[Letter] Nuclear power: serious risks

Article  (Accepted Version)


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/68918/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Advancing nuclear power comes with serious risks

In their Policy Forum “China-U.S. cooperation to advance nuclear power” (5 August, p. 547), J. Cao et al. make the case for low-carbon energy trajectories that use “next-generation” nuclear reactors. However, they fail to address the challenges inherent in the reactors they advocate.

Cao et al. correctly assert that “some studies suggest that a doubling or quadrupling of nuclear output is required in the next decade.” They neglect to add that there are also numerous peer-reviewed studies showing that 100% renewables scenarios are technologically feasible and economically competitive. Unlike some of the reactors proposed by Cao et al., these could be deployed rapidly (1–3). Moreover, more scalable and commercially available energy efficiency options can displace the need for new sources of nuclear supply.

Cao et al. also correctly state that renewable sources of energy in Germany have been heavily subsidized. However, Germany has devoted subsidies to the nuclear industry that more than double those allotted to all renewables put together (4). The United States has provided the nuclear industry with at least 10 times the subsidies Germany has devoted subsidies to the new sources of nuclear supply. However, they fail to address the challenges inherent in the reactors they advocate.

Moreover, more scalable and commercially available energy efficiency options can displace the need for new sources of nuclear supply.

Cao et al. also correctly state that renewable sources of energy in Germany have been heavily subsidized. However, Germany has devoted subsidies to the nuclear industry that more than double those allotted to all renewables put together (4). The United States has provided the nuclear industry with at least 10 times the subsidies allotted to all renewables put together (4). The United States has provided the nuclear industry with at least 10 times the subsidies devoted to renewables (5). Despite these investments, renewables costs are falling fairly quickly over time, whereas nuclear costs continue to rise (6–8). In India and China, despite late starts on development, electricity production from wind has already overtaken nuclear (9). In restructured markets that allow consumers to choose from a variety of energy options, renewables have been shown to be cheaper than nuclear power (10).

Cao et al. portray a variety of reactors as “innovative” and “next generation,” yet similar reactors have been under development since the 1960s (11). Sodium-cooled fast reactors and liquid metal-cooled fast reactors, as well as conventional small pressurized water reactors, have a history of costly experiments. In the West, these earlier programs were abandoned, despite decades of R&D commitment and high governmental prioritization, due to economic unviability and safety issues. Even if some newer versions of these technologies prove viable and acceptable, the time scale to commercial deployment will inevitably be measured in decades.

Cao et al. suggest collaborative plans, especially for small modular reactors, between consortia in China and the United States as possible ways forward. However, it is unclear why these projects should have priority in terms of governmental support. Tellingly, there is no commercially operating small modular reactor anywhere in the world (12,13). There is also very limited licensing experience with small modular reactors. The cost is essentially unknown, and public acceptability completely untested.

Pouring resources into “innovative” reactor technologies could be a damaging distraction. As with tobacco, chlorine chemicals, and fossil fuels, entrenched industrial interests can impede desirable transitions, to the detriment of wider social priorities (14). We must give balanced consideration to a full range of alternative low-carbon energy options rather than focus uncritically on nuclear energy.

Philip Johnston, Benjamin K. Sovacool,* Gordon MacKerron, Andy Stirling

Science Policy Research Unit, University of Sussex, Brighton, BN1 9RH, UK.
*Corresponding author. Email: B.Sovacool@sussex.ac.uk

REFERENCES
1. C. Budischak et al., J. Power Sources 225, 60 (2013).

10.1126/science.aal1777