**A University of Sussex PhD thesis**

Available online via Sussex Research Online:

[http://sro.sussex.ac.uk/](http://sro.sussex.ac.uk/)

This thesis is protected by copyright which belongs to the author.

This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author.

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author.

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Please visit Sussex Research Online for more information and further details.
Investigating the role of Tyrosyl-DNA Phosphodiesterase 1
in nuclear and mitochondrial DNA repair

A thesis submitted to the University of Sussex
for the degree of Doctor of Philosophy

By

Shih-Chieh Chiang

September 2016
ACKNOWLEDGEMENTS

Firstly, I would like to thank the Wellcome Trust for funding my research. I am greatly indebted to my supervisor Prof. Sherif El-Khamisy, whose exemplary enthusiasm and dedication inspired and propelled me throughout my PhD. I am most grateful for all the help and support from members of the El-Khamisy lab, as well as researchers at the Genome Damage and Stability Centre of the University of Sussex, and at the Department of Molecular Biology & Biotechnology of the University of Sheffield. I would like extend my sincerest thanks to Jean Carroll, Jessica Hudson, Owen Wells, Meryem Alagoz, Christopher Rookyard, and Abhishek Sharma, without whom publication of my work would not have been possible.

Furthermore, I would also like to thank the following people for their generous help during my PhD: Prof. Keith Caldecott (GDSC, University of Sussex) for the yeast two-hybrid plasmids; Dr Roger Phillips (Department of Biochemistry, University of Sussex) for training on confocal microscopy; Drs Sarah Walker and Conny Meisenberg for optimising the TDP1 enzymatic activity assays; Dr Majid Hafezparast (University of Sussex) for the SOD1\textsuperscript{G93A} transgenic mice, helpful discussions and feedback on the manuscripts; Mrs Limei Ju (GDSC) for her meticulous work on maintaining and crossing the Tdp1 and SOD1\textsuperscript{G93A} mice strains; Drs Nick Kassouf and Rachel Haywood (RAFT, Mount Vernon Hospital) for the ESR experiments; Dr Martin Meagher and Prof. Rob Lightowlers (Wellcome Trust Centre for Mitochondrial Research, University of Newcastle) for the mitochondrial studies and feedback on the manuscripts; Dr Nicolas Viphakone and Prof. Stuart Wilson (Department of Molecular Biology & Biotechnology, University of Sheffield) for their expertise on generating the Flp-In T-Rex cell lines; Dr Heather Mortiboys (Sheffield Institute for Translational Neuroscience, University of Sheffield) for training on the Seahorse Bioanalyzer and helpful discussions; Dr Anoushka Dave (GDSC) and Dr Bin Hu (Department of Molecular Biology & Biotechnology, University of Sheffield) for training on RT-qPCR; and my lab colleague Dr Swagat Ray for his expertise on ChIP-qPCR. Last but not least, I would like to thank Conny, Owen and Swagat for proofreading this thesis.

Finally, I would like to thank my family and friends for their support and sacrifice over the past few years.
ABSTRACT

Damages to the genetic materials arise throughout the lifespan of a cell, and elicit upregulation of DNA repair factors. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is part of a DNA repair protein complex that specialises in the repair of DNA base modifications and single-strand breaks (SSBs). TDP1 removes a broad spectrum of chemical adducts from the 3’ end of a DNA strand break, including topoisomerase 1 (TOP1) peptide, during DNA transcription and replication. Inactivation or deletion of TDP1 is associated with cerebellar dysfunction and degeneration, with remarkably little extraneurological manifestation. The reason for the selective dependence of the cerebellar neurons on TDP1 activity is not clear. It was hypothesised that the TDP1 activity is upregulated in tissues with high levels of SSBs, either from DNA transcriptional activity, or reactive oxygen species (ROS)-induced damage.

The aim of this doctoral project was therefore to identify and characterise the cellular mechanisms that regulate TDP1 activity. Our lab has previously shown that the N-terminus domain (NTD) of TDP1 covalently interacts with DNA ligase 3α. In this thesis, evidence has been presented to show that this interaction is regulated by the putative ATM/ATR/DNA-PK phosphorylation site, serine 81, to prolong TDP1 half-life, and enhance cellular survival after genotoxic stress. A second post-translational modification in the NTD by SUMOylation of the K111 residue was identified, enlightening a mechanism by which TDP1 is recruited to sites of transcription-mediated SSBs.

To investigate the requirement for TDP1 in cells under high levels of oxidative stress, I have developed a mouse cellular model whereby the levels of endogenous ROS can be modulated by overexpression of the human anti-oxidant enzyme superoxide dismutase 1 (SOD1) or its toxic mutant SOD1^{G93A}. Overexpression of SOD1^{G93A} in Tdp1^{−/−} MEFs induces accumulation of chromosomal SSBs and decreases survival after H_{2}O_{2} challenge, while overexpression of SOD1 has a protective effect. Besides repair of ROS-induced TOP1-cc in the nucleus, TDP1 also repairs mitochondrial topoisomerase 1-mediated DNA breaks. This role is required during transcription and assembly of mitochondrial subunits of the electron transfer chain complexes, and has direct impact on mitochondrial respiration and ROS production. Collectively, these data provide mechanistic insights into regulation of TDP1-mediated chromosomal and mitochondrial DNA repair.
# TABLE OF CONTENTS

| LIST OF FIGURES | ................................................................. | x |
| LIST OF TABLES  | ........................................................................ | xiii |
| ABBREVIATIONS   | ........................................................................ | xiv |

## CHAPTER 1 – Introduction ................................................................. 1

### 1.1 Genome stability .................................................................... 2

### 1.2 Types of DNA damage ............................................................. 3

#### 1.2.1 Base modifications/loss ...................................................... 3

#### 1.2.1.1 Oxidation ........................................................................ 3

#### 1.2.1.2 Alkylation/methylation ..................................................... 4

#### 1.2.1.3 Hydrolysis ...................................................................... 4

#### 1.2.1.4 Photochemical products ................................................ 5

#### 1.2.1.5 Spontaneous base substitution ........................................ 5

#### 1.2.2 Single-stranded breaks (SSBs) ............................................ 6

#### 1.2.3 Double-stranded breaks (DSBs) .......................................... 6

### 1.3 The DNA Damage Response (DDR) ............................................ 7

#### 1.3.1 Cell cycle checkpoints ....................................................... 8

#### 1.3.1.1 Phosphatidylinositol 3-kinase-like kinases (PIKKs) .......... 8

#### 1.3.1.2 G1 checkpoint ................................................................ 9

#### 1.3.1.3 Intra-S checkpoint ......................................................... 9

#### 1.3.1.4 G2/M checkpoint ........................................................... 10

#### 1.3.2 DNA repair ....................................................................... 11

#### 1.3.2.1 Direct reversal .............................................................. 11

#### 1.3.2.2 Mismatch repair (MMR) ................................................ 11

#### 1.3.2.3 Nuclear excision Repair (NER) ......................................... 12

#### 1.3.2.4 Base excision repair (BER) ............................................ 14

#### 1.3.2.5 Single-strand break repair (SSBR) ................................. 16

#### 1.3.2.6 Transcription-coupled base excision repair (TC-BER) .... 18

#### 1.3.2.7 Double-strand break repair (DSBR) ............................... 19

#### 1.3.2.8 Non-homologous end-joining (NHEJ) ............................. 20

#### 1.3.2.9 Homologous recombination (HR) .................................. 22

#### 1.3.2.10 The Fanconi anaemia (FA) pathway ............................ 24

### 1.4 DNA topoisomerase ................................................................. 27

#### 1.4.1 Catalytic cycle ................................................................. 27

#### 1.4.2 Cellular functions ............................................................ 28

#### 1.4.2.1 Chromatin remodelling .................................................. 28

#### 1.4.2.2 DNA replication .......................................................... 29

#### 1.4.2.3 Transcription ............................................................. 30
CHAPTER 2 – Materials and Methods .......................................................... 45
2.1 General chemicals and equipment ...................................................... 46
2.2 Molecular biology techniques ............................................................. 46
  2.2.1 DNA plasmids .............................................................................. 46
  2.2.2 Propagation of plasmid DNA ......................................................... 48
  2.2.3 Quantification of DNA/RNA concentration .................................... 49
  2.2.4 DNA agarose gel electrophoresis ............................................... 49
  2.2.5 DNA sequencing ......................................................................... 49
  2.2.6 TOPO-TA Cloning ...................................................................... 49
  2.2.7 Restriction endonuclease digestion ............................................. 50
  2.2.8 DNA ligation .............................................................................. 50
  2.2.9 Site-directed mutagenesis ............................................................ 51
  2.2.10 Phenol: chloroform DNA extraction ......................................... 52
2.3 Yeast two-hybrid assay ....................................................................... 52
  2.3.1 Yeast media ................................................................................ 52
  2.3.2 Yeast strain maintenance and storage ....................................... 53
  2.3.3 Small-scale lithium acetate yeast co-transformation .................... 53
    2.3.3.1 Stock solutions ..................................................................... 53
    2.3.3.2 Preparation of competent Y190 cells .................................. 53
    2.3.3.3 Lithium acetate transformation ......................................... 54
  2.3.4 β-galactosidase lift assay ............................................................. 54
  2.3.5 Histidine prototrophy .................................................................. 55
  2.3.6 Quantitative β-galactosidase assay ............................................. 55
    2.3.6.1 Preparation of yeast culture ............................................... 55
    2.3.6.2 Liquid culture assay .......................................................... 55
  2.3.7 Yeast protein extraction ............................................................... 56
  2.3.8 Yeast two-hybrid library screen ................................................. 56
    2.3.8.1 Test transformation ............................................................ 56
    2.3.8.2 Large-scale library transformation of DH10β ....................... 56
    2.3.8.3 Optimisation of library transformation .................................. 57
    2.3.8.4 Library transformation ....................................................... 58
    2.3.8.5 Plasmid extraction and analysis ......................................... 58
2.4 Yeast clonogenic survival assay ......................................................... 59
2.5 Mammalian cell culture ..................................................................... 60
  2.5.1 Maintenance of cell lines ............................................................. 60
CHAPTER 3 – TDP1 serine 81 mediated interaction with DNA Lig3α promotes TDP1 protein stability and DNA repair

3.1 Introduction .................................................................................................................. 78
3.2 Methods ....................................................................................................................... 80
  3.2.1 Identifying novel protein-protein interactions using yeast two-hybrid assay .... 80
  3.2.2 Single Cell Gel Electrophoresis (SCGE)/Comet Assay ............................... 83
  3.2.3 Clonogenic Survival Assay (Colony Formation Assay) ......................... 85
3.3 Results ......................................................................................................................... 86
  3.3.1 The N-terminus domain of TDP1 interacts with Lig3α ......................... 86
  3.3.2 TDP1 S81 mediates interaction with Lig3α ........................................... 86

2.6 Analyses of cellular protein extracts ............................................................................. 63
  2.6.1 Preparation of whole cell protein extracts ....................................................... 63
  2.6.2 Protein co-immunoprecipitation ....................................................................... 64
  2.6.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) ................................. 64
  2.6.4 Western blotting ................................................................................................. 65
  2.6.5 TDP1 activity assay using the Gyrasol system ................................................ 66
  2.6.6 TDP1 activity assay using C5.5-conjugated oligonucleotide substrate ......... 66
  2.6.7 Protein stability assay ......................................................................................... 67
2.7 DNA damage repair assays ............................................................................................ 67
  2.7.1 Clonogenic survival assay ................................................................................ 67
  2.7.2 Cell viability assay using CellTiter-Blue reagent .............................................. 67
  2.7.3 Alkaline single cell gel electrophoresis (comet assay) ...................................... 68
  2.7.4 Modified alkaline single gel electrophoresis for TOP1-cc detection ............. 68
  2.7.5 γH2AX and 53BP1 immunofluorescence assay .............................................. 69
  2.7.6 UV laser tracking using confocal microscopy ................................................ 69
2.8 Mitochondrial morphological and functional assays ...................................................... 70
  2.8.1 Qualitative analysis of mitochondrial network morphology by high resolution fluorescence microscopy ................................................................. 70
  2.8.2 Quantitative analysis of mitochondrial membrane potential by FACS .......... 70
  2.8.3 Quantitative analysis of mitochondrial superoxide production by FACS .... 71
  2.8.4 Mitochondrial bioenergetics profiling by Seahorse Bioanalyzer ............... 71
2.9 Mitochondrial DNA metabolism ..................................................................................... 72
  2.9.1 Mitochondrial DNA copy number quantification by qPCR ......................... 72
  2.9.2 Mitochondrial transcript abundance by RT-qPCR ......................................... 72
  2.9.3 Quantification of TOP1mt-cc by caesium chloride fractionation ............... 73
  2.9.4 Chromatin immunoprecipitation and quantification of TOP1mt-cc .......... 74

2.10 Mitochondrial protein analysis ..................................................................................... 75
2.11 Transgenic mice genotyping ......................................................................................... 76
2.12 Statistical analysis ........................................................................................................ 76

2.5.2 DNA-mediated gene transfer ................................................................................... 61
  2.5.2.1 Calcium phosphate co-precipitation ......................................................... 61
  2.5.2.2 Liposome-based transfection reagent ....................................................... 61
  2.5.2.3 Retroviral transduction .............................................................................. 62
  2.5.3 Gene-targeted silencing ....................................................................................... 62
  2.5.4 Selection and maintenance of stable cell lines .................................................. 63
3.3.3 Interaction between TDP1 and Lig3α is independent of exogenous genotoxic stress ......................................................... 87
3.3.4 TDP1 S81-mediated interaction with Lig3α promotes TDP1 stability ................................................................. 87
3.3.5 The catalytic activity of TDP1 is independent of S81 ................................................................. 88
3.3.6 The rapid phase repair of TOP1-cc by TDP1 is independent of S81 ................................................................. 89
3.3.7 TDP1 S81 promotes cellular survival following genotoxic stress ................................................................. 89

3.4 Discussion ................................................................................. 90

CHAPTER 4 – SUMOylation of TDP1 at K111 accelerates recruitment to DNA damage sites and promotes cellular survival after genotoxic stress 94
4.1 Introduction ................................................................................. 95
4.1.1 The SUMOylation pathway and TOP1 ................................................................................. 95
4.2 Results ......................................................................................... 96
4.2.1 Yeast two-hybrid library screen of TDP1<sup>S81E</sup> interacting proteins ................................................................. 96
4.2.2 S81 phosphomimetic mediates TDP1 interaction with UBE2I ................................................................. 97
4.2.3 TDP1 is covalently modified by SUMO1 ................................................................................. 98
4.2.4 SUMOylation of TDP1 at K111 is not required for interaction with Lig3α ................................................................. 98
4.2.5 TDP1 K111 SUMOylation promotes cell survival after CPT damage ................................................................. 99
4.2.6 TDP1 K111 SUMOylation promotes repair of chromosomal strand breaks induced by CPT and IR ................................................................. 99
4.2.7 TDP1 SUMOylation does not affect repair of DSBs induced by IR and CPT ................................................................. 100
4.2.8 TDP1 SUMOylation accelerates its recruitment to DNA damage sites ................................................................. 100
4.3 Discussion ................................................................................. 101

