c\})} = \frac{p(a, A)}{p(b, A)}$ under the boosting restriction in the premise (guaranteeing, in our interpretation, that c is ranked above both a and b), while Luce’s IIA asserts the same form of menu independence (and more) unconditionally. Our previous discussion explains why this restriction of Luce’s IIA may be sensible.

The dependence of the choice odds on the other available alternatives is often a realistic feature, which applied economists have sought to incorporate, for example, in the multinomial logit model.16 The blue bus/red bus example

15Choice frequency reversals of various nature have been observed experimentally. See, for example, Tsetsos, Usher, and Chater (2010).

16By adding a nested structure to the choice process (nested logit) or by allowing heteroscedasticity of the choice errors (see, e.g., Greene (2003) or Agresti (2002)). A probit model also allows for menu effects.
(Debreu (1960)) is the standard illustration, in which menu effects occur because of an extreme “functional” similarity between two alternatives (a red and a blue bus). Suppose the agent chooses, with equal probabilities, a train \((t)\), a red bus \((r)\), or a blue bus \((b)\) as a means of transport in every binary set, so that the choice probability ratios in pairwise choices for any two alternatives are equal to 1. Then, on the premise that the agent does not care about the color of the bus and so is indifferent between the buses, it is argued that adding one of the buses to a pairwise choice set including \(t\) will increase the odds of choosing \(t\) over either bus, thus violating IIA.\(^{17}\)

GNP (2010) suggested to deal with this form of menu dependence by proposing that “duplicate” alternatives (such as a red and a blue bus) should be identified observationally, by means of choice data, and by assuming that duplicate alternatives are (in a specific sense) “irrelevant” for choice. In the example, each bus is an observational duplicate of the other because replacing one with the other does not alter the probability of choosing \(t\) in a pairwise contest. The assumption of duplicate elimination says, in this example, that the probability of choosing \(t\) should not depend on whether a duplicate bus is added to either choice problem that includes the train.\(^{18}\)

Observe that GNP duplicates arise in the same way irrespective of whether the train is better or worse than the bus. On the other hand, our model (once straightforwardly adapted to account for preference ties) suggests a sharp distinction, which depends on the preference ranking between duplicates and other alternatives. If the train is better than the buses, then the probability of taking the train depends only on the attention paid to the train. Multiple copies of an inferior bus are treated as duplicates. But multiple copies of a superior bus are never redundant: they increase the chance that at least one of them is noticed and, therefore, always reduce the probability of taking the train.\(^{19}\)

Observe that GNP duplicates arise in the same way irrespective of whether the train is better or worse than the bus. On the other hand, our model (once straightforwardly adapted to account for preference ties) suggests a sharp distinction, which depends on the preference ranking between duplicates and other alternatives. If the train is better than the buses, then the probability of taking the train depends only on the attention paid to the train. Multiple copies of an inferior bus are treated as duplicates. But multiple copies of a superior bus are never redundant: they increase the chance that at least one of them is noticed and, therefore, always reduce the probability of taking the train.\(^{19}\)

To illustrate, suppose that the preference relation is now a weak order \(\succeq\). All alternatives in the consideration set that tie for best are chosen with a given probability, and otherwise the model is unchanged. Let \(\gamma(t) = y\) and \(\gamma(b) = \gamma(r) = x\). Assume first that \(t \succ b \sim r\). In this case, \(r\) and \(b\) are duplicates according to GNP’s definition because \(p_{\succ,\gamma}(t, \{b, t\}) = p(t, \{r, t\}) = y\). The duplicate elimination assumption holds because \(p_{\succ,\gamma}(t, \{b, r, t\}) = y\). Let \(\beta \in (0, 1)\) be the probability that the blue bus is chosen when both buses are considered. A straightforward calculation shows that, independently of the attention profile \(\gamma\) and of \(\beta \in (0, 1)\), the odds that the blue bus is chosen over the

\(^{17}\)To be pedantic, Debreu’s original example used, as “duplicate” alternatives, two recordings of Beethoven’s eighth symphony played by the same orchestra but with two different directors. As preferences for directors can be very strong, we use, instead, McFadden’s (1974) version of the example.

\(^{18}\)The general duplicate elimination assumption is more involved but follows the same philosophy.

\(^{19}\)For this example, the “mood” interpretation of the model, explained in Section 7.1, may be suitable.
train necessarily increase when the red bus is made unavailable, which accords (observationally) with the Debreu story (the ratio of the odds when \(r \) is present to those without \(r \) is equal to \(1 - (1 - \beta)x < 1 \)).

