A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

Allbrooke, B M M, Asquith, L, Cerri, A, Chavez Barajas, C A, De Santo, A, Salvatore, F, Santoyo Castillo, I, Suruliz, K, Sutton, M R, Vivarelli, I and The ATLAS Collaboration, (2017) A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector. European Physical Journal C, 77 (1). a26. ISSN 1434-6044

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb−1 of proton–proton collision data at √s=7 TeV from 2010 and 0.1 nb−1 of data at √s=8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Research Centres and Groups: Experimental Particle Physics Research Group
Subjects: Q Science > QC Physics
Depositing User: Billy Wichaidit
Date Deposited: 24 Jul 2017 11:25
Last Modified: 24 Jul 2017 11:28
URI: http://sro.sussex.ac.uk/id/eprint/69415

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
ATLASG0275STFC-SCIENCE AND TECHNOLOGY FACILITIES COUNCILST/I006048/1