CHAPTER 5 – Tdp1 protects against endogenous oxidative stress in mouse embryonic fibroblasts ................................................................. 106
5.1 Introduction ................................................................................. 107
5.1.1 Endogenous ROS generation by SOD1<sup>G93A</sup> ................................................................................. 108
5.2 Results ......................................................................................... 109
5.2.1 Generation of hSOD1<sup>G93A</sup>–Tdp1<sup>−/−</sup> double mutant MEFs ................................................................................. 110
5.2.2 Tdp1 modulates levels of SOD1<sup>G93A</sup>-induced DNA free radicals ................................................................................. 110
5.2.3 Tdp1 prevents accumulation of SOD1<sup>G93A</sup>-induced chromosomal DNA breaks ................................................................................. 112
5.2.4 TDP1 promotes repair of TOP1-mediated chromosomal DNA breaks induced by ROS ................................................................................. 113
5.2.5 Tdp1 maintains mtDNA copy number ................................................................................. 114
5.2.6 Tdp1 inactivation is associated with mitochondrial stress ................................................................................. 115
5.2.7 Tdp1<sup>−/−</sup> MEFs are more sensitive to endogenous ROS induced by SOD1<sup>G93A</sup> ................................................................................. 116
5.3 Discussion ................................................................................. 117

CHAPTER 6 – Human TDP1 promotes mitochondrial DNA transcription and Redox homeostasis ................................................................. 120
6.1 Introduction ................................................................................. 121
6.1.1 Mitochondrial DNA structure and metabolism ................................................................................. 121
6.1.2 Mitochondrial TOP1 (TOP1mt) ................................................................................. 123
6.1.3 Mitochondrial bioenergetics ................................................................................. 124
6.2 Method ................................................................................................. 126
   6.2.1 The Flp-In T-Rex 293 system ......................................................... 127
6.3 Results .............................................................................................. 129
   6.3.1 Generation of stable Flp-In T-Rex 293 cell lines ......................... 129
   6.3.2 Validation of functional phenotype of TDP1 depletion in Flp-In cell lines .................. 131
   6.3.3 Overexpression of SOD1<sup>G93A</sup> in TDP1-depleted cells increased H<sub>2</sub>O<sub>2</sub>-induced chromosomal breaks ..................................................... 132
   6.3.4 Validation of functional phenotypes of TOP1mt and TOP1mt* overexpression in Flp-In cell lines ............................................................. 132
   6.3.5 TDP1 removes TOP1mt*-cc in the mitochondria ......................... 134
   6.3.6 TDP1 promotes mitochondrial transcription ..................................... 135
   6.3.7 TDP1 promotes proper assembly of the ETC complex .................. 135
   6.3.8 TDP1 promotes mitochondrial OXPHOS ......................................... 136
   6.3.9 TDP1 promotes mitochondrial metabolic activity .......................... 137
   6.3.10 Overexpression of TDP1 in the mitochondria negatively impacts mitochondrial function .......................................................... 138
6.4 Discussion .......................................................................................... 138

CHAPTER 7 – General Discussion .............................................................. 144
7.1 Overview ........................................................................................... 145
7.2 Regulation of TDP1 activity by the N-terminus domain impacts cellular resistance to TOP1 poison ................................................................. 145
7.3 Implications for novel drug combination strategies ............................ 146
7.4 Targeting repair of transcription-mediated DNA damage in quiescent cancer stem cells ................................................................. 147
7.5 Novel anti-oxidant mechanism in vertebrates involving TOP1mt/TDP1 functional interaction ................................................................. 148
7.6 Implications for targeting TOP1mt and mitochondrial TDP1 in cancer cells 148
7.7 Regulation of mitochondrial transcription in non-replicating cells .......... 149
7.8 Future directions ................................................................................ 150
7.9 Conclusions ...................................................................................... 151

REFERENCES ......................................................................................... 153
APPENDIX ............................................................................................... 200
LIST OF FIGURES

Figure 1.1 Types of common DNA damage .........................................................3
Figure 1.2 Consequences unrepaired SSBs ..........................................................6
Figure 1.3 The nucleotide excision repair pathway ..............................................12
Figure 1.4 The base excision repair and SSB repair pathways ............................14
Figure 1.5 The non-homologous end-joining pathway .......................................20
Figure 1.6 Replication-coupled repair of SSBs ..................................................22
Figure 1.7 Types of vertebrate topoisomerases ...............................................27
Figure 3.1 The N-terminus domain of TDP1 interacts with Lig3α .......................86
Figure 3.2 TDP1 S81 is required for interaction with Lig3α in yeast two-hybrid syste..86
Figure 3.3 TDP1 S81 promotes interaction with Lig3α in human A549 cells ...........87
Figure 3.4 Interaction of TDP1 with Lig3α is constitutive in the yeast two-hybrid system ............................................................................................................................87
Figure 3.5 TDP1 S81 promotes protein stability .................................................88
Figure 3.6 Lig3α promotes stability of Myc-TDP1 ..............................................88
Figure 3.7 TDP1 S81 is not required for enzymatic activity in vitro ......................89
Figure 3.8 Interaction with Lig3α is not required for TDP1 activity in vivo .............89
Figure 3.9 TDP1 S81 is not required for rapid-phase single-strand break repair in human lymphoblastoid cells .................................................................89
Figure 3.10 TDP1 S81 is not required for rapid-phase single-strand break repair in MEFs..................................................................................................................89
Figure 3.11 TDP1 S81 promotes survival after genotoxic stress in MEFs ..........89
Figure 4.1 The SUMOylation pathway .............................................................95
Figure 4.2 Validation of TDP1$^{S81E}$ interaction with UBE2I in yeast two-hybrid ..........97
Figure 4.3 Quantification of TDP1 interaction with UBE2I in yeast two-hybrid ..........97
Figure 4.4 TDP1 interacts with UBE2I in HEK293 cells .....................................97
Figure 4.5 TDP1 interacts with SUMO1 in HEK293 cells .....................................98
Figure 4.6 TDP1 K111 is conserved in higher eukaryotes ....................................98
Figure 4.7 TDP1 K111 SUMOylation is not required for interaction with Lig3α ........99
Figure 4.8 TDP K111 SUMOylation promotes cellular survival after CPT damage ....99
Figure 4.9 TDP1 K111 SUMOylation does not affect cell proliferation .............99
Figure 4.10 TDP1 K111 SUMOylation promotes early-phase repair of SSBs induced by CPT and ionising radiation .................................................................100
Figure 4.11 TDP1 K111 is not required for repair of double-stranded DNA breaks induced by CPT and IR .................................................................100
Figure 4.12 TDP1 K111 SUMOylation promotes its accumulation at sites of DNA damage ...............................................................................................101
Figure 4.13 UBC9 promotes TDP1 accumulation at sites of DNA damage ..........101
Figure 5.1 Tdp1−/− MEFs are sensitive to exogenous ROS ................................107
Figure 5.2 Tdp1 prevents accumulation of carbon adducts in DNA molecules induced by ROS in MEFs .................................................................111
Figure 5.3 Levels of carbon adducts detected by ESR correlate with expression levels of hSOD1 or hSOD1\textsuperscript{G93A} .................................................................111
Figure 5.4 TDP1 prevents accumulation of carbon adducts in DNA molecules induced by ROS in chicken DT40 B-lymphocytes ........................................111
Figure 5.5 Tdp1−/− MEFs overexpressing hSOD1\textsuperscript{G93A} accumulate more SSBs induced by H\textsubscript{2}O\textsubscript{2} .........................................................................................112
Figure 5.6 H\textsubscript{2}O\textsubscript{2} induces TOP1-linked breaks in MRC5 cells .................113
Figure 5.7 Tdp1−/− MEFs show attenuated mitochondrial DNA synthesis after oxidative stress .........................................................................................114
Figure 5.8 Overexpressing hSOD1\textsuperscript{G93A} in Tdp1−/− MEFs increases mitochondrial fragmentation .....................................................................................115
Figure 5.9 Tdp1−/− MEFs show increase mitochondrial mass in absence of exogenous stress .......................................................................................116
Figure 5.10 Tdp1−/− MEFs show increased mitochondrial superoxide not specific to complex I dysfunction .........................................................116
Figure 5.11 Overexpression of hSOD1\textsuperscript{G93A} hypersensitizes Tdp1−/− MEFs to H\textsubscript{2}O\textsubscript{2}..............................................................116
Figure 6.1 Organisation of human mitochondrial genome and TOP1mt binding site .................................................................121
Figure 6.2 Mitochondrial bioenergetic pathways ........................................125
Figure 6.3 ETC dysfunction, ROS generation and detoxification ..............125
Figure 6.4 Scheme for generating Flp-In T-Rex 293 cells with concomitant RNAi-mediated knockdown of TDP1 and overexpression of various fusion proteins ..........128
Figure 6.5 Doxycycline induction of TDP1 depletion and complementation in Flp-In T-Rex 293 cells .................................................................131
Figure 6.6 In vitro TDP1 enzymatic activity of Flp-In T-Rex 293 cell lines ..........131
Figure 6.7 Flp-In T-Rex 293 cells with TDP1 knockdown accumulate more CPT-induced chromosomal DNA breaks .............................................131
Figure 6.8 Flp-In T-Rex 293 cells with TDP1 knockdown accumulate more CPT-induced DSBs .................................................................131
Figure 6.9 TDP1 depletion in Flp-In T-Rex 293 cells reduced viability after CPT but not TBH treatment .........................................................................................131
Figure 6.10 SOD1\textsuperscript{G93A} overexpression is attenuated in Flp-In T-Rex 293 cells with TDP1 depletion ......................................................................................................................131
Figure 6.11 Flp-In T-Rex 293 cells expressing SOD1\textsuperscript{G93A} accumulate more SSBs after H\textsubscript{2}O\textsubscript{2} treatment ...............................................................................................................................131
Figure 6.12 Overexpression of TOP1mt or TOP1mt\textsuperscript{*} with concurrent TDP1 depletion in Flp-In T-Rex 293 cells .................................................................................132
Figure 6.13 Overexpression of TOP1mt reduces abundance of mitochondrial transcripts in Flp-In T-Rex 293 cells .................................................................132
Figure 6.14 Detection of TOP1mt-cc in Flp-In cells by caesium chloride fractionation................132
Figure 6.15 Titration of TOP1mt antibodies on WCE of Flp-In T-Rex 293 cells overexpressing TOP1mt-EmGFP .................................................................132
Figure 6.16 TDP1 depletion promotes accumulation of TOP1mt-cc ..............................133
Figure 6.17 TDP1 depletion promotes stalling of TOP1mt\textsuperscript{*} at H-chain replication origin ..................................................................................................................133
Figure 6.18 TDP1 depletion negatively regulates mitochondrial transcription in a TOP1mt\textsuperscript{*}-dependent manner ......................................................133
Figure 6.19 TDP1 facilitates assembly of ETC complex III ......................134
Figure 6.20 TDP1 depletion negatively regulates mitochondrial respiration ........134
Figure 6.21 TDP1 depletion does not impact on anaerobic mitochondrial respiration........134
Figure 6.22 TDP1 depletion reduces efficiency of OXPHOS-coupled ATP production .................................................................134
Figure 6.23 TDP1 promotes cellular metabolic activity ........................................135
Figure 6.24 TDP1-EmGFP is localised in the mitochondria .....................................135
**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Topoisomerase 1 inhibitors in clinical trials and their indications</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Yeast two-hybrid constructs</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Mammalian expression constructs</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Miscellaneous constructs used as cDNA templates</td>
<td>46</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Site-directed mutagenesis PCR primers</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>RNAi sequences</td>
<td>62</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Primary antibodies</td>
<td>65</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Secondary antibodies</td>
<td>65</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>qPCR primers</td>
<td>72</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>RT-qPCR primers</td>
<td>72</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Genotoxins and the types of associated DNA damage</td>
<td>84</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Genotypes of live offspring of crossing hSOD1&lt;sup&gt;G93A&lt;/sup&gt; mice with different Tdp1 backgrounds</td>
<td>110</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