Assume, instead, that \(b \sim r > t \). In this case, too, \(b \) and \(r \) are duplicates because \(p_{\gamma}(t, \{b, t\}) = p_{\gamma}(t, \{r, t\}) = y(1 - x) \). But now the duplicate elimination assumption fails since \(p_{\gamma}(t, \{b, r, t\}) = y(1 - x)^2 \neq p_{\gamma}(t, \{b, t\}) \). Independently of the attention profile \(\gamma \) and of \(\beta \in (0, 1) \), now the odds that the blue bus is chosen over the train necessarily decrease when the red bus is made unavailable, which is the reverse of the Debreu story (the ratio of the odds when \(r \) is present to those without \(r \) becomes \(1 + \frac{\beta x}{1 - x} > 1 \)).

In conclusion, the blue bus/red bus example may be slightly misleading in one respect. All commentators accept Debreu’s conclusion that once a red bus is added to the pair \{blue bus, train\}, the odds of choosing the train over the blue bus should increase. But this conclusion is not evident in itself: it must depend on some conjecture about the cognitive process that generates the choice data. A Luce-like model that captures this type of process was studied by GNP (2010). The analysis above suggests that menu effects of a different type may plausibly occur.

4.2. Stochastic Intransitivity

Several psychologists, starting from Tversky (1969), have argued that choices may fail to be transitive. When choice is stochastic, there are many ways to define analogues of transitive behavior in deterministic models. A weak such analogue is the following:

Weak Stochastic Transitivity: For all \(a, b, c \in X \), \(p(a, \{a, b\}) \geq \frac{1}{2} \), \(p(b, \{b, c\}) \geq \frac{1}{2} \Rightarrow p(a, \{a, c\}) \geq \frac{1}{2} \).

It is easy to see that a random consideration set rule can account for violations of weak stochastic transitivity, and thus of the stronger version:

Strong Stochastic Transitivity: For all \(a, b, c \in X \), \(p(a, \{a, b\}) \geq \frac{1}{2} \), \(p(b, \{b, c\}) \geq \frac{1}{2} \Rightarrow p(a, \{a, c\}) \geq \max\{p(a, \{a, b\}), p(b, \{b, c\})\} \).

Consider the following.

Example 2: Let \(\gamma(a) = \frac{4}{9} \), \(\gamma(b) = \frac{1}{2} \), and \(\gamma(c) = \frac{9}{10} \), with \(a > b > c \). We have

\[
p_{\gamma}(b, \{b, c\}) = \frac{1}{2},
\]

\[
p_{\gamma}(c, \{a, c\}) = \frac{9}{10} \cdot \frac{5}{9} = \frac{1}{2},
\]

\[
p_{\gamma}(a, \{a, c\}) = \frac{4}{9} \cdot \frac{5}{9} = \frac{1}{2}.
\]
but also
\[p_{\succ, \gamma}(b, \{a, b\}) = \frac{15}{29} = \frac{5}{18} < \frac{1}{2}, \]
violating weak stochastic transitivity.

The key for the violation in the example is that the ordering of the attention parameters is exactly opposite to the preference ordering. It is easy to check that if the attention ordering weakly agrees with the preference ordering, choices are weakly stochastically transitive.

In their survey on choice anomalies, Rieskamp, Busemeyer, and Meller (2006) found that strong stochastic transitivity is violated in an overwhelming number of studies, but they did not report frequent violations of weak stochastic transitivity. So, in this respect, our model does not fill a gap by explaining a large amount of data. However, Rieskamp, Busemeyer, and Meller found that when weak stochastic transitivity is violated, this happens in a systematic way. Our model provides a way to think about this. When there is reason to assume little variation in the attention paid to alternatives, or when better alternatives are likely to be paid more attention, one should not expect violations of weak stochastic transitivity. But one could expect violations in situations where better alternatives are less likely to be paid attention to.

In general, the random consideration set rule reconciles a fundamentally transitive motivation (the deterministic preference \(\succ \)) with stochastic violations of transitivity in the data. In contrast, the Luce rule must necessarily satisfy weak stochastic transitivity.

