Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data

Romer, A K and The DES Collaboration, et al (2017) Weak-lensing mass calibration of redMaPPer galaxy clusters in Dark Energy Survey Science Verification data. Monthly Notices Of The Royal Astronomical Society, 469 (4). pp. 4899-4920. ISSN 0035-8711

[img] PDF - Published Version
Download (2MB)

Abstract

We use weak-lensing shear measurements to determine the mean mass of optically selected galaxy clusters in Dark Energy Survey Science Verification data. In a blinded analysis, we split the sample of more than 8000 redMaPPer clusters into 15 subsets, spanning ranges in the richness parameter 5 ≤ λ ≤ 180 and redshift 0.2 ≤ z ≤ 0.8, and fit the averaged mass density contrast profiles with a model that accounts for seven distinct sources of systematic uncertainty: shear measurement and photometric redshift errors; clustermember contamination; miscentring; deviations from the NFW halo profile; halo triaxiality and line-of-sight projections. We combine the inferred cluster masses to estimate the joint scaling relation between mass, richness and redshift, M(λ, z) ∝ M0λF (1 + z) G. We find M0 ≡ (M200m | λ = 30, z = 0.5) = [2.35 ± 0.22 (stat) ± 0.12 (sys)] × 1014 M., with F = 1.12 ± 0.20 (stat) ± 0.06 (sys) and G = 0.18 ± 0.75 (stat) ± 0.24 (sys). The amplitude of the mass–richness relation is in excellent agreement with the weak-lensing calibration of redMaPPer clusters in SDSS by Simet et al. and with the Saro et al. calibration based on abundance matching of SPT-detected clusters. Our results extend the redshift range over which the mass–richness relation of redMaPPer clusters has been calibrated with weak lensing from z ≤ 0.3 to z ≤ 0.8. Calibration uncertainties of shear measurements and photometric redshift estimates dominate our systematic error budget and require substantial improvements for forthcoming studies.

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Research Centres and Groups: Astronomy Centre
Subjects: Q Science > QB Astronomy
Related URLs:
Depositing User: Billy Wichaidit
Date Deposited: 05 Sep 2017 10:13
Last Modified: 05 Sep 2017 11:11
URI: http://sro.sussex.ac.uk/id/eprint/69983

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
Astrophysics and Cosmology - Sussex Consolidated GrantG1291STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCILST/L000652/1