8-oxo-G 8-hydroxyguanine
53BP1 p53-binding protein 1
A549 adenocarcinomic human alveolar epithelial 549 cells
A-T ataxia-telangiectasia
a.a. amino acid
ALS amyotrophic lateral sclerosis
AP apurine/apyrimidine
APE1 apurinic/apyrimidinic endonuclease 1
APS ammonium persulphate
APS ammonium persulphate
APTX aprataxin
ATM ataxia-telangiectasia mutated
ATP adenosine triphosphate
ATR ataxia-telangiectasia mutated and Rad3-related
ATRIP ATR interacting protein
AU artificial unit
β-gal β-galactosidase
BER base excision repair
bp base pairs
BLM Bloom’s syndrome protein
BRCA breast cancer associated protein
BSA bovine serum albumin
CDK cyclin-dependent kinase
cDNA complementary DNA
CHK1 checkpoint kinase 1
CHK2 checkpoint kinase 2
CHX cycloheximide
Co-IP co-immunoprecipitation
CPT camptothecin
CPRG chlorophenol red galactopyranoside
CSA Cockayne syndrome protein A
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSB</td>
<td>Cockayne syndrome protein B</td>
</tr>
<tr>
<td>CsCl</td>
<td>caesium chloride</td>
</tr>
<tr>
<td>CtIP</td>
<td>C-terminal binding protein-interacting protein</td>
</tr>
<tr>
<td>D-loop</td>
<td>displacement loop</td>
</tr>
<tr>
<td>DAPI</td>
<td>4′-6-diamino-2-phenylindole</td>
</tr>
<tr>
<td>DDR</td>
<td>DNA damage response</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNA-PK</td>
<td>DNA-dependent protein kinase</td>
</tr>
<tr>
<td>DNAse</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>dRP</td>
<td>deoxyribose phosphate</td>
</tr>
<tr>
<td>DSB</td>
<td>double-strand DNA break</td>
</tr>
<tr>
<td>DSBR</td>
<td>double-strand break repair</td>
</tr>
<tr>
<td>DRB</td>
<td>5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>ECL</td>
<td>enhanced chemiluminescence</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>ethylene glycol-bis(2-aminoethylether)-$N,N,N',N'$-tetraacetic acid</td>
</tr>
<tr>
<td>EmGFP</td>
<td>emerald green fluorescent protein</td>
</tr>
<tr>
<td>ERCC1</td>
<td>excision repair cross-complementing 1</td>
</tr>
<tr>
<td>EtBr</td>
<td>ethidium bromide</td>
</tr>
<tr>
<td>ETC</td>
<td>electron transfer chain</td>
</tr>
<tr>
<td>FCS</td>
<td>foetal calf serum</td>
</tr>
<tr>
<td>FEN1</td>
<td>flap endonuclease 1</td>
</tr>
<tr>
<td>FITC</td>
<td>fluorescein isothiocyanate</td>
</tr>
<tr>
<td>g</td>
<td>relative centrifugal force</td>
</tr>
<tr>
<td>G93A</td>
<td>glycine at position 93 converted to alanine</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Gy</td>
<td>Gray</td>
</tr>
<tr>
<td>γH2AX</td>
<td>phosphorylated histone H2A variant H2AX</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
<tr>
<td>HEK293</td>
<td>human embryonic kidney 293 cells</td>
</tr>
<tr>
<td>His</td>
<td>histidine</td>
</tr>
</tbody>
</table>
HR  homologous recombination
HRP  horse radish peroxidase
hrs  hours
IF  immunofluorescence
IR  ionising radiation
K111R  lysine at position 111 converted to arginine
Kb  kilobase
kDa  kilodalton
LB  Luria-Bertani bacterial medium
LCL  lymphoblastoid cell line
Leu  leucine
LiAc  lithium acetate
Lig3α  DNA ligase 3α
MCS  multiple cloning site
MEF  mouse embryonic fibroblasts
MEM  minimum essential media
MG132  carbobenzoxy-Leu-Leu-leucinal (proteasome inhibitor)
MMS  methyl methanesulfonate
MRN  Mre11-Rad50-Nbs1
mRNA  messenger RNA
mtDNA  mitochondrial DNA
mtTDP1  mitochondrial tyrosyl DNA phosphodiesterase 1
MUS81  MUS81 structure-specific endonuclease subunit
N558H  asparagine at position 558 converted to histidine
NAD(P)H  nicotinamide adenine dinucleotide phosphate
NEIL  endonuclease VIII-like
NEM  N-ethylmaleimide
NER  nucleotide excision repair
NH2  non-homologous end-joining
NBS  Nijmegen Breakage syndrome
NLS  nuclear localisation signal
N-terminus  amino terminus
OD  optic density
OGG1  8-oxoguanine DNA glycosylase
OH  hydroxyl
OXPHOS  oxidative phosphorylation
p53  tumour protein 53
PARP  Poly (ADP-ribose) polymerase
PBS   phosphate buffered saline
PCR   polymerase chain reaction
PCNA  proliferating cell nuclear antigen
PEG   Poly(ethylene glycol)
PFA   paraformaldehyde
PG    phosphoglycolate
PIKK  phosphatidylinositol 3-kinase like kinase
PMSF  phenylmethylsulfonyl fluoride
PNK   polynucleotide kinase
Pol   polymerase
PY    phosphotyrosyl
R-loop DNA/RNA hybrid
RAD51 DNA repair protein RAD51 homolog 1
RFC   replication factor c
RNA   ribonucleic acid
RNAi  RNA interference
ROS   reactive oxygen species
RPA   replication protein A
rpm   revolution per minute
RPMI  Roswell Park Memorial Institute media
RT    Room temperature
RT-qPCR real-time quantitative PCR
S81A  serine at position 81 converted to alanine
S81E  serine at position 81 converted to glutamic acid
SAE1  SUMO-activating enzyme subunit 1
SAE2  SUMO-activating enzyme subunit 2
SCAN1 spinocerebellar ataxia with axonal neuropathy 1
SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis
S.E.M standard error of the mean
siRNA small interfering RNA
SOC   super optimal broth with catabolic repression
Spo11 sporulation 11
SSB   single-strand DNA break
SSBR  single-strand DNA break repair
ssDNA single-stranded DNA
T554A threonine at position 554 converted to alanine
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBH</td>
<td>tert-butyl-hydroperoxide</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TDP1</td>
<td>tyrosyl DNA phosphodiesterase 1</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMRM</td>
<td>tetramethylrhodamine, methyl ester, perchlorate</td>
</tr>
<tr>
<td>TOP1</td>
<td>topoisomerase 1</td>
</tr>
<tr>
<td>TOP1-cc</td>
<td>topoisomerase 1-DNA cleavage complexes</td>
</tr>
<tr>
<td>TOP1mt</td>
<td>mitochondrial topoisomerase 1</td>
</tr>
<tr>
<td>TOP1mt-cc</td>
<td>mitochondrial topoisomerase 1-DNA cleavage complexes</td>
</tr>
<tr>
<td>Tris</td>
<td>trishydroxyaminomethane</td>
</tr>
<tr>
<td>Trp</td>
<td>tryptophan</td>
</tr>
<tr>
<td>Tween-20</td>
<td>polyoxyethylene sorbitanmonolaurate</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>polyethylene glycol octylphenyl ether</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>Ub</td>
<td>ubiquitin</td>
</tr>
<tr>
<td>UBC9</td>
<td>ubiquitin conjugating enzyme 9</td>
</tr>
<tr>
<td>UBE2I</td>
<td>ubiquitin conjugating enzyme E2I</td>
</tr>
<tr>
<td>UV</td>
<td>ultra-violet</td>
</tr>
<tr>
<td>V(D)J</td>
<td>Variable (V), Diversity (D) and Joining (J) genes</td>
</tr>
<tr>
<td>WCE</td>
<td>whole cell extract</td>
</tr>
<tr>
<td>WT</td>
<td>wildtype</td>
</tr>
<tr>
<td>XLF</td>
<td>XRCC4-like factor</td>
</tr>
<tr>
<td>XP</td>
<td>xeroderma pigmentosum</td>
</tr>
<tr>
<td>XRCC1</td>
<td>X-ray repair cross-complementing protein 1</td>
</tr>
<tr>
<td>YMM</td>
<td>yeast minimum media</td>
</tr>
<tr>
<td>YPD</td>
<td>yeast extract peptone dextrose</td>
</tr>
<tr>
<td>ZnCl₂</td>
<td>zinc chloride</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction
1.1 Genome stability

Inside each living cell, the genetic material is constantly being altered everyday (Lindahl, 1993), either by programmed biological processes, or by environmental stimuli. Programmed biological processes that introduce genetic alterations include DNA transcription and replication, mitosis and meiosis. The intracellular environment can generate molecules that lead to spontaneous DNA damage, such as reactive oxygen and nitrogen species. Environmental stimuli originate from outside the organism, such as UV radiation, chemical compounds with high-energy state or high nucleic acid binding affinity, and reprogramming by viral species.

The process of permanent alteration of genetic material is a driving force of biological evolution. However, in multicellular organisms, particularly those with highly specialised organ-systems, genetic mutations must be kept under check during the reproductive lifespan of the particular organism, to ensure transfer of accurate genetic information to the next generation. Otherwise, it may result in deleterious outcomes to the somatic cells such as developmental failure (loss of programmed developmental stages), premature aging (loss of cellular functions), and tumourigenesis (loss of cellular specialisation and co-ordination), to name but a few.

The importance of maintaining genome stability is apparent in the array of DNA damage response and repair pathways conserved in all living cells. As our understanding of each pathway expands, new players and layers of regulation will emerge and challenge our assumptions. But for the purpose of this introduction, a broad classification of the DNA repair pathways according to the types of DNA lesions is described below, with an emphasis placed on higher eukaryotic model organisms. But first, a classification of the types of DNA damage is required.
1.2 Types of DNA damage

The types of DNA damage can be classified according to the site and nature of the alteration to the molecule. For example, 1) the nucleobases, 2) the glycosidic bonds between a base and the deoxyribose sugar, or 3) the sugar phosphate backbone. Lesions on the backbone can further be classified into single-stranded breaks, and double-stranded breaks (Fig. 1.1). In reality, one form of DNA lesion is often transformed into another over time either spontaneously, or in concert with DNA replication, transcription or repair.

1.2.1 Base modifications/loss

1.2.1.1 Oxidation

In aerobic organisms, the most abundant source of base damaging agent is from reactive oxygen species (ROS), a by-product of oxidative phosphorylation in the mitochondria. About $10^9$ ROS species are generated per human cell per hour, a proportion of the more stable species can cross the nuclear pore and damage chromosomal DNA (Lieber, 2010). Other endogenous sources of ROS include lipid peroxidation and the Fenton reaction through ferrous ions (Haber and Weiss, 1934; Goldstein et al., 1993). Exogenous sources of ROS include UV and ionising radiation. ROS include hydrogen peroxide ($H_2O_2$), hydroxyl radical ($\cdot OH$), hydroxide (\(^{-}OH\)), superoxide (O\(_2^\cdot\)) and singlet O\(_2\) (\(1^\Phi O_2\)). Numerous forms of oxidised bases have been documented (Evans et al., 2004), the most well-characterised being 8-hydroxyguanine (8-oxo-G). It has been estimated that ~180 8-oxo-G lesions are generated per mammalian cell per day (Lindahl, 1993). 8-oxo-G is mutagenic as it can pair with adenine or cytosine during DNA replication, and potentially introduce permanent mutation to thymine in the next round of replication (G\(\rightarrow\)T transversion) (Shibutani et al., 1991; Maki and Sekiguchi, 1992). DNA oxidation is associated with aging, neurodegeneration, cardiovascular diseases, and cancers (Cooke et al., 2003).
Figure 1.1 Types of common DNA damage. Modifications to the bases include alkylation, methylation, oxidation most commonly due to ROS or toxic chemicals. Non-Watson-Crick pairing of bases (transversions, transitions) can occur during translesion synthesis. Hydrolysis of a base from the phosphate backbone can occur due to physical stress (heat, low pH), oxidation, or action of a glycosidase, leading to an abasic site. Intercalating agents such as cisplatin causes intra- and inter-strand crosslinks (“ICL”). UVB and UVC radiation induce binding of adjacent bases, forming stable photochemical products. Spontaneous or enzymatic degradation of the sugar phosphate backbone generates single-strand breaks (“SSBs”). Abortive topoisomerase reactions lead to protein-DNA breaks (“PDBs”). Double-strand breaks (“DSBs”) occur when two SSBs on anti-parallel strands occur in proximity to each other, or when high energy electromagnetic waves disrupt right across the DNA double helix structure. Adapted from Hoeijmackers, 2001.
1.2.1.2 Alkylation/methylation

Covalent modifications of bases by alkyl/methyl carbon groups can disrupt base pairing thereby promote mutagenesis, block DNA replication and transcription. Alkylating agents are ubiquitous, including environmental pollutants (fuel combustion wastes and tobacco smoke), biological by-products (methyl chloride from algae, bacterial nitrosation), or endogenously from oxidative damage or aberrant methylation by S-adenosylmethione, 30% of which originate in the mitochondria (Fu et al., 2012).

Two common products of DNA alkylation are 7-methylguanine (7meG) and 3-methyladenine (3meA) (Fu et al., 2012). The N-glycosidic bond between the deoxyribose backbone and 7meG is unstable and spontaneously transforms into potentially mutagenic abasic site (Park and Ames, 1988), while 3meA is a bulky adduct that can block replication. (Rydberg and Lindahl, 1982; Sedgwick et al., 2006). Both 7meG and 3meA have been associated methyl methanesulfonate (MMS)-induced transversions in mouse model lacking Alkylpurine-DNA-N-glycosylase (APNG) (Elder et al., 1998). O6-methylguanine (O6meG) can cause G->A transition, activate DNA recombination, and induce apoptosis (Margison et al., 2002).

Alkylating agents therefore have been widely used as anti-cancer drugs. 7meG, 3meA and O6meG are the primary lesions induced by the monofunctional type of alkylating agents such as dacarbazone and temozolomide; while bifunctional alkylating agents such as nitrogen mustards, mitomycin C and cisplatin induce crosslinks between two alkylated bases from two DNA strands (inter-strand crosslinks) (Fu et al., 2012).

1.2.1.3 Hydrolysis

The N-glycosidic bond between a base and the sugar backbone can be enzymatically cleaved by glycosylases as part of the process to repair damaged bases, or non-enzymatically by alkylation or heat, leaving an intermediate abasic site (AP-site) (Lindahl and Nyberg, 1972; Lindahl and Karlström, 1973). The lesion can be
potentially mutagenic or block DNA replication and transcription (Loeb et al., 1986; Guillet and Boiteux, 2002; Yu et al., 2003).

Spontaneous or ROS-induced hydrolysis of the -NH₂ group of cytosine forms 5-hydroxycytosine, 5-hydroxymethylcytosine and uracil glycol, the latter two can cause C→T transitions (Duncan and Miller, 1980). Activation-induced deaminase (AID)-mediated deamination of cytosine is physiologically important in B-cell antibody diversification through somatic hypermutation (SHM), but can also induce oncogenic transformation (Liu and Schatz, 2009). Deamination of thymine to thymine glycol can give rise to T→C transitions (Basu et al., 1989); the bulky thymine glycol also distorts the DNA structure and can stall replication (Ide et al., 1985; Clark and Beardsley, 1986; Clark et al., 1987).

1.2.1.4 Photochemical products

Characteristic of UV irradiation, UV-photoproducts are formed when two opposing pyrimidines on anti-parallel strands of the DNA absorb the electromagnetic energy from the UV ray and form a 4-ring structure with stabilised bonds between C5 and C6 (in the case of cyclobutane pyrimidine dimers, or CPD), or between adjacent C6 and C4 of the same strand (in the case of (6-4) photoproducts, or (6-4) PP) (Pfeifer, 1997). Besides distorting the DNA helical structure and inhibiting DNA replication, UV-photoproducts can spontaneously deaminate, causing transitions and transversions (Ikehata and Ono, 2011).

1.2.1.5 Spontaneous base substitution

In the eukaryotes, replicative DNA polymerases (Polα, Polδ and Polε) have high selectivity for the Watson-Crick pairing of complementary bases. However, it is estimated that one in 3.3 x 10⁸ bases can undergo spontaneous misincorporation per cell division (Lynch et al., 2008). Polδ and Polε have additional exonuclease activity to excise mismatched bases, and mice lacking the Polδ and Polε exonuclease activity
have 10-fold higher mutation rates and develop cancers prematurely (Goldsby et al., 2002; Uchimura et al., 2009; Albertson et al., 2009).