5. MENU DEPENDENT ATTENTION PARAMETERS

In some circumstances, it may be plausible to assume that the attention parameter of an alternative depends on which other alternatives are feasible. For example, a brightly colored object will stand out more in a menu whose other elements are all gray than in a menu that only contains brightly colored objects. In this section, we show, however, that a less restricted version of our model that allows for the menu dependence of attention parameters is too permissive. A menu dependent random consideration set rule is a random choice rule \(p_{\succ, \delta} \) for which there exists a pair \((\succ, \delta)\), where \(\succ \) is a strict total order on \(X \) and \(\delta \) is a map \(\delta: X \times D \setminus \emptyset \rightarrow (0, 1) \), such that
\[
p_{\succ, \delta}(a, A) = \delta(a, A) \prod_{b \in A : b \succ a} (1 - \delta(b, A)) \quad \text{for all } A \in D, \text{ for all } a \in A.
\]

Theorem 2: For every strict total order \(\succ \) on \(X \) and for every random choice rule \(p \), there exists a menu dependent random consideration rule \(p_{\succ, \delta} \) such that \(p = p_{\succ, \delta} \).
So, once we allow the attention parameters to be menu dependent, not only does the model fail to place any observable restriction on choice data, but the preference relation is also entirely unidentified. Strong assumptions on the function δ are needed to make the model with menu dependent attention useful, but we find it difficult to determine a priori what assumptions would be appropriate. The available empirical evidence on brands suggests at best weak correlations between the probabilities of memberships of the consideration set, and therefore weak menu effects.20

6. RELATED LITERATURE

The concept of consideration set originates in management science (Wright and Barbour (1977)).21 The economics papers that are most related to ours conceptually are MNO (2012) and Eliaz and Spiegler (2011a, 2011b). Exactly as in their models, an agent in our model who chooses from menu A maximizes a preference relation on a consideration set $C(A)$. The difference lies in the mechanism that determines $C(A)$ (note that in the deterministic case, without any restriction, this model is empirically vacuous, as one can simply declare the observed choice from A to be equal to $C(A)$). While Eliaz and Spiegler focused on market competition and the strategic use of consideration sets, MNO focused on the direct testable implications of the model and on the identification of the parameters. Our work is thus more closely related to that of MNO. When the consideration set formation and the choice data are deterministic, as in MNO, consider a choice function c for which $c(\{x, y\}) = x = c(\{x, y, z\})$, $c(\{y, z\}) = y$, $c(\{x, z\}) = z$. Then (as noted by MNO), we cannot infer whether (i) $x \succ z$ (in which case, z is chosen over x in a pairwise contest because x is not paid attention to) or (ii) $z \succ x$ (in which case, z is never paid attention to in the larger set). The random consideration set model shows how richer data can help break this type of indeterminacy. In case (i), the data would show that the choice frequency of x is the same in $\{x, y, z\}$ as in $\{x, y\}$. In case (ii), the data would show that the choice frequency of x would be higher in $\{x, y\}$ than in $\{x, y, z\}$.

We next focus on the relationship with models of stochastic choice.22

20For example, van Nierop et al. (2010) estimated an unrestricted probabilistic model of consideration set membership for product brands, and found that the covariance matrix of the stochastic disturbances to the consideration set membership function can be taken to be diagonal.

22Stochastic choice has also been used recently as a device in the literature of choice over menus. For example, Koida (2010) studied how a decision maker’s (probabilistic) mental states drive the choice of an alternative from each menu, in turn determining the agent’s preference for commitment in his choice over menus. Ahn and Sarver (2013) instead used Gul and Pesendorfer’s (2006) random expected utility model in the second period of a menu choice model, and showed
Tversky’s (1972a, 1972b) classical Elimination by Aspects (EBA) rule \(p_\varepsilon \), which satisfies Regularity, is such that there exists a real valued function \(U : 2^X \rightarrow \mathbb{R}^{++} \) such that, for all \(A \in \mathcal{D}, a \in A \),

\[
p_\varepsilon(a, A) = \frac{\sum_{B \subseteq X : B \cap A \neq A} U(B) p_\varepsilon(a, B \cap A)}{\sum_{B \subseteq X : B \cap A \neq \emptyset} U(B)}.
\]

There are random consideration set rules that are not EBA rules. Tversky showed that, for any three alternatives \(a, b, c \), EBA requires that if \(p_\varepsilon(a, \{a, b\}) \geq \frac{1}{2} \) and \(p_\varepsilon(b, \{b, c\}) \geq \frac{1}{2} \), then \(p_\varepsilon(a, \{a, c\}) \geq \min\{p_\varepsilon(a, \{a, b\}), p_\varepsilon(b, \{b, c\})\} \) (moderate stochastic transitivity). Example 2 shows that this requirement is not always met by a random consideration set rule.

