Jet reconstruction and performance using particle flow with the ATLAS Detector

Allbrooke, B M M, Asquith, L, Cerri, A, Chavez Barajas, C A, De Santo, A, Salvatore, F, Santoyo Castillo, I, Suruliz, K, Sutton, M R, Vivarelli, I and The ATLAS Collaboration, (2017) Jet reconstruction and performance using particle flow with the ATLAS Detector. The European Physical Journal C - Particles and Fields, 77 (466). ISSN 1434-6044

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (7MB)

Abstract

This paper describes the implementation and performance of a particle flow algorithm applied to 20.2 fb −1−1 of ATLAS data from 8 TeV proton–proton collisions in Run 1 of the LHC. The algorithm removes calorimeter energy deposits due to charged hadrons from consideration during jet reconstruction, instead using measurements of their momenta from the inner tracker. This improves the accuracy of the charged-hadron measurement, while retaining the calorimeter measurements of neutral-particle energies. The paper places emphasis on how this is achieved, while minimising double-counting of charged-hadron signals between the inner tracker and calorimeter. The performance of particle flow jets, formed from the ensemble of signals from the calorimeter and the inner tracker, is compared to that of jets reconstructed from calorimeter energy deposits alone, demonstrating improvements in resolution and pile-up stability.

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Subjects: Q Science > QC Physics
Depositing User: Billy Wichaidit
Date Deposited: 01 Nov 2017 12:22
Last Modified: 07 Nov 2017 15:14
URI: http://sro.sussex.ac.uk/id/eprint/70837

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
ATLASG0275STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCILST/I006048/1