### 1.2.2 Single-stranded breaks (SSBs)

SSBs occur on the phosphate backbone of one strand of the DNA, and an estimated 10,000 SSBs are formed per cell per day (Lindahl and Nyberg, 1972; Lindahl, 1993; Beckman and Ames, 1997; Ward, 1998). SSBs can arise directly from oxidised sugars that spontaneously degrade, leaving a one-base gap with damaged 3’ termini; or as an intermediate product of base excision repair, which can form either a one- or multiple-base gap. Most SSBs from ROS damage have 3’-phosphate or 3’-phosphoglycolate ends, with intact 5’ ends (Ward, 1998; Caldecott, 2008). A small proportion has 5’ hydroxyl group (Nakamura et al., 2000). Additionally, transient SSBs with no gaps are generated in the phosphodiester bond linking the sugar phosphate backbone by type I topoisomerases to facilitate unwinding of the DNA duplex, as well as to remove torsional stress built-up during replication and transcription (Wang, 2002).

Although SSBs are not mutagenic per se, they can inhibit transcription or transform into unstable double-stranded breaks (DSBs) during replication, or deplete NAD+ by excessive PARP1 activation, leading to mitochondria-mediated apoptosis (Caldecott, 2008) (Fig. 1.2). Defective repair of SSBs have been linked to several neurodegenerative diseases, which will be discussed in Section 1.3.2.5.

### 1.2.3 Double-stranded breaks (DSBs)

DSBs occur when two SSBs are closely spaced on antiparallel strands so that the strands are not sufficiently held together by base-pairing and the nucleosome structure. It has been estimated that ten DSBs arise per cell per day in mammalian fibroblasts (Martin et al., 1985; Lieber et al., 2003; Lieber and Karanjawala, 2004). DNA replication across an unrepaired SSB nick or an inter-strand crosslink lesion is a major source of endogenous DSBs (Pfeiffer et al., 2000); while programmed DSBs arise in germline cells during meiosis (Keeney and Neale, 2006), and in early development...
Figure 1.2 Consequences unrepaired SSBs. (A) Persistent SSBs can stall transcription elongation, triggering transcription-coupled repair (TCR). Failing that, premature termination of transcription may result, while annealing of the nascent mRNA to the DNA template exposes the single-stranded anti-sense strand (forming a R-loop) susceptible to genotoxic stressors. (B) In replicating cells, a persistent SSB or R-loop can impede progression of the replication fork, causing a one-sided DSB which may cause fork reversal if not repaired, or eventually collapse into frank DSB, a strong trigger for checkpoint activation. (C) In non-replicating cells, persistent or excessive SSBs following oxidative stress can deplete mitochondrial NAD+ by excessive activation of PARP1, leading to reduced ATP production and cell death. Adapted from Caldecott, 2008.
lymphocytes for immunoglobulin class switch recombination (CSR) and somatic hypermutation (SHM) (Dudley et al., 2005). DSBs can also be generated from the activity of type II topoisomerases (Adachi et al., 2003; Haffner et al., 2011). TOP2B-induced DSBs have been found to play a critical role in transcription initiation of a subset of oestrogen and androgen responsive transcription factors (Ju et al., 2006; Wong et al., 2009; Haffner et al., 2010).

Reactive oxygen species (ROS) is another major source of DSBs. It is estimated that \( \sim 10^9 \) ROS are generated per hour per cell (Lieber, 2010). Mitochondrial genome sustains more DNA damage than the nuclear genome due to its close proximity to the source of ROS production (Yakes and Van Houten, 1997; Salazar and Van Houten, 1997; Ballinger et al., 1999; Ballinger et al., 2000; Mandavilli et al., 2000; Jin et al., 2001; Sawyer et al., 2001). Exogenous source of ROS can come in the form of ionising radiation (IR), when the electromagnetic energy is transferred to the water molecules surrounding the DNA (Riley, 1994). DSBs account for only < 5 % of the lesions caused by IR (Ward, 1990; Friedberg et al., 2006). However, persistent DSBs are highly cytotoxic due to their potential to cause gross chromosomal aberrations, such as deletions, translocations, and mis-segregations during mitosis, or activation of apoptosis (Hoeijmakers, 2001).

1.3 The DNA Damage Response (DDR)

Given the amount of DNA damage that continually arises from exogenous and endogenous sources, a cell must be well-equipped with an array of coordinated responses to preserve genome stability and prevent passing on deleterious genetic material to future generations. In a eukaryotic cell, these responses entail activation of cell cycle checkpoints, DNA repair, and apoptosis or senescence when repair is not possible. Defective DDR factors are associated with developmental defects,
neurodegeneration, immunodeficiency, radiosensitivity, sterility, and cancer predisposition (Jackson and Bartek, 2009).

1.3.1 Cell cycle checkpoints

Eukaryotic cells undergo four phases of cell cycle: G1, whereby all cell contents, except the chromosomes, are duplicated; S, whereby the chromosomes are duplicated (forming sister chromatids); G2, whereby cytoplasmic contents are assembled and errors in duplicated DNA are checked; and M, whereby chromosomes are divided between daughter cells during mitosis. After mitosis a cell returns to G1-phase, or exits the cell cycle (G0-phase) (Sclafani and Holzen, 2007).

Progression through the cell cycle is dependent on expression of cyclin-dependent kinases (CDKs) (Norbury and Nurse, 1992). Arrest of cell cycle progression can occur at four checkpoints: G1 (which prevents initiation of DNA replication), intra-S (which prevents firing of late replication origins and activates DNA repair), G2/M (which prevents entry into mitosis) (Vermeulen et al., 2003), and M-phase (also known as the “spindle assembly checkpoint”, which prevents progression of cytokinesis). Inhibition of activities of CDKs is achieved through highly interlinked but cell cycle-dependent signalling cascades via DNA damage sensors, signal transducers, and downstream effectors. The major factors in cell cycle checkpoint activation are described below.

1.3.1.1 Phosphatidylinositol 3-kinase-like kinases (PIKKs)

The phosphatidylinositol 3-kinase-like kinases (PIKKs) – ATM, ATR and DNA-PK, are the central signal transducers in the DDR pathways. ATM and DNA-PK are primarily recruited to sites of IR-induced DSBs, while ATR is primarily activated at sites of ssDNA associated with replication fork stalling by bulky base lesions and UV photoproducts, as well as resected DSBs during homologous recombination (HR) (Wright et al., 1998; Hekmat-Nejad et al., 2000; Lowndes and Murguia, 2000; Pandita et al., 2000; Abraham, 2001; Andegeko et al., 2001; Cortez et al., 2001). Recruitment of the PIKKs is mediated by interactions with DNA repair factors with affinity for
damaged DNA. Recruitment of ATM to DSBs is mediated by the MRN complex (MRE11, RAD50 and NBS1) (Section 1.3.2.9); and recruitment of DNK-PK is dependent on Ku70/Ku80 (Section 1.3.2.8); while ATR is recruited to RPA-coated ssDNA via its interacting partner ATRIP (Cortez et al., 2001; Unsal-Kaçmaz et al., 2002; Zou and Elledge, 2003; Unsal-Kaçmaz and Sancar, 2004; Ball et al., 2005).

Through phosphorylation of a vast number of downstream effectors, the PIKKs initiate multiple responses to DNA damage, including cell cycle arrest, chromatin remodelling, upregulation of DNA repair, and apoptosis (Shiloh, 2003). ATM, ATR and DNA-PK preferentially phosphorylate their target substrates at a serine or a threonine residue followed by a glutamine (SQ or TQ motif), and there is considerable overlap in their substrates (Anderson and Lees-Miller, 1992; Bannister et al., 1993; Kim et al., 1999; Rathbun et al., 1999; Kastan and Lim, 2000). CHK1 and CHK2 are two substrates of ATM and ATR with prominent roles in the checkpoint pathways.

1.3.1.2 G1 checkpoint

DNA damage sustained in G1-phase cells induces phosphorylation of tumour suppressor protein, p53, by ATM, CHK2 and ATR (Abraham, 2001). p53 phosphorylation stabilises the protein (Chehab et al., 2000; Hirao et al., 2000; Shieh et al., 2000; Maya et al., 2001), and promotes transcription of p21 (el-Deiry et al., 1994; Dumaz and Meek, 1999), which inhibits cyclin E and cyclin A-associated CDK2 activities required for initiation of replication (Xiong et al., 1993; Waga et al., 1994; Brugarolas et al., 1999; Donaldson and Blow, 1999).

1.3.1.3 Intra-S checkpoint

In S-phase cells, to ensure timely repair of DSBs during DNA replication, and to prevent stalled replication forks from collapsing into DSBs, there are multiple pathways in operation. In addition to the ATM, CHK2 and ATR mediated upregulation of p53 stability and transcription activity, there are several pathways that inhibit DNA
synthesis. Firstly, ATM, ATR, CHK2 and CHK1 phosphorylate the cdc25A phosphatase (Sanchez et al., 1997; Falck et al., 2001) which in turn downregulates the activity of cyclin A/CDK2 and inhibits progression of replication (Falck et al., 2001). Secondly, ATM also phosphorylates SMC1 (Kim et al., 2002; Yazdi et al., 2002; Kitagawa et al., 2004), NBS1 (Gatei et al., 2000b; Lim et al., 2000; Wu et al., 2000) and BRCA1 (Cortez et al., 1999; Gatei et al., 2000a; Xu et al., 2001). This pathway has been shown to promote proper activation of the intra-S checkpoint, DSBR by HR (Section 1.3.2.9), and genome stability (Falck et al., 2002; Wakeman et al., 2004; Kitagawa and Kastan; Antoccia et al., 2008; Bauerschmidt et al., 2011). In response to replication-blocking lesions, ATR-ATRIP, together with the checkpoint clamp loader Rad17, recruits the 9-1-1 complex (Rad9-Hus1-Rad1) (Kondo et al., 2001; Melo et al., 2001; Zou et al., 2002; Jones et al., 2003), which phosphorylates and activates CHK1 (Weiss et al., 2002; Jones et al., 2003; Roos-Mattjus et al., 2003).

1.3.1.4 G2/M checkpoint

The G2/M checkpoint is the final point whereby unrepaired or newly-arisen DNA damage can be resolved before mitosis, therefore is especially important in preventing genomic instability. Activation of the ATM/CHK2 and ATR/CHK1 pathways results in degradation of Cdc25A and upregulation of Wee1, which together inhibit Cdc2/Cyclin B activity required for entry into mitosis (Zhao and Piwnica-Worms, 2001; Xu et al., 2001; Yarden et al., 2002; Zhao et al., 2002; Brown and Baltimore, 2003). The ATM/CHK2 pathway also contributes to the maintenance of the G2/M checkpoint by p53-mediated transcriptional activation of GADD45 (Papathanasiou et al., 1991; Artuso et al., 1995; Wang et al., 1999) and 14-3-3 (Hermeking et al., 1997), both of which inhibit cdc25A and Cyclin B activities (Kumagai and Dunphy, 1999; Wang et al., 1999; Zhan et al., 1999; Forrest and Gabrielli, 2001; Jin et al., 2002; Chen et al., 2003; Dalal et al., 2004).
1.3.2 DNA repair

Based on the type of DNA damage sustained and the cell cycle stage it is in, a cell will attempt to repair the damage using a multitude of repair pathways. For each pathway, the mechanism of lesion detection, removal and repair are described, followed by the consequences of in case of dysfunction.

1.3.2.1 Direct reversal

There is a small proportion of DNA lesions that can be directly repaired without altering the structure of the molecule, simply by cleaving off the aberrant bond(s). For example, photolyases utilise the energy from light to break the bonds between the pyrimidines in UV products CPDs and (6-4) PPs (Weber, 2005). Another example is the O6-methylguanine-DNA methyltransferase \((\text{MGMT})\)-encoded protein, O6-alkylguanine-DNA alkyltransferase (AGT), which removes the alkyl groups from O6-methylguanine and O4-methylthymine to restore the normal guanine structure (Gerson, 2004).

Methylation of the \(\text{MGMT}\) promoter is associated with both tumourigenesis and sensitization to anti-tumour alkylating agents such as temozolamide, while overexpression in normal tissues confers protection against the cytotoxic effects of these alkylating agents (Soejima et al., 2005).

1.3.2.2 Mismatch repair (MMR)

DNA mismatches can arise through modification of bases (Section 1.2.1) or slippage of the DNA replication machinery at regions of tandem repeats (microsatellite instability). The mutagenic nature of these lesions requires prompt removal before completion of DNA replication, this pathway is therefore highly conserved from bacteria to human (Li, 2008).

In mammals, detection and binding of structure-distorting lesions by the MutS heterodimer MutS\(\alpha\) (MSH2/MSH6) or MutS\(\beta\) (MSH2/MSH3) (Drummond et al., 1995; Palombo et al., 1995; Palombo et al., 1996) results in the recruitment of MutL
heterodimer MutLα (MLH1/PMS2) (Li and Modrich, 1995), MutLβ (MLH1/PMS1) (Räschele et al., 1999) or MutLγ (MLH1/MLH3) (Cannavo et al., 2005). The replication clamp PCNA and clamp loader replication factor C (RFC) physically interact with MSH2 (Clark et al., 2000; Flores-Rozas et al., 2000; Lau and Kolodner, 2003) and MLH1 to promote localisation of MutSα to the mismatch site (Umar et al., 1996; Gu et al., 1998) and activation of the endonuclease activity of MutLα (Kadyrov et al., 2006; Pluciennik et al., 2010). MutLα then makes a nick on the discontinuous daughter strand, either 5’ or 3’ of the mismatch site (Kadyrov et al., 2006). 5’ to 3’ excision of the daughter strand from the nick to past the mismatch site is dependent on the activity of Exo1 (Umar et al., 1996; Gu et al., 1998), while 3’ to 5’ excision requires both Exo1 and PCNA (Guo et al., 2004). The resected DNA is then coated with single-stranded DNA binding protein RPA, which displaces MutSα and MutLα and promote gap-filling by DNA polymerase δ (Polδ) (Ramilo et al., 2002; Zhang et al., 2005; Guo et al., 2006). The nick is then sealed by DNA ligase 1 (Lig1) (Zhang et al., 2005).

The MMR factors play a significant role in the DDR pathways through interactions with ATM (Brown et al., 2003; Adamson et al., 2005), ATR (Wang and Qin, 2003) CHK1 and CHK2 (Adamson et al., 2005), p53 (Chen and Sadowski, 2005), and p73 (Shimodaira et al., 2003). MMR factors also play a role in antibody diversification by class switch recombination (CSR) of immunoglobulin genes (Martin and Scharff, 2002).