Recently, GNP (2010) have shown that, in a domain which is “rich” in a certain technical sense, the Luce model is equivalent to the following Independence property (which is an ordinal version of Luce’s IIA): \(p(a, A \cup C) \geq p(b, B \cup C) \) implies \(p(a, A \cup D) \geq p(b, B \cup D) \) for all sets \(A, B, C, D \) such that \((A \cup B) \cap (C \cup D) = \emptyset\). They also generalized the Luce rule to the Attribute Rule in such a way as to accommodate red bus/blue bus type of violations of Luce’s IIA (see Section 4.1). We have seen that a random consideration set rule violates one of the key axioms (duplicate elimination) for an Attribute Rule. And the choice frequency reversal Example 1 violates the Independence property above.

Mattsson and Weibull (2002) obtained an elegant foundation for (and generalization of) the Luce rule. In their model, the agent (optimally) pays a cost to get close to implementing any desired outcome (see also Voorneveld (2006)). More precisely, the agent has to exert more effort the more distant the desired probability distribution is from a given default distribution. When the agent makes an optimal trade-off between the expected payoff and the cost of decision control, the resulting choice probabilities are a “distortion” of the logit model, in which the degree of distortion is governed by the default distribution. Our paper shares with this work the broad methodology to focus on a detailed model to explain choice errors. However, it is also very different in that Mattsson and Weibull assumed a (sophisticated form of) rational behavior on the part of the agent. One may then wonder whether “utility-maximization errors” might not occur at the stage of making optimal trade-offs between utility and control costs, raising the need to model those errors. A second major difference stems from the fact that our model uses purely ordinal preference information. Similar considerations apply to the recent wave of works on rational inattention, such as Matějka and McKay (2011), Cheremukhin, Popova,
and Tutino (2011), and Caplin and Dean (2013), in which it was assumed that an agent solves the problem of allocating attention optimally.

Recently, Rubinstein and Salant (2012) have proposed a general framework to describe an agent who expresses different preferences under different frames of choice. The link with this paper is that the set of such preferences is interpreted as a set of deviations from a true (welfare relevant) preference, so this is a model of “mistakes.” However, the deviations are not analyzed as stochastic events.

Finally, we note that the appeal of a two-stage structure with a stochastic first stage extends beyond economics, from psychology to consumer science. In philosophy in particular, it has been taken by some (e.g., James (1956), Dennett (1978), Heisenberg (2009)) as a fundamental feature of human choices, and as a solution of the general problem of free will.

7. CONCLUDING REMARKS

7.1. Random Consideration Sets and RUM

A Random Utility Maximization (RUM) rule (Block and Marschak (1960)) is defined by a probability distribution \(\pi \) on the possible rankings \(R \) of the alternatives and the assumption that the agent picks the top element of the \(R \) extracted according to \(\pi \). Block and Marschak (1960), McFadden (1974), and Yellott (1977) have shown that the Luce model is a particular case of a RUM rule, in which a systematic utility is subject to additive random shocks that are Gumbel distributed. A random consideration set rule \((\succ, \gamma)\) is a different special type of RUM rule, in which \(\pi \) is restricted as follows:

- \(\pi(R) = 0 \) for any ranking \(R \) for which there are alternatives \(a, b \) with \(a \succ b, bRa, aRa^* \), and \(bRa^* \) (i.e., if \(R \) contradicts \(\succ \) on some pair of alternatives, then at least one of these alternatives must be \(R \)-inferior to \(a^* \));
- for any alternative \(a \), \(\pi(\{R: aRa^*\}) = \gamma(a) \) (i.e., the probability of the set of all rankings for which \(a \) is ranked above \(a^* \) coincides with the probability that \(a \) is noticed);
- for any two alternatives \(a \) and \(b \), \(\pi(\{R: aRa^* \text{ and } bRa^*\}) = \gamma(a)\gamma(b) \) (i.e., the events of any two alternatives being ranked above \(a^* \) are independent).

For example, a random consideration set rule with two alternatives (beside the default) such that \(\gamma(a) = \frac{1}{2}, \gamma(b) = \frac{1}{3}, \) and \(a \succ b \) could be represented by the following RUM rule:\(^{24}\) \(\pi(aba^*) = \frac{1}{6}, \pi(aa^*b) = \frac{1}{3}, \pi(ba^*a) = \frac{1}{6}, \pi(a^*ab) = \pi(a^*ba) = \frac{1}{2}, \pi(baa^*) = 0. \)

An appealing interpretation of this type of RUM is that the agent is “in the mood” for an alternative \(a \) with probability \(\gamma(a) \) (and otherwise prefers the default alternative), and picks the preferred one among all alternatives for which

23 We thank the referees for suggesting most of the insights in this section.

24 Where a ranking is denoted by listing the alternatives from top to bottom.
he is in the mood. While indistinguishable in terms of pure choice data, the RUM interpretation and the consideration set interpretation imply different attitudes of the agent to “implementation errors”: if a is chosen but $b \succ a$ is implemented by mistake (e.g., a dish different from the one ordered is served in a restaurant), the agent will have a positive reaction if he failed to pay attention to b, but he will have a negative reaction if he was not in the mood for b.