In humans, defective MMR is associated with increased risk of tumourigenesis, typified by Lynch syndrome (Sijmons and Hofstra, 2016), which is characterised by hereditary non-polyposis colorectal cancer (HNPCC), amongst other cancers (OMIM #120435).

1.3.2.3 Nuclear excision Repair (NER)

The NER pathway repairs a wide range of bulky DNA distorting lesions that impede replication and transcription, such as UV photoproducts CPDs, (6-4) PPs, inter-strand crosslinks induced by cisplatin, or ROS-induced bulky base modifications such as cyclopurines (Gillet and Schärer, 2006).
There are two pathways in NER: global genome NER (GG-NER) and transcription-coupled NER (TC-NER) (Fig. 1.3). They differ in that TC-NER is specialised in detection of lesions within the proximity of a stalled transcription machinery, while GG-NER can detect lesions in the whole genome irrespective of the transcription status. In GG-NER, the XPC-RAD23B-Centrin2 complex (Masutani et al., 1994; Shivji et al., 1994; Nishi et al., 2005) scans the genome (Sugasawa et al., 1998; Wood, 1999) and binds the strand opposite the lesion (Min and Pavletich, 2007; Maillard et al., 2007; Schärer, 2007), then recruits the transcription factor II H (TFIIH) complex (Coin et al., 2007; Oksenych et al., 2009). Within the complex, the helicase activity by subunits XPB (3′–5′) and XPD (5′–3′) forms a bubble ~ 30 nucleotides around the lesion (Evans et al., 1997; Coin et al., 2007; Mathieu et al., 2010), which is coated and stabilised by RPA (De Laat et al., 1998; Hermanson-Miller and Turchi, 2002). XPA, which is also recruited to the bubble platform, displaces the TFIIH and RPA (Coin et al., 2008), and promotes recruitment of the endonuclease complexes XPF-ERCC1 and XPG to resect the 5′ and 3′ ends, respectively, of the strand containing the bulky lesion (De Laat et al., 1998; Fagbemi et al., 2011). The gap is then filled by replicative DNA polymerases δ, ε, or κ with the aid of PCNA and RFC (Ogi and Lehmann, 2006; Mocquet et al., 2008; Ogi et al., 2010). Finally, the nick is repaired by XRCC1-Lig3α (Moser et al., 2007; Paul-Konietzko et al., 2015) or FEN1-Lig1 during S-phase (Mocquet et al., 2008).

In TC-NER, the lesion detection step is carried out by Cockayne syndrome proteins CSA and CSB by interaction with stalled RNA polymerase II (RNAP II) (Henning et al., 1995; Van Gool et al., 1997; Lee et al., 2002). CSA and CSB promote recruitment of the NER machinery (Fousteri et al., 2006), and further repair is thought to proceed similar to the GG-NER pathway (Hanawalt and Spivak, 2008).

In humans, defective NER has been historically associated with xeroderma pigmentosum (XP) (Cleaver, 1978), Cockayne syndrome (CS) (Schmickel et al., 1977;
Figure 1.3 The nucleotide excision repair pathway. (A) A bulky lesion that distorts the DNA helix is (B) detected by the XPC-RAD23B-Centrin complex, or (C) stalls an elongating RNAP II transcription complex, which (D) recruits the CSA/CSB complex that recognises the lesion. (E) Both XPC and CSA/B can recruit the multiprotein transcription factor TFIIH. The XPB and XPD helicase subunits separate the strands surrounding the lesion, (F) forming a ~30-nucleotide bubble, which is stabilised by coating with RPA. XPA then displaces TFIIH and RPA, recruits exonucleases XPF/ERCC1 and XPG to excise the lesion-containing strand, and PCNA, which mediates the polymerase switch for subsequent gap repair. (G) Gap-filling is carried out by DNA Pol ε and δ, with the help of PCNA and RFC. (H) Ligase 1 or 3 seals the nick to complete the repair. (I) Notably, in the mitochondria, where GG-NER factors are absent, repair is carried out through the BER pathway. Adapted from Diderich et al., 2011.
Andrews et al., 1978; Mayne and Lehmann, 1982; Venema et al., 1990), and trichothiodystrophy (TTD) (Stefanini et al., 1993a; Stefanini et al., 1993b; Vermeulen et al., 1994). Clinical symptoms of these syndromes are diverse, characterised by skin and eye manifestations of UV hypersensitivity, cancers of the skin and internal organs, neurological and skeletal abnormalities and premature aging (Lehmann, 2003). The variability in symptoms likely reflects the wide spectrum of lesions that accumulate in NER-deficient individuals.

Notably, XP patients with defective TC-NER display more severe neurological symptoms (Lehmann, 2003), which possibly reflect the role of TC-NER in repair of oxidised bases such as thymine glycols (Cooper et al., 1997) and 8-oxo-G, 8-oxo-A (Reardon et al., 1997; Le Page et al., 1999). Increasing evidence suggests an overlap in the TC-NER and BER pathways for repair of oxidative DNA damage, which will be discussed in Section 1.3.2.6.

1.3.2.4 Base excision repair (BER)

Non-bulky base modifications and AP-site lesions (Section 1.2.1) are generally repaired by the BER pathway (Lindahl and Wood, 1999). Given the frequent occurrence of these lesions, BER is another crucial pathway for maintaining genome stability.

The steps involved in BER are: damage recognition, base excision, end processing, gap filling, and ligation (Fig. 1.4).

Recognition of damaged bases depends on the glycosylases. There are 11 known glycosylases, each specific to the altered base structure that it recognises (Jacobs and Schär, 2012). For example, OGG1 recognises 8-oxo-G and Fapy-G (Boiteux and Radicella, 2000). They can be classified as monofunctional or bifunctional. Monofunctional glycosylases simply excise the base to be repaired, while bifunctional glycosylases also generate a nick in the phosphodiester bond in the backbone (Jacobs
Figure 1.4 The base excision repair and SSB repair pathways. (A) A non-bulky base lesion is (B) excised by a bifunctional glycosylase, or (C) a monofunctional glycosylase, followed by (D) cleavage of the phosphodiester backbone by APE1. APE1 associates with the scaffold protein XRCC1, (E) which recruits PARP1 to stabilise the break ends and activate downstream repair factors. (F) The end-processing factors restore the chemistry around the nick. (G) In SP-BER, Pol β fills in the missing nucleotide and (H) Lig3 seals the nick. (I) If the 5'-dRP end is oxidised, repair is carried out by LP-BER. Outside S-phase, repair is achieved through coordinated gap filling and strand displacement up to 2 nt by Polβ and FEN1, followed by steps (G) to (H). (J) During S-phase, switching to replicative polymerase allows insertion 2 – 10 nucleotides past the break end, generating a short flap, which is excised by FEN1. (K) Lig1 seals the nick to complete the repair. Part highlighted in blue indicates overlap with the single-strand break repair pathway. Adapted from Caldecott, 2008.
Upon binding with the damaged base, the glycosylase cleaves the C1-N-glycosidic bond, leaving an AP-site (Brooks et al., 2013). AP-sites arising from spontaneous deamination of bases are further processed in an identical manner.

To initiate repair of the AP-site, the phosphodiester bond is hydrolysed either by a bifunctional glycosylase (Sun et al., 1995; Nash et al., 1997; Takao et al., 2002), or by apurine/apyrimidine endonuclease 1 (APE1) (Demple et al., 1991; Robson and Hickson, 1991). APE1 is recruited to the AP-site by a monofunctional glycosylase, along with x-ray cross complementing protein 1 (XRCC1), a scaffold protein required for assembly of the repair machinery (Parikh et al., 1998; Waters et al., 1999; Hardeland et al., 2000; Hill et al., 2001; Pope et al., 2002; Marsin et al., 2003; Campalans et al., 2005). APE1 cleaves the phosphodiester bond 5' to the AP-site to generate a 5'-deoxyribosephosphate (5-dRP) end and 3'-hydroxyl (3'-OH) end (Demple and Harrison, 1994; Barzilay and Hickson, 1995; Parikh et al., 1998; Waters et al., 1999; Hill et al., 2001). This lesion is then rapidly detected by Poly(ADP-ribose) polymerase 1 (PARP1), which forms poly(ADP-ribose) chains on itself (to amplify the signal) (Ogata et al., 1981; Huletsky et al., 1989; D’Amours et al., 1999), as well as surrounding histones (to promote chromatin relaxation) (Beneke, 2012) and BER scaffold protein XRCC1 (Masson et al., 1998; Pleschke et al., 2000; El-Khamisy et al., 2003). XRCC1 provides a platform for the assembly of downstream BER factors such as PNKP, DNA polymerase β (Polβ) and DNA ligase 3α (Lig3α) required for further processing of the base lesion (Caldecott, 2001).

To insert a new nucleotide into the gap, the 5’ and 3’ ends of the phosphodiester bond must be restored to a 5’-phosphate and 3’-hydroxyl moiety, which are often altered by the actions of glycosylases and APE1. Bifunctional glycosylases with β-lyase activity generate 3’-α,β unsaturated aldehyde ends (Mazumder et al., 1991) that are repaired by APE1 (Izumi et al., 2000). Bifunctional glycosylases with β,σ-lyase activity such as NEIL1, NEIL2 and NEIL3 generate 3’-phosphate ends that are repaired by
polynucleotide kinase-phosphatase (PNKP) or APE1 (Habraken and Verly, 1988; Jilani et al., 1999; Wiederhold et al., 2004). The 5’-dRP ends generated by APE1 is removed by Polβ (Allinson et al., 2001; Podlutsky et al., 2001).

Further repair of the nick on the DNA backbone proceeds as in the case of single-strand break repair (SSBR), with modifications in the steps of damage recognition and DNA end-processing.

1.3.2.5 Single-strand break repair (SSBR)

The recognition step of SSBs starts with binding and PARylation by PARP1, which protects the site from further damage (Parsons et al., 2005), and recruits downstream repair machinery (Caldecott et al., 1996; Pleschke et al., 2000; El-Khamisy et al., 2003; Okano et al., 2003; Das et al., 2014). The steady-state of PARylation/dePARylation is regulated by poly(ADP-ribose) glycohydrolase (PARG) and terminal ADP-ribose protein glycohydrolase (TARG1), which catabolise the PAR chains to allow access of the repair factors (Zahradka and Ebisuzaki, 1982; Oka et al., 1984; Lin et al., 1997; Davidovic et al., 2001; Fisher et al., 2007; Gao et al., 2007; Chen et al., 2011; Slade et al., 2011; Zaja et al., 2012).

The end-processing factors in BER can also repair similar ends generated by other means (Fig. 1.4). For example, 3’-phosphate termini arising from spontaneous disintegration of oxidised bases or processing of TOP1-cc are repaired by PNKP (Jilani et al., 1999; Karimi-Busheri et al., 1998; Inamdar et al., 2002). 3’-phosphoglycolate termini from ROS damage are efficiently repaired by APE1 (Suh et al., 1997; Parsons et al., 2004). However, there are several additional SSBR end-processing factors to fine-tune the repair. For example, tyrosyl-DNA-phosphodiesterase 1 (TDP1) can accurately remove 3’ moieties such as phosphoglycolate (Zhou et al., 2005), dRP (Lebedeva et al., 2011), or a tyrosyl group (from the active site of TOP1) (Davies et al., 2003; Interthal et al., 2005a), leaving an ungapped nick with 5’-OH and 3’-phosphate terminus for further processing by PNKP (Inamdar et al., 2002). Similarly, 5’-AMP
termini (resulting from abortive DNA ligase activity near 5’-phosphate ends) can be accurately removed by aprataxin (APTX), leaving a 5’-phosphate terminus (Ahel et al., 2006). Several DNA polymerases besides Polβ have also been shown to process dRP termini from oxidative damage, such as Polλ and Polι (García-Díaz et al., 2001; Bebenek et al., 2001; Braithwaite et al., 2005a; Braithwaite et al., 2005b). When a 5’-dRP or 5’ sugar phosphate is oxidised, it becomes resistant to the lyase activity of Polβ. These lesions need to be repaired by the long-patch BER (LP-BER) pathway.

The next step is to fill in the missing nucleotide(s) by DNA polymerases. Depending on the efficiency of the end-processing step, and the cell cycle status, short-patch BER (SP-BER) or long-patch BER (LP-BER) (during S-phase, or if either of the nicked termini cannot be correctly restored) may be chosen. In SP-BER, Polβ inserts one nucleotide in the gap (if necessary) and Lig3α seals the nick to complete the repair (Caldecott, 2008).

LP-BER, in its most efficient form, entails one nucleotide gap filling by Polβ, followed by excision of one nucleotide flap at the 5’ end containing the oxidised lesion by Flap endonuclease 1 (FEN1) (Liu et al., 2005). Lig3α seals the nick and completes the repair. Alternatively, during DNA replication, polymerase switching can occur when a replisome approaches, resulting in Polε and Polδ mediated extension past the break point and generation of 5’ flap of a 3 – 10 nucleotides. The 5’ flap is excised by the concerted action of flap endonuclease 1 (FEN1), PCNA and PARP1 (Prasad et al., 2000). Lig1 reseals the nick between the newly synthesised strand and the 5’ end to complete the repair (Mortusewicz et al., 2006).

As the “housekeeping” DNA repair pathway, deficiency of the BER pathway is associated with tumourigenesis, neurodegeneration and aging, and in some cases, is incompatible with life (Wilson and Bohr, 2007; Caldecott, 2008; Maynard et al., 2009). Both reduction and overexpression of some BER factors have been associated with cancers (Mohan and Madhusudan, 2013). As BER plays a role in preventing
mutagenesis, as well as promoting tumour resistance to radio- and chemotherapeutic agents, it is unclear whether the aberrant expression patterns reflect the cause or the consequence of tumourigenesis. Regulation of BER factors is therefore an important area of cancer research.

Intriguingly, defects in three of the SSBR-specific end-processing factors, APTX, TDP1 and PNKP, all show exclusively neurological phenotypes with little signs of systemic involvement. Mutations in APTX are associated with ataxia-oculomotor apraxia 1 (AOA1) (OMIM #208920) (Date et al., 2001; Moreira et al., 2001); a single catalytic mutation in TDP1 is linked to spinocerebellar axonal neuropathy 1 (SCAN1) (OMIM #607250) (Takashima et al., 2002; El-Khamisy et al., 2005; Interthal et al., 2005b); and mutations in PNKP are found in patient with MCSZ syndrome (microcephaly, early-onset, intractable seizures and developmental delay) (OMIM #613402) (Shen et al., 2010; Reynolds et al., 2012), cerebellar degeneration and polyneuropathy (Poulton et al., 2013) and AOA4 (OMIM #616267) (Bras et al., 2015).

1.3.2.6 Transcription-coupled base excision repair (TC-BER)

Although the role of TC-NER in repair of bulky lesions in actively transcribed gene is well-characterised (Section 1.3.2.3), there is increasing evidence supporting the notion of a transcription-associated sub-pathway of BER (TC-BER). It has been shown that TC-NER factors confer protection against oxidative DNA damage. CSB promotes BER by stimulating the activities of PARP1 (Flohr et al., 2003; Thorslund et al., 2005) and APE1 (Wong et al., 2007); XPC stimulates activity of OGG1 and APE1 (Errico et al., 2006; Kassam and Rainbow, 2007; Melis et al., 2011; de Melo et al., 2016); and XPG promotes binding of NTH1 to thymine glycols for repair by BER (Klungland et al., 1999). It is not clear though, if non-bulky lesions such as 8-oxo-G can stall RNA Pol II per se (Tornaletti, 2005; Charlet-Berguerand et al., 2006; Guo et al., 2013). It has been suggested that the sequence complexity and the chromatin structure surrounding the lesion may affect whether TC-NER or BER is utilised for repair (Yu et al., 2000;
Interestingly, in the mitochondria, CSA and CSB promote repair of 8-oxo-G lesions via the BER, as core components of the NER pathway are not identified in the mitochondria (Dianov et al., 1999; Stevnsner et al., 2002). Therefore, the neurological and premature aging phenotype of CS patients could be attributed to excessive damage to the mitochondrial genome (Stevnsner et al., 2008).

Protein-linked SSBs, such as TOP1-cc, are also known to block the transcription machinery (Bendixen et al., 1990; Ljungman and Hanawalt, 1996; Wu and Liu, 1997). Repair by TDP1 is specific to actively transcribed region of the genome, as in TDP1-deficient cells, inhibition of RNAP II elongation by α-amanitin abrogated accumulation of TOP1-cc, while inhibition of replication by aphidicolin showed no such response (El-Khamisy et al., 2005; Miao et al., 2006). Another BER factor, NEIL2, has also been shown to preferentially interact with active RNAP II and the transcriptional regulator heterogeneous nuclear ribonucleoprotein-U (hnRNP-U) (Banerjee et al., 2011).

1.3.2.7 Double-strand break repair (DSBR)

DSBs, although less frequent than base modifications or SSBs, pose serious threat to genome stability, as they can lead to chromosomal rearrangements, deletions, duplications, and activation of cell death mechanisms (Jackson, 2002). DSBs are inevitably generated during DNA replication and cell division. It is therefore not surprising that many factors in DSBR are also involved in cell cycle checkpoints, as mentioned in Section 1.3.1.

There two main DSBR pathways – homologous recombination (HR) and non-homologous end-joining (NHEJ). The two pathways are mechanistically distinct and result in different repair outcomes. The pathway choice is dependent on factors such as the cell cycle status, the complexity of the DNA damage, and the chromatin structure surrounding the damage (Symington and Gautier, 2011). 53BP1 (Tumour suppressor p53-binding protein 1) is considered an important mediator in the DDR following DSB, as well as on the repair pathway choice. Following its recruitment to a
DSB site by ubiquitinated H2A and H2AX (Doil et al., 2009; Stewart et al., 2009), 53BP1 promotes relaxation of heterochromatin to allow the repair machinery to access the break (Noon et al., 2010; Goodarzi et al., 2011). Furthermore, phosphorylation of 53BP1 by ATM recruits RIF1 (Replication Timing Regulatory Factor 1) to the damage site, which have been shown to inhibit BRCA1-mediated end resection during G1-phase (Bunting et al., 2010; Bothmer et al., 2011; Chapman et al., 2013; Di Virgilio et al., 2013; Escribano-Diaz et al., 2013; Feng et al., 2013; Zimmermann et al., 2013). During S/G2 phase, where the chromatin is likely already relaxed, 53BP1 plays a less crucial role in DSBR. BRCA1 displaces 53BP1 from the DSB site (Chapman et al., 2012; Kakarougkas et al., 2013) and recruits the E3 Ubiquitin ligase UHRF1 (Ubiquitin-like, with PHD and RING finger domains 1) to polyubiquitinates RIF1, promoting its dissociation from 53BP1 (Zhang et al., 2016).

1.3.2.8 Non-homologous end-joining (NHEJ)

NHEJ is the DSBR pathway utilised throughout the cell cycle, but predominantly in G1- and G2-phases of the cell cycle, where homologous sister chromatids are not available (Beucher et al., 2009).

NHEJ involves tethering of the two ends of the DSB, various degree of end-processing, and ligation of the ends to complete the repair, with or without loss of some nucleotide sequences at the ends (Fig. 1.5). It has been estimated that ~ 80 % of DSBs induced by IR are efficiently repaired by NHEJ within 30 minutes (Beucher et al., 2009).

In its simplest form, canonical/classical NHEJ (c-NHEJ) is initiated by binding and stabilisation of the DSB ends to the heterodimer Ku70/Ku80, which aligns the ends of the break (Yoo and Dynan, 1999; Walker et al., 2001) and recruits and activates the DDR kinase DNA-PK (Gottlieb and Jackson, 1993; Suwa et al., 1994; Jin et al., 1997; Uematsu et al., 2007). DNA-PK binds to the two ends and forms a bridging “synaptic complex” to stabilise the break (DeFazio et al., 2002) and prevents initiation of resection by HR factors such as Exo1 (Mimitou and Symington, 2010). DNA-PK also
Figure 1.5 The non-homologous end-joining pathway. (A) A double strand break arising outside S-phase elicits (B) ATM-mediated phosphorylation of 53BP1 and H2A histones, promoting chromatin relaxation and binding of Ku70/80 to the DSB ends. (C) Ku70/80 recruits and activates DNA-PK, which in turn recruits (D) end-processing factors Artemis, PNKP, APTX, TDP2 and TDP1 to clean up the ends. (E) PARylation of the scaffold protein APLF by PARP3 promotes recruitment of the Lig4/XRCC4/XLF complex to join the break ends. Adapted from Hartlerode & Scully, 2009; Heo et al., 2015; Xu et al., 2012.
promotes assembly of downstream NHEJ repair factors including end-processing enzymes, XRCC4-Ligase 4 (Lig4), and XRCC4-like factor (XLF) (Critchlow et al., 1997; Ahnesorg et al., 2006; Costantini et al., 2007). PARP3 and APLF also promote the retention and activity of XRCC4-Lig4-XLF (Rulten et al., 2011; Grundy et al., 2013).

In c-NHEJ, where minimal end-processing is required, XRCC4-Lig4 stabilises the break ends (Grawunder et al., 1997; Grawunder et al., 1998), and Lig4 seals the ends (Schar et al., 1997; Teo and Jackson, 1997; Wilson et al., 1997; Tomkinson et al., 2006). XLF is important in completion of the Lig4 catalytic cycle and recycling Lig4 for further use (Riballo et al., 2009).

With more complex DNA ends, like in SSBR, end-processing requires several structural-specific nucleases. Artemis is a well-characterised endonuclease with hairpin processing, 5’ exonuclease, and 3’-PG processing activity (Ma et al., 2002; Ma et al., 2005; Povirk et al., 2007; Li et al., 2014). Together with ATM, it is required for V(D)J recombination of immunoglobulin genes (Ma et al., 2002; Riballo et al., 2004). PNKP, the 5’ and 3’ phosphatase required in BER/SSBR, has also been shown to play a similar role in NHEJ (Ward, 1998; Chappell et al., 2002; Bernstein et al., 2005; Koch et al., 2004; Karimi-Busheri et al., 2007; Mani et al., 2010; Segal-Raz et al., 2011). Similarly, APTX (Section 1.3.2.5) has also been implicated in NHEJ (Rass et al., 2007). The more recently characterised TOP2-DSB repair factor, TDP2, also functions in the NHEJ pathway (Gómez-Herreros et al., 2013). TDP2 cleaves the 5’-phosphotyrosyl bond in TOP2-cc, leaving re-ligatable 5’-OH ends (Cortes Ledesma et al., 2009).

There is also an alternative end-joining (A-EJ) pathway that is slower and more error-prone (Kabotyanski et al., 1998; DiBiase et al., 2000; Wang et al., 2003; Iliakis et al., 2004; Terzoudi et al., 2008). It has been observed in c-NHEJ and HR-deficient cells (Audebert et al., 2004; Audebert et al., 2006; Geuting et al., 2013). The trigger and mechanism of this pathway is less well-understood. It is postulated that PARP1 is the
DSB sensing factor in the absence of Ku70/80 (Wang et al., 2006), and the ligation step is carried out by XRCC1-Lig3α or Lig1 (Audebert et al., 2004; Wang et al., 2005; Liang et al., 2008; Simsek et al., 2011; Della-Maria et al., 2011; Paul et al., 2013). Components of the HR pathway such as the MRE11 and CtIP have also been shown to promote A-EJ (Ma et al., 2003; Lee and Sang, 2007; Bennardo et al., 2008; Deriano et al., 2009; Rass et al., 2009; Xie et al., 2009; Yun and Hiom, 2009; Zhuang et al., 2009; Lee-Theilen et al., 2010; Zhang and Jasin, 2011), which could explain the characteristic generation of microhomologies (short stretch of homologous sequences) at the junction of repair indicative of end-resection.

Defects in NHEJ core components such as Ku70/80, DNA-PK, Lig4, Artemis and XLF result in with gross genomic instability, immunodeficiency, tumourigenesis, radiosensitivity, and neurodevelopmental defects (O'Driscoll and Jeggo, 2006).

1.3.2.9 Homologous recombination (HR)

The HR pathway depends on using a sister chromatid with homologous sequence as the template for repairing both strands of the damaged DNA, therefore it should only be activated in cycling cells, in the late S- and G2 phases of the cell cycle, for repair of lesions that have already undergone replication. HR has a slower repair kinetic, but is virtually error-free (Kasparek and Humphrey, 2011). Fig. 1.6 illustrates how SSBs arising during early S-phase can be converted to one-ended DSBs, or two-ended DSBs in late S-phase, and require repair by HR (Caldecott, 2008).

In the HR pathway, the MRN complex (MRE11, RAD50 and NBS1) is the early sensor of DSBs (D'Amours and Jackson, 2002; Tauchi et al., 2002). Upon binding it stabilises the DSB ends, MRE11 initiates 5’–3’ resection and displaces Ku from the ends, inhibiting repair by NHEJ (Petrini et al., 2001; D'Amours and Jackson, 2002). NBS1 activates ATM through autophosphorylation and monomerisation (Uziel et al., 2003; Lee and Paull, 2004; Lee and Paull, 2005). ATM phosphorylates a multitude of substrates involved in the DDR (Section 1.3.1.1), including the histone variant H2AX.
Figure 1.6 Replication-coupled repair of SSBs. (A) Collision of the replication machinery with a SSB results in (B) a one-ended DSB formed by the sister chromatid (green box) and a residual SSB (blue box). (C) Repair of the DSB is initiated by 3' to 5' excision by CtIP in conjunction with MRN, while the SSB ends are processed by SSBR factors, or structure-specific nucleases such as ERCC1-XPF at 3'-termini, FEN1 at 5'-flapped termini, or the MRN complex at 5' and possibly 3'-termini. Gap filling is then carried out by the replicative polymerases Pol ε and/or Pol δ and associated factors, and the nick ligated by Lig1. (D) Homologous recombination (HR) by RAD51-mediated template switching completes repair of the excised DSB ends. (E) In the case of CPT-induced SSB, increased torsional stress promotes reversal of the replication fork by annealing of the daughter strands, essentially formation a double Holliday junction (HJ). (F) action of HJ resolvase Mus81/Eme1 (red arrows) and ERCC1/XPF (purple arrows) and subsequent repair by Lig1 results in (G) a one-ended DSB (green box) and a TOP1-associated SSB (blue box). Further repair follows steps (B) – (D). (H) If the SSB or one-sided DSB is not repaired in a timely manner, a converging replication fork or new origin firing past the SSB result in a two-sided DSB (green box). (I) End resection by CtIP and MRN allows further repair by HR. Adapted from Caldecott, 2008; Kim et al., 2013.
on ser139 (γH2AX) (Rogakou et al., 1998; Burma et al., 2001) and BRCA1 (Cortez et al., 1999; Kim et al., 1999; Gatei et al., 2000a), which initiates the chromatin relaxation process (Hu et al., 1999; Bochar et al., 2000; Ye et al., 2001), and 53BP1, which is crucial in maintaining the ATM signalling through the G2/M checkpoint (You et al., 2005; Noon et al., 2010; Shibata et al., 2010).

The ends are then more extensively resected by nucleases Exo1, DNA2 and BLM (Gravel et al., 2008; Liao et al., 2008; Nimmonkar et al., 2008; Zhu et al., 2008; Mimitou and Symington, 2009; Cejka et al., 2010a; Nimmonkar et al., 2011; Sturzenegger et al., 2014), generating ssDNAs with 3’ overhangs, which are rapidly coated by RPA which prevents formation of secondary structures (Sung and Klein, 2006). With the help of BRCA2/PALB2, RAD51 nucleofilament then displaces RPA to promote homology search by strand invasion of the sister chromatid (Sharan et al., 1997; Wong et al., 1997; Pellegrini et al., 2002; San Filippo et al., 2006; Sung and Klein, 2006; Carreira et al., 2009; Sy et al., 2009; Dray et al., 2010; Holthausen et al., 2010; Jensen et al., 2010; Liu et al., 2010; Thorslund et al., 2010). This results in the formation of the D-loop, within which RAD51 is gradually dissociated by RAD54, allowing access of DNA polymerases for DNA synthesis on the invading strand (Petukhova et al., 1998; Petukhova et al., 1999; Solinger et al., 2002; Li and Heyer, 2009; Wright and Heyer, 2014).

The invading strand then can either be displaced back and anneal with its antiparallel (non-sister chromatid) strand, and the nick sealed by Lig1 (Goetz et al., 2005), resulting in non-crossover; or it can be stabilized in the D-loop by ligating to the 3’ end of the DSB on the same strand, allowing repair synthesis on the antiparallel strand, forming a double Holliday junction structure (Pâques et al., 1999). The structure can then be processed by resolvases such as GEN1, Mus81 and SLX1 into crossover and non-crossover products (Chen et al., 2001; Constantinou et al., 2002; Andersen et al., 2009; Fekairi et al., 2009; Munoz et al., 2009; Svendsen et al., 2009; Wechsler et al., 2009; Sturzenegger et al., 2014).
2011), or converted to a hemi-catenone by BLM then resolved by topoisomerase 3 (TOP3) into non-crossover products (Ira et al., 2003; Wu and Hickson, 2003; Cejka et al., 2010b; Hickson and Mankouri, 2011). Mutations in key HR components such as BRCA1, BRCA2, RAD51, RAD54, PALB2 and p53 are associated with tumourigenesis. In addition, mutations in BLM helicase that suppresses illegitimate crossovers are associated with developmental delay (OMIM #210900). Defective meiosis-specific recombination (e.g. DMC1) is associated with male infertility (Bannister et al., 2007).