7.2. Comparative Attention

The model suggests a definition of comparative attention based on observed choice probabilities. Say that (\succ_1, γ_1) is more attentive than (\succ_2, γ_2), denoted $(\succ_1, \gamma_1)\alpha(\succ_2, \gamma_2)$, iff $p_{\succ_1, \gamma_1}(a^*, A) < p_{\succ_2, \gamma_2}(a^*, A)$ for all $A \in \mathcal{D}$. Then we have that $(\succ_1, \gamma_1)\alpha(\succ_2, \gamma_2)$ iff $\gamma_1(a) > \gamma_2(a)$ for all $a \in X$ (the “if” direction follows immediately from the formula $p_{\succ, \gamma}(a^*, A) = \prod_{b \in A} (1 - \gamma(a))$, while the other direction follows from $p_{\succ, \gamma}(a^*, \{a\}) = (1 - \gamma(a))$ applied to each $\{a\} \in \mathcal{D}$). Observe that, for two agents with the same preferences, (\succ, γ_1) is more attentive than (\succ, γ_2) iff agent 1 makes “better choices” from each menu in the sense of first order stochastic dominance, that is, $p_{\succ, \gamma_1}(a > b, A) > p_{\succ, \gamma_2}(a > b, A)$ for all $b \in A$ with $b \neq \max(A, \succ)$, where $p_{\succ, \gamma}(a > b, A)$ denotes the probability of choosing an alternative in A better than b.

On general domains (without the assumption that all singleton menus are included in the domain), the implication $(\succ_1, \gamma_1)\alpha(\succ_2, \gamma_2) \Rightarrow \gamma_1(a) > \gamma_2(a)$ for all $a \in X$ does not necessarily hold. However, in a one-parameter version of the model in which all alternatives receive the same attention $g \in (0, 1)$, it follows from the formula $p_{\succ, g}(a^*, A) = (1 - g)^{|A|}$ that $(\succ_1, g_1)\alpha(\succ_2, g_2)$ iff $g_1 > g_2$.

7.3. A Model Without Default

A natural companion of our model that does not postulate a default alternative is one in which, whenever the agent misses all alternatives, he is given the option to “reconsider,” repeating the process until he notices some alternative. This leads to choice probabilities of the form

$$p_{\succ, \gamma}(a, A) = \frac{\gamma(a) \prod_{b \in A : b > a} (1 - \gamma(b))}{1 - \prod_{b \in A} (1 - \gamma(b))}.$$

This model does not have the same identifiability properties as ours. For example, take the case $X = \{a, b\}$, with $p(a, \{a, b\}) = \alpha$ and $p(b, \{a, b\}) = \beta$.\(^{25}\) These observations (which fully identify the parameters in our model) are com-

\(^{25}\) Obviously, in this model, $p(a, \{a\}) = 1$ for all $a \in X$.\)
patible with both the following continua of possibilities:

- $a > b$ and any γ such that $\frac{\gamma(a)}{1-\gamma(a)} = \frac{a}{\beta} \gamma(b)$;
- $b > a$ and any γ such that $\frac{\gamma(b)}{1-\gamma(b)} = \frac{\beta}{a} \gamma(a)$.

Nevertheless, the model is interesting and it would be desirable to have an axiomatic characterization of it. We leave this as an open question.

APPENDIX A: PROOF OF THEOREM 1

The necessity part of the statement is immediately verified by checking the formula and is thus omitted here (see Manzini and Mariotti (2014)). For sufficiency, let p be a random choice rule that satisfies i-Asymmetry and i-Independence. By Lemma 1, p also satisfies i-Regularity, and by the observation after the proof of Lemma 1, it satisfies i-Asymmetry* (below, we will highlight where this stronger version of i-Asymmetry is needed). Define a binary relation R on X by $a R b$ iff $p(b, A \setminus \{a\}) > p(b, A)$ for some $A \in D, a, b \in A$. We show that R is total, asymmetric, and transitive. For totality, given $a, b \in X$, suppose $p(b, A \setminus \{a\}) \leq p(b, A)$ for some $A \in D$ (by the domain assumption, there exists an $A \in D$ such that $a, b \in A$); then by i-Regularity, $p(b, A \setminus \{a\}) = p(b, A)$ and by i-Asymmetry*, $p(a, A \setminus \{b\}) > p(a, A)$. For asymmetry, suppose $p(b, A \setminus \{a\}) > p(b, A)$ for some $A \in D$; then by i-Asymmetry, $p(a, A \setminus \{b\}) = p(a, A)$ and by i-Independence, $p(a, B \setminus \{b\}) = p(a, B)$ for all $B \ni a, b, B \in D$.