1.3.2.10 The Fanconi anaemia (FA) pathway

So-called due to the clinical presentation of patients with genetic mutations in factors involved in this pathway, the FA pathway is important for repair of ICLs during S-phase. It does this by co-ordinating factors of NER, HR and translesion synthesis (TLS) polymerases, although the molecular mechanisms of many of the FA factors are currently unknown.

The FA factors can be divided into: 1) the FA core complex (consisting of FANCA, FANCB, FANCC, FANCE, FANCG, FANCF, FANCL and FANCM); 2) the ID2 complex (FANCD2, FANCI); and the downstream repair proteins (BRCA2/FANCD1, Rad51, PALB2/FANCN, BACH1) (Moldovan and D'Andrea, 2009).

Upon replication fork stalling by an ICL, DDR is triggered when ATR phosphorylates and recruits HR factors including Rad51 and BRCA1 (Taniguchi et al., 2002; Pichierri and Rosselli, 2004; Zhu and Dutta, 2006). ATR also recruits the core FA complex to the damage site through FANCM and FAAP24 (Collis et al., 2008; Kim et al., 2008; Huang et al., 2010; Schwab et al., 2010; Wang et al., 2013). FANCL then mono-ubiquitinates FANCD2-FANCI to stabilise it at the damage site (Seki et al., 2007; Alpi et al., 2008; Longerich et al., 2009). Monoubiquitinated FANCD2/FANCI (ID2 complex) then recruits FAN1 (Fanconi anaemia associated nuclease 1) (Kratz et al., 2010; MacKay et al., 2010; Smogorzewska et al., 2010) and XPF/ERCC1 nucleases to incise the DNA backbone on the leading strand and unhook the ICL (De Silva et al.,
2000; Kuraoka et al., 2000; Niedernhofer et al., 2004). The ubiquitin signalling pathway is also important in the polymerase switching during translesion synthesis (TLS). At stalled replication forks, the replication clamp PCNA is ubiquitinated by Rad18 and Rad6 (Hoege et al., 2002; Stelter and Ulrich, 2003; Kannouche et al., 2004; Davies et al., 2008), to switch its affinity for replicative DNA polymerases to bypass polymerases (Polη, Polκ, Polι, Polξ and Rev1), which are able to use the damaged base as template and allow replication to proceed past the lesion (Waters et al., 2009). The unhooked ICL is then excised by the NER machinery (reviewed by Wood, 2011), and finally the DSB formed by Mus81 and the replication runoff is repaired by HR (Hinz, 2010).

Genetic defects in the FA pathway present clinically early in life, with very diverse features including bone marrow failure, acute myeloid leukaemia, head and neck cancers, skin and skeletal abnormalities, microcephaly, and multiple organ abnormalities (Neveling et al., 2009). Defective TLS is associated with increased genomic instability, as exemplified by the human disease xeroderma pigmentosum variant (XPV) (Masutani et al., 1999; Johnson et al., 1999). It can be inferred that a degree of tolerance to some mutagenic lesions is preferable to the consequences of DSBs such as chromosomal rearrangement and translocations.

1.3.3 Apoptosis, senescence and autophagy

When a cell fails to restore genome stability due to the quantity or complexity of the DNA damage sustained, it is still possible to prevent malignant transformation by undergoing apoptosis, senescence or autophagy. The choice between these outcomes depends on many factors, such as the cell cycle status and the severity of the damage, although many factors overlap in all three pathways.

Apoptosis is programmed cell death closely linked to the DDR. The process is intrinsically linked to the release of mitochondrial inner membrane proteases such the cytochrome c and caspases, under the regulation of BCL-2 protein family (Czabotar et
In the context of DNA damage and cell cycle checkpoint activation, sustained p53 hyper-accumulation increases expression of pro-apoptotic factors such as BAX, NOXA, PUMA, and FAS receptor (Lane, 1992), which promotes cell death through activation of the caspase cascade (Haupt et al., 2003). There is also a p53-independent pathway of initiating apoptosis through CHK1/CHK2-dependent activation of transcription factor E2F1, which promotes expression of factor p73 (another member of the p53 protein family), which activates pro-apoptotic factors such as BAX, PUMA and SCOTIN, as well as its anti-apoptotic isoform like ΔNp73 (Ramadan et al., 2005).

In addition, DNA damage can also trigger the NF-κB-dependent activation of caspases through the IKK (IκB kinase) complex (Janssens and Tschopp, 2006).

Senescence refers to a permanent arrest in cell cycle progression in normally cycling cells. DNA damage and oxidative stress are well-characterised triggers of cellular senescence (Campisi and d’Adda di Fagagna, 2007; van Heemst et al., 2007). Not surprisingly, p53 plays a very similar role in maintaining cell cycle arrest as during the G1/S checkpoint activation, through activation of p21 and inhibition of CDK2 function (Section 1.3.1.2). Another pathway involves the retinoblastoma protein (pRB) activation by p16, and subsequent inhibition of E2F-dependent transcription of pro-proliferation factors (Becker and Haferkamp, 2013).

In postmitotic cells such as neurons and cardiomyocytes, where senescence is not feasible, autophagy becomes an important mechanism to systematically remove protein aggregates, dysfunctional organelles, or intracellular microbes through lysosome-mediated degradation (Cuervo, 2004; Klionsky et al., 2007). The formation of autophagosomes is regulated by multiple factors such as nutritional deprivation (Lum et al., 2005; Bergamini et al., 2007; Mörck and Pilon, 2007; Bishop and Guarente, 2007), oxidative stress (Filomeni et al., 2015), as well as endothelial reticulum (ER) stress (Ogata et al., 2006; Yorimitsu et al., 2006; Høyer-Hansen and Jäättelä, 2007). Autophagy usually promotes cellular viability but can lead to
accelerated cell death when apoptosis is inhibited (Shimizu et al., 2004; Levine and Yuan, 2005), and conversely, inhibition of autophagy in the presence of nutritional deprivation promotes cell death by apoptosis (Maiuri et al., 2007).

1.4 DNA topoisomerases

DNA topoisomerases resolve topological stresses in the DNA double helix as it unwinds during processes such as DNA replication, transcription, DNA recombination, and chromatin remodelling. During these processes, positive or negative supercoils can build up in the still annealed double strands on either side of the separated strands, as the DNA double helix folds back onto itself and becomes entangled, preventing any further DNA unwinding. Therefore, supercoils must be removed as they arise. Topoisomerases are thus indispensable for life and are conserved from prokaryotes to all eukaryotes (Forterre et al., 2007).

Topoisomerases modulate DNA topology by transiently breaking the backbone of the DNA, allowing movement of the DNA strand relative to itself or to another DNA strand, resealing the break, and then dissociating from the DNA. They can be broadly classified as type I or type II topoisomerases. The former breaks the backbone on one strand of the DNA, while the latter breaks both strands (Wang, 2002). Type I topoisomerases can further be divided into type IA, which forms covalent linkage to the 5'-phosphate group of the phosphodiester bond of the backbone, and IB, which covalently links to the 3'-phosphate group (Wang, 2002). Type II topoisomerases can similarly be divided into type IIA and IIB. There are six known topoisomerases in humans: TOP1 (type IB), TOP1mt (type IB), TOP2α (type IIA), TOP2β (type IIA), TOP3α (type IA), and TOP3β (type IA) (Wang, 2002) (Fig. 1.7).

1.4.1 Catalytic cycle

Upon non-covalent binding around the DNA strand, a topoisomerase utilises a tyrosine residue in the catalytic site to deprotonate the scissile phosphate of the DNA backbone
Figure 1.7 Types of vertebrate topoisomerases. Topoisomerases can be classified according to their modes of action. (A) A type 1B topoisomerase (TOP1 and TOP1mt in humans) incises one strand of the DNA while being covalently attached to the 3’ end of the nick. It can cleave both in front of a polymerase (positively supercoiled “Sc+”) or behind a RNA polymerase (negatively supercoiled “Sc-”), and allow controlled rotation of the cleaved strand around its own axis to relieve the supercoiling. (B) A type 2A topoisomerase (TOP2α and TOP2β in humans) incises both strands of the DNA simultaneously, while being covalently attached to the 5’ ends of the nick. TOP2 enzymes can cleave both positively and negatively supercoiled DNA, but they are especially important in separating sister chromatids post-replication. The strand passage reaction is ATP-dependent. (C) A type 1A topoisomerase (TOP3α and TOP3β in humans) incises one strand of the DNA where the two strands are separated by negative supercoiling. It attaches to the 5’ end of the nick and passes the intact strand through the broken strand. The process is also ATP dependent. Adapted from Pommier et al., 2016.
(a nucleophilic reaction), breaking the phosphodiester bond of the DNA backbone and creating a covalent phosphotyrosine bond between the topoisomerase and the backbone (Champoux, 2001). The nick on the backbone then allows another DNA strand to pass through (in the case of type IA and type II topoisomerase), or the nicked strand can swivel around the intact strand (type IB) to release the torsional tension (Champoux, 2001). To reseal the nick, the hydroxyl group generated by breaking of the phosphodiester bond deprotonates the phosphotyrosine, thus restoring the phosphodiester bond and releasing the topoisomerase from the DNA backbone (Champoux, 2001).

1.4.2 Cellular functions

As topoisomerases are required wherever topological stress arises in the genome, they can bind supercoiled DNA with low sequence specificity (Spitzner and Muller, 1988; Porter and Champoux, 1989; Capranico et al., 1990; Jaxel et al., 1991). Type IB and type II topoisomerases preferentially bind supercoiled dsDNAs (Wang, 2002), reflecting their ability to resolve positive and negative supercoils. Type IA topoisomerases, as necessitated by their mechanism of action, require a short stretch of ssDNA for binding (Wang, 1971; Srivenugopal et al., 1984; Wilson et al., 2000; Wang, 2002). Their supercoiling relaxing property is also less efficient than that of type II topoisomerases (change of one linking number per catalytic cycle instead of two), therefore they were predicted to be inefficient for resolving positive supercoils (Kirkegaard and Wang, 1985; Plank et al., 2005).

1.4.2.1 Chromatin remodelling

DNA transactions such as replication, transcription, recombination and damage repair that require modification or displacement of the nucleosomes to allow access for the involved proteins also often require changes in DNA topology. It is therefore not surprising that topoisomerases are required during chromatin remodelling. For example, it has been shown in yeast that the chromatin remodelling activity of the
Switch/Sucrose Non-Fermentable (SWI/SNF) complex is dependent on the activities of TOP1 and TOP2 (Gavin et al., 2001). Conversely, TOP1 and TOP2 are targeted to sites of active transcription or replication through interaction with the catalytic subunit of SWI/SNF, SMARCA4 (Dykhuizen et al., 2013; Husain et al., 2016).

In general, TOP1 is more closely associated with transcription-mediated chromatin remodelling, while TOP2 is more specific for replication-mediated remodelling. For instance, TOP1 has been shown to displace nucleosomes at transcription initiation sites (Khobta et al., 2006; Durand-Dubief et al., 2011; Baranello et al., 2010; Baranello et al., 2016); while TOP2α has an established role in postmitotic chromatid decatenation and nucleosome assembly (Hirano and Mitchison, 1993; Dykhuizen et al., 2013; Farr et al., 2014; Broderick et al., 2015; Nielsen et al., 2015; Shintomi et al., 2015).

1.4.2.2 DNA replication

During DNA replication, as the replication fork progresses, positive supercoils accumulate ahead of the replication bubble. As the replication machinery rotates around the replication fork along the DNA helical axis, the tension in the positive supercoils is redistributed toward the back of the replication machinery and cause the newly synthesised DNA to intertwine (Peter et al., 1998). The activities of type IB and type IIA topoisomerases are therefore required: type IB to remove the positive supercoils and type IIA to separate the tangled replicated strands (Brill et al., 1987; Kim and Wang, 1989; Strumberg et al., 2000).

As two replication forks converge, the short piece of parental strands in between (termed “hemicatenane”) becomes too short for a type IB topoisomerase to bind to. In this case, type IA topoisomerase could resolve the tension in the single-stranded region of the parental strands, converting two replication forks into one (DiGate and Marians, 1988; Nurse et al., 2003; Suski and Marians, 2008). Type II topoisomerase
can then resolve the supercoiling in the two double-stranded replicated strands (Lucas et al., 2001; Cebrián et al., 2015).

Type IB and II topoisomerases have also been implicated in initiation of replication (Rampakakis et al., 2010), as they localise to a subset of replication origins (Abdurashidova et al., 2007; Falaschi et al., 2007; Falaschi, 2009; Rampakakis and Zannis-Hadjopoulos, 2009; Hu et al., 2009).

Interestingly, in mammalian cells, TOP2 appears to negatively regulate replication initiation (Gonzalez et al., 2011; Gaggioli et al., 2013), which could be important for suppression of aberrant replication initiation at sites of RNA:DNA hybrids (R-loops) (Kaguni and Kornberg, 1984).

At completion of DNA replication, the daughter chromosomes must separate to allow proper segregation during mitosis. The centromeres play an important role in the process. Type II topoisomerases have been shown to associate with centromeric proteins like Aurora kinase B and Polo-like kinase 1 (PLK1), supporting its role in unlinking (decatenating) daughter chromosomes at the centromeres during mitosis (Holm et al., 1985; Uemura and Yanagida, 1986; Nitiss, 2009; Coelho et al., 2008; Baxter et al., 2011; Edgerton et al., 2016).

1.4.2.3 Transcription

During transcription, it has been observed that positive supercoiling is generated ahead of the transcription machinery; in addition, negative supercoils build up behind it (Liu and Wang, 1987). The formation of negative supercoils has been proposed to be due to the inability of the transcription machinery to rotate around the DNA helical axis, thus the DNA rotates instead (Maaløe, 1966). As transcription of most mRNAs is confined in the nucleolar “transcription factories”, anchorage of the DNA loop to the nuclear membrane and to the ribosomes (in the case of transcription-coupled translation) likely impede the mobility of the DNA and the transcription machinery relative to each other.
Although in transcription, there is no problem of formation of intertwined daughter strands, negatively supercoiled strands have the propensity to hybridise to the elongating nascent RNA strand, forming stable R-loops, especially in long genes with highly repetitive sequences such as rDNAs (Aguilera and García-Muse, 2012).