For transitivity, it is convenient to introduce additional notation. For all $A \in D$ and for all $a, b, \in A$, define $x_a = p(a, \{a\})$ and $\lambda_{ab} = \frac{p(a, \{a\})}{p(a, \{a\}, b)}$. By i-Independence, λ_{ab} is well-defined. In particular, for all $a, b, c \in X$, we have (using the domain assumption)

\begin{equation}
\frac{p(a, \{a, b, c\})}{p(a, \{a, c\})} = \frac{p(a, \{a, b\})}{p(a, \{a\})} = \lambda_{ab}.
\end{equation}

From (2), it follows that, for all $a, b, c \in X$,

\begin{equation}
p(a, \{a, b\}) = \lambda_{ab} x_a,
\end{equation}

\begin{equation}
p(a, \{a, b, c\}) = \lambda_{ac} \lambda_{ab} x_a.
\end{equation}

Now fix any particular $a, b, c \in X$. By i-Independence,

\begin{equation}
\frac{p(a^*, \emptyset)}{p(a^*, \{a\})} = \frac{p(a^*, \{b\})}{p(a^*, \{a, b\})} = \frac{p(a^*, \{c\})}{p(a^*, \{a, c\})} = \frac{p(a^*, \{b, c\})}{p(a^*, \{a, b, c\})},
\end{equation}

which implies

\begin{equation}
p(a^*, \{a, b\}) = p(a^*, \{b\}) p(a^*, \{a\}),
\end{equation}

\begin{equation}
p(a^*, \{a, b, c\}) = p(a^*, \{a\}) p(a^*, \{b, c\})
\end{equation}

\begin{equation}
= p(a^*, \{a\}) p(a^*, \{b\}) p(a^*, \{c\}).
\end{equation}
Since \(\sum_{a \in A} p(a, A) = 1 \), considering the menu \(\{a, b, c\} \) and all its binary subsets, using (3) and writing \(p(a^{*}, \{i\}) \) as \(1 - x_{i}, i \in \{a, b, c\} \), we have

\[
\begin{align*}
\lambda_{ac} \lambda_{ab} x_{a} + \lambda_{bc} \lambda_{ba} x_{b} + \lambda_{ca} \lambda_{cb} x_{c} + (1 - x_{a})(1 - x_{b})(1 - x_{c}) &= 1, \\
\lambda_{ab} x_{a} + \lambda_{ba} x_{b} + (1 - x_{a})(1 - x_{b}) &= 1, \\
\lambda_{ac} x_{a} + \lambda_{ca} x_{c} + (1 - x_{a})(1 - x_{c}) &= 1, \\
\lambda_{bc} x_{b} + \lambda_{cb} x_{c} + (1 - x_{b})(1 - x_{c}) &= 1,
\end{align*}
\]

which can be rearranged, after expanding the products in \((1 - x_{i}) \), as

\[
\begin{align*}
x_{a}x_{b} + x_{a}x_{c} + x_{b}x_{c} &= (1 - \lambda_{ac} \lambda_{ab}) x_{a} + (1 - \lambda_{bc} \lambda_{ba}) x_{b} + (1 - \lambda_{ca} \lambda_{cb}) x_{c} + x_{a}x_{b}x_{c}, \\
(1 - \lambda_{ab}) x_{a} + (1 - \lambda_{ba}) x_{b} &= x_{a}x_{b}, \\
(1 - \lambda_{ac}) x_{a} + (1 - \lambda_{ca}) x_{c} &= x_{a}x_{c}, \\
(1 - \lambda_{bc}) x_{b} + (1 - \lambda_{cb}) x_{c} &= x_{b}x_{c}.
\end{align*}
\]

Substitute the last three equations in the first one and rearrange to obtain

\[
(1 - \lambda_{ab})(1 - \lambda_{ac}) x_{a} + (1 - \lambda_{ba})(1 - \lambda_{bc}) x_{b} + (1 - \lambda_{ca})(1 - \lambda_{cb}) x_{c} = x_{a}x_{b}x_{c}.
\]

Now suppose by contradiction that \(R \) is not transitive, that is, let \(aRbRc \) and \(\not{aRc} \). Therefore, \(\lambda_{ba} > 1 \) and \(\lambda_{cb} > 1 \), and then by i-Asymmetry,

\[
\lambda_{ab} = 1 = \lambda_{bc}.
\]

Moreover, by totality, \(cRa \), that is, there exists \(C \in \mathcal{D} \) such that \(p(a, C \setminus \{c\}) > p(a, C) \) and thus, by i-Independence, \(\lambda_{ac} > 1 \), and then by i-Asymmetry,

\[
\lambda_{ca} = 1.
\]

Substitute the values of \(\lambda_{ab}, \lambda_{bc}, \) and \(\lambda_{ca} \) in equation (4) to obtain the contradiction \(0 = x_{a}x_{b}x_{c} > 0 \). We conclude that \(R \) is transitive.

Finally, concerning \(R \), observe that (using i-Asymmetry* and i-Independence) the following three statements are equivalent:

\[
\begin{align*}
aRb, \\
p(b, A \setminus \{a\}) > p(b, A) \quad &\text{for all } A \in \mathcal{D} \text{ with } a, b \in A, \\
p(a, A \setminus \{b\}) = p(a, A) \quad &\text{for all } A \in \mathcal{D} \text{ with } a, b \in A.
\end{align*}
\]
Next, we show that, for all $A \in D$, the following implication holds:

$$p(a, A \setminus \{b\}) > p(a, A) \quad \Rightarrow \quad \frac{p(a, A \setminus \{b\})}{p(a, A)} = \frac{1}{1 - p(b, \{b\})}$$

for all $a \in A^*$ and $b \in A$. We begin by proving (6) for $a = a^*$. Suppose first that $A = \{b\}$ for some $b \in X$. Since $p(a^*, \emptyset) = 1$ and $p(a^*, \{b\}) = 1 - p(b, \{b\})$, we have

$$\frac{p(a^*, \emptyset)}{p(a^*, \{b\})} = \frac{1}{1 - p(b, \{b\})},$$

so that the assertion holds for this case. Then applying i-Independence to (7), we have immediately

$$\frac{p(a^*, A \setminus \{b\})}{p(a^*, \{A\})} = \frac{1}{1 - p(b, \{b\})}$$

for all $A \in D$, for all $b \in A$. Next, fix $a, b \in A$ and assume $p(a, A \setminus \{b\}) > p(a, A)$, so that, by i-Asymmetry, $p(b, A \setminus \{a\}) = p(b, A)$. Using this equation and i-Independence yields

$$\frac{p(a^*, A \setminus \{b\})}{p(a, A)} = \frac{p(a^*, \{a\})}{p(a, \{a, b\})} = \frac{1 - p(a^*, \{a\})}{1 - p(b, \{a, b\}) - p(a^*, \{a, b\})}$$

and since, as shown before,

$$p(a^*, \{a\}) = \frac{p(a^*, \{a, b\})}{1 - p(b, \{b\})},$$

we have

$$\frac{p(a^*, A \setminus \{b\})}{p(a, A)} = \frac{1 - p(a^*, \{a, b\})}{1 - p(b, \{b\}) - p(a^*, \{a, b\})} = \frac{1}{1 - p(b, \{b\})}.$$

This concludes the proof that formula (6) holds.

Now define $\succ = R$ and $\gamma(a) = p(a, \{a\})$ for all $a \in X$. We show that $p_{\succ, \gamma} = p$. Fix $A \in D$ and number the alternatives so that $A = \{a_1, \ldots, a_n\}$ and
For all $a \in A$, the implication in (6) and the definitions of γ and \succ imply that

$$p(a_i, A) = p(a_i, \{a_2, \ldots, a_n\})(1 - \gamma(a_i))$$

$$\vdots$$

$$= p(a_i, \{a_i, \ldots, a_n\}) \prod_{j < i}(1 - \gamma(a_j))$$

$$= p(a_i, \{a_i\}) \prod_{j < i}(1 - \gamma(a_j))$$

$$= \gamma(a_i) \prod_{j < i}(1 - \gamma(a_j)) = p_{\succ, \gamma}(a_i, A),$$

where $p(a_i, \{a_i\}) = p(a_i, \{a_i, \ldots, a_n\})$, which is used to move from the second to the third line, follows from the properties of R in (5) (note that the probabilities in the display are all well-defined by the domain assumption).

To conclude, we show that \succ and γ are defined uniquely. Let $p_{\succ', \gamma'}$ be another consideration set rule for which $p_{\succ', \gamma'} = p$, and suppose by contradiction that $\succ' \neq \succ$. So there exist $a, b \in X$ such that $a \succ b$ and $b \succ' a$. Take $A = \{a\} \cup \{c \in X : a \succ c\}$, so that $b \in A$ for some b with $b \succ' a$. By definition,

$$p_{\succ, \gamma}(a, A) = \gamma(a) = p_{\succ, \gamma}(a, B)$$

for all $B \subset A$ such that $a \in B$, but also

$$p_{\succ', \gamma'}(a, A) = \gamma'(a) \prod_{c \in A : c \succ a}(1 - \gamma'(c)) < \gamma'(a) \prod_{c \in A \setminus \{b\} : c \succ' a}(1 - \gamma'(c))$$

$$= p_{\succ', \gamma'}(a, A \setminus \{b\}),$$

a contradiction in view of $p_{\succ', \gamma'} = p = p_{\succ, \gamma}$. So \succ is unique. The uniqueness of γ is immediate from $p(a, \{a\}) = \gamma(a)$.

APPENDIX B: PROOF OF THEOREM 2

Let p be a random choice rule. Let \succ be an arbitrary strict total order of the alternatives. Define δ by setting, for $A \in D \setminus \emptyset$ and $a \in A$:

$$\delta(a, A) = \frac{p(a, A)}{1 - \sum_{b \in A, b \succ a} p(b, A)}. \quad (8)$$

We have $\delta(a, A) > 0$ since $p(a, A) > 0$, and we have $\delta(a, A) < 1$ since $1 > p(a, A) + \sum_{b \in A, b \succ a} p(b, A)$ (given that $p(a^*, A) > 0$).
For the rest of the proof, fix \(a \in A \). We define
\[
p_{\succ, \delta}(a, A) = \delta(a, A) \prod_{b \in A : b \succ a} (1 - \delta(b, A)),
\]
and show that \(p_{\succ, \delta}(a, A) = p(a, A) \). Using the definition of \(\delta \), for all \(b \in A \), we have
\[
1 - \delta(b, A) = \frac{1 - \sum_{c \in A : c \succ b} p(c, A) - p(b, A)}{1 - \sum_{c \in A : c > b} p(c, A)},
\]
so that
\[
\prod_{b \in A : b \succ a} (1 - \delta(b, A)) = \prod_{b \in A : b > a} \frac{1 - \sum_{c \in A : c \succ b} p(c, A) - p(b, A)}{1 - \sum_{c \in A : c > b} p(c, A)}.
\]

Given any \(b \in A \), denote by \(b^+ \in A \) the unique alternative for which \(b^+ \succ b \) and there is no \(c \in A \) such that \(b^+ \succ c \succ b \). Letting \(b \in \{ c \in A : c > a \} \), from (9) we have that
\[
1 - \delta(b^+, A) = \frac{1 - \sum_{c \in A : c > b^+} p(c, A) - p(b^+, A)}{1 - \sum_{c \in A : c > b^+} p(c, A)}.
\]

As the numerator of the expression for \(1 - \delta(b^+, A) \) is equal to the denominator of the expression for \(1 - \delta(b, A) \), the product in (10) is a telescoping product (where observe that, for the \(\succ \)-maximal term in \(A \), the denominator is equal to 1), and we thus have
\[
\prod_{b \in A : b > a} (1 - \delta(b, A)) = 1 - \sum_{b \in A : b > a^+} p(b, A) - p(a^+, A)
\]
\[
= 1 - \sum_{b \in A : b > a} p(b, A).
\]
We conclude that

\[
p_{\rightarrow,\delta}(a, A) = \delta(a, A) \prod_{b \in A : b \succ a} (1 - \delta(b, A))
\]

\[
= \frac{p(a, A)}{1 - \sum_{b \in A : b \succ a} p(b, A) \left(1 - \sum_{b \in A : b \succ a} p(b, A)\right)}
\]

\[
= p(a, A),
\]

as desired (where the first term in the second line follows from (8)).

REFERENCES

STOCHASTIC CHOICE AND CONSIDERATION SETS

School of Economics and Finance, University of St. Andrews, Castlecliffe, The Scores, St. Andrews KY16 9AL, Scotland, U.K., and IZA—Institute for Labor Economics, Bonn, Germany; paola.manzini@st-andrews.ac.uk

and

School of Economics and Finance, University of St. Andrews, Castlecliffe, The Scores, St. Andrews KY16 9AL, Scotland, U.K.; marco.mariotti@st-andrews.ac.uk.

Manuscript received February, 2012; final revision received September, 2013.