Both type IB and II topoisomerases have been shown to reduce R-loop formation in rDNA genes (El Hage et al., 2010), with TOP1 primarily responsible for removal of negative supercoils and TOP2 more important for resolving positive supercoils (French et al., 2011).

It is worth noting that TOP1 has an additional kinase activity unrelated to its DNA-relaxation activity. TOP1 phosphorylates the splicing factor ASF/SF2 to promote RNA maturation (Rossi et al., 1996), thereby preventing annealing of the nascent RNA to the ssDNA template (Tuduri et al., 2009).

Other than removing supercoils, topoisomerases also play a role in regulating gene expression at promoter and enhancer regions. For example, TOP1 interacts with the TATA-binding protein (TBP) subunit of the transcription activator, TFIID complex, and promotes its binding to TATA box (Kretzschmar et al., 1993; Merino et al., 1993; Shykind et al., 1997). TOP1 also interacts with RNA Pol II paused near transcription initiation sites to promote transcription elongation (Baranello et al., 2016). In some but not all cases, the DNA cleaving activity of TOP1 is required, such as at androgen receptor-regulated enhancers (Puc et al., 2015). Similarly, TOP2β has been shown to induce DSBs at the sites of several ligand-dependent promoters (Ju et al., 2006; Haffner et al., 2010; Williamson and Lees-Miller, 2011; Trotter et al., 2015), as well as a subset of neuron-specific early response genes (Madabhushi et al., 2015).

Pharmacological inhibition of TOP1 and TOP2 showed differing effect on transcription, with TOP1 stalling occurring mainly along elongating transcripts, while TOP2 stalling mainly at promoter regions (Collins et al., 2001). The response was also highly variable amongst genes of different lengths and chromosomal and episomal promoters,
suggesting the importance of chromosomal architecture in transcription. More specifically, in human cancer cell lines HCT116, MCF7 and MDA-MB-231, CPT downregulated transcription of long genes that were highly expressed, such as genes involved in RNA degradation, cell cycle, basal transcription factors and ubiquitin-proteasome pathways, while activating transcription of short inactive genes in the oxidative phosphorylation, ribosome and p53 signalling pathways (Solier et al., 2013).

It was proposed that CPT-induced TOP1-cc downregulate transcription at long genes through arresting RNA Pol II (Ljungman and Hanawalt, 1996; Desai et al., 2003); inhibiting RNA splicing (Solier et al., 2004; Solier et al., 2010); and upregulation of p53-dependent miRNA-142-3p (Solier et al., 2013).

1.4.2.4 DNA recombination

DSBR by HR can give rise to double Holliday junctions (dHJs) (Section 1.3.2.9). This is resolved by the HJ resolvosome, which consists of the RecQ helicase BLM, RPA-like factors RecQ-mediated genome instability proteins 1 and 2 (RMI1 and RMI2), and TOP3α (Wu et al., 2006; Hartung et al., 2008; Kaur et al., 2015). The helicase activity of BLM forces the two HJs to converge, making the dHJ resemble the structure of two colliding replication forks. TOP3α, stabilised by RMI1 and RMI2, binds the hemicatenane region and gradually decatenates the crossover strands, until they are completely separated and non-crossover products are generated (Wu and Hickson, 2003; Plank et al., 2006).

On the other hand, during meiosis, DSBs are generated by the TOP4-like protein SPO11, which promotes recombination by recruiting the MRN complex, RAD51, CtIP, and DMC1-like factors (Baudat et al., 2000; Neale et al., 2005; Li and Ma, 2006; Keeney, 2008; Hartsuiker et al., 2009), thus promoting genetic diversity in the daughter cells.
1.4.2.5 Mitochondrial DNA replication and transcription

In the mitochondria, mtDNA replication and transcription also require the action of topoisomerases. TOP1mt, TOP2α, TOP2β, and TOP3α have all been found in the mitochondria (Zhang et al., 2001; Wang, 2002; Zhang et al., 2004a; Plank et al., 2005), although their mechanisms of action are less well-characterised.

1.4.3 Cellular response to TOP1-cc

Given the DNA-nicking property of the topoisomerases, the potential of introducing genomic instability increases if their catalytic cycle fails to complete, resulting in polymerase-blocking protein-DNA adducts. It has been shown that TOP1 can become trapped on the DNA backbone if it incises near endogenous DNA lesions such as base modifications, AP sites, nicks and mis-incorporated RNA (Pommier et al., 2003), which lack the 5’ hydroxyl group required for the re-ligation step. Trapped TOP1 (TOP1-cc) per se do not elicit DDR associated with DNA breaks, which is masked by the bulk of the protein. **Fig. 1.2** illustrates that during DNA replication, collision with the replication machinery or excessive build-up of positive supercoiling in front inhibits progression of the replication fork, causing cytotoxic DSBs (Sordet et al., 2009). During transcription, stalling by TOP1-cc promotes formation of stable RNA/DNA hybrids (R-loops) that inhibit replication fork progression and associated ssDNA’s that are prone to spontaneous degradation or mutagenesis (Aguilera, 2002; Li and Manley, 2006; Aguilera and García-Muse, 2012).

The most well-characterised repair pathway of TOP1-cc to date, as mentioned in **Section 1.3.2.5**, involves the PARP1-TDP1-PNKP-XRCC1-Lig3α branch of SSBR (Pommier et al., 2006; Ashour et al., 2015). APE1 has also been shown to process 3’-phosphotyrosyl ends (Harrigan et al., 2007). PARP1 is known to accumulate in actively transcribing sites (Kraus and Lis, 2003; Krishnakumar et al., 2008) and also physically interacts with TOP1 (Bauer et al., 2000). It has been shown that trapped TOP1 is rapidly ubiquinated and proteasomally degraded (Lin et al., 2008; Lin et al., 2009),
together with the stalled RNAPII if present (Ratner et al., 1998); and that degraded TOP1-DNA adduct is the preferred substrate of TDP1 (Desai et al., 2003; Lin et al., 2009). Degradation of TOP1 has been shown to be dependent the E3 Ub ligases Cullin 3 (Cul3) (Zhang et al., 2004b) and Cullin 4B (Cul4B) (Kerzendorfer et al., 2010).

It is interesting that trapped TOP1 is also modified by SUMOylation (Mao et al., 2000; Horie et al., 2002), but the intended effect is not yet defined. It has been proposed to play a role in translocating TOP1-cc from the nucleolus to the nucleoplasm (Mo et al., 2002; Rallabhandi et al., 2002; Christensen et al., 2004), inhibiting ubiquitination of TOP1 (Horie et al., 2002), or signalling recruitment of more free TOP1 (Horie et al., 2002), or TDP1 (Hudson et al., 2012) to the damage sites.

Given that most the genome is transcriptionally silent, it is likely that transcription-independent pathways to repair TOP1-cc exist. Furthermore, in replicating cells, excessive accumulation of TOP1-cc would saturate the SSBR machinery, leading to collision of TOP1-cc with replication forks and formation of DSBs (Pouliot et al., 2001).

Indeed, it has been demonstrated in yeast and mammalian cells that both HR and NHEJ pathways confer resistance against CPT in the absence of Tdp1 (Pommier et al., 2003). Mre11/Rad50/Sae2 and Mus81/Mms4 (Mus81/EME1 in humans), together with Slx1/Slx4 can resect several nucleotides 5’ of the TOP1-cc end, leaving a 3’-hydroxyl end for gap repair (Deng et al., 2005; Hamilton and Maizels, 2010; Sacho and Maizels, 2011; Regairaz et al., 2011). As these endonucleases do not require access to the phosphotyrosine bond like TDP1, degradation of TOP1 might not a prerequisite for this mode of repair.

The NER pathway is also implicated in the repair of TOP1-cc. CSB defective patient cells show sensitivity to CPT, and in yeast the 3’ endonuclease Rad1/Rad10 (XPF/ERCC1 in humans) possess activity against single-stranded 3’-phosphotyrosyl moieties similar to TDP1 (Vance and Wilson, 2002; Zhang and Jasin, 2011; Takahata
et al., 2015). Multiple NER factors such as RPA, pol δ, FEN1 and Lig1 catalyse the downstream repair in vitro (Takahata et al., 2015), suggesting repair during S-phase.

Notably, since lower eukaryotes lack several key SSBR factors such as PARP1, XRCC1 and Lig3α (Kelley et al., 2003), it is likely that the SSBR pathway of TOP1-cc repair evolved later to manage the larger genome size and/or the higher transcriptional activity in specialised postmitotic tissues such as neurons. More recently, experiments in yeast and in vitro human cell extracts also suggest a role of TDP1 in the NHEJ pathway (Bahmed et al., 2010; Heo et al., 2015), likely of functional significance in G2 or postmitotic cells.

1.4.4 Clinical relevance of TOP1 poisons

Given the multiple pathways available to repair TOP1-cc, it is unlikely that TOP1-cc arising endogenous DNA lesions would elicit a dramatic DDR response such as checkpoint arrest or apoptosis, except in the case of cells under unusually high oxidative or replicative stresses. This differential DDR response between fast- and slow-growing cells forms the basis of several new classes of anti-cancer therapeutics. For example, PARP1 inhibitors are highly selective against fast-growing tumours, especially those defective in DSBR (Hellday, 2011). By compromising SSBR, more SSBs are converted to DSBs in fast-replicating cells, and if DSBR is defective, can undergo cell cycle arrest (Section 1.3.1) and apoptosis (Section 1.3.3).

Topoisomerase poisons, unlike most enzymatic inhibitors, rely on the catalytic activity to form cleavage complexes, which then trigger DDR and apoptosis (Liu et al., 2000). Camptothecin was the original TOP1 poison discovered in the Chinese plant Camptotheca Accumulata (Wall and Wani, 1995). It had been used as an anti-cancer drug long before its mechanism of action was understood. Structural work by the Pommier group and others have later shown that it stabilises TOP1 on the DNA backbone nick by forming hydrogen bonds with the TOP1 catalytic residues and the -1 T and +1 G bases surrounding the nick (Staker et al., 2002; Staker et al., 2005;
Ioanoviciu et al., 2005; Marchand et al., 2006). Therefore, CPT is specific to TOP1 both in a sequence- and structural manner.

However, the effects of TOP1 inhibitors on DNA transcription and replication also target haematopoietic stem cells and postmitotic cells, leading to immunosuppression, cardiotoxicity and neurotoxicity over time (Moertel et al., 1972; Muggia et al., 1972). Due to its potent cytotoxicity, CPT is no longer used in the clinical setting. Currently, CPT analogues such as topotecan (TPT) and irinotecan (CPT-11) are FDA-approved for use in advanced colorectal, ovarian, cervical, and small-cell lung cancers (Pommier, 2006). CPT and non-CPT analogues currently in clinical trials are summarized in Table 1.1 (Xu and Her, 2015).

Besides the unwanted cytotoxicity, the main challenges to develop next-generation TOP1 inhibitors lie with improving compound stability and overcoming development of resistance (Beretta et al., 2013). As over time, even a single point mutation in TOP1 can potentially confer resistance. The rationale of combination therapy is that, by simultaneously generating TOP1-cc and inhibiting TOP1-cc repair, synthetic lethality can be achieved at lower or non-cytotoxic doses. For example, combination of a PARP1 (Delaney et al., 2000; Thomas et al., 2007; Zander et al., 2010; Kummar et al., 2011; Patel et al., 2012; Samol et al., 2012; LoRusso et al., 2016) or TDP1 inhibitor and TOP1 poison would inhibit TOP1-cc repair by SSBR; while combination with ATM, ATR, CHK2 or TDP2 inhibitors would hinder repair by DSBR (Shao et al., 1997; Tse and Schwartz, 2004; Flatten et al., 2005; Pommier et al., 2005; Elsayed et al., 2016). Alternatively, TOP1 poisons can be used as a neo-adjuvant drug to sensitize localized solid tumours such as glioblastomas to radiotherapy (Vredenburgh et al., 2009).
<table>
<thead>
<tr>
<th>Name</th>
<th>Trial phase</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belotecan (CKD-602)</td>
<td>Approved</td>
<td>Advanced metastatic cancer, SCLC</td>
</tr>
<tr>
<td></td>
<td>(South Korea)</td>
<td></td>
</tr>
<tr>
<td>Diflomotecan (BN80915)</td>
<td>Phase II</td>
<td>Advanced solid tumors</td>
</tr>
<tr>
<td></td>
<td>(Ipsen)</td>
<td></td>
</tr>
<tr>
<td>Gimatecan (ST-1481, LBQ707)</td>
<td>Phase I/II</td>
<td>SCLC, Ovarian</td>
</tr>
<tr>
<td></td>
<td>(Sigma-Tau, Novartis)</td>
<td></td>
</tr>
<tr>
<td>Lurtotecan (Liposomal OSI-211, NX 211)</td>
<td>Phase II</td>
<td>Sarcoma, Pancreatic, Gastric, Liver</td>
</tr>
<tr>
<td></td>
<td>(Astellas, NCLC)</td>
<td></td>
</tr>
<tr>
<td>Exatecan mesylate (DX-8951f)</td>
<td>Phase II/III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Daiichi)</td>
<td></td>
</tr>
<tr>
<td>Indenoisoquinolines (LMP400, LMP776)</td>
<td>Phase I</td>
<td></td>
</tr>
</tbody>
</table>

**Table 1.1:** Topoisomerase 1 inhibitors in clinical trials and their indications

(Adapted from Hu & Her, 2015. *Biomolecules*, 5, 1652-70)
1.5 TDP1

TDP1 is one of the more recently discovered member of the SSBR pathway. Its activity to resolve TOP1-cc is conserved from yeast to human (Yang et al., 1996; Poulion et al., 1999; Interthal et al., 2001; El-Khamisy et al., 2005), highlighting its evolutionary importance. This activity has also been implicated in resistance against anti-cancer TOP1 and TOP2 poisons (Barthelmes et al., 2004; Nivens et al., 2004; Liu et al., 2007; Meisenberg et al., 2014b), and therefore has been under investigation as a candidate for combination therapy with topoisomerase poisons.

1.5.1 Structure and substrates

Human TDP1 is a 68.5 kDa (608 amino acids) enzyme that belongs to the phospholipase D (PLD) superfamily and contains two distinct HKD motifs (HXK(X)\textsubscript{4}D(X)\textsubscript{6}GSXN) essential for its catalytic activity (Interthal et al., 2001). The N-terminus domain (first 150 amino acids in human TDP1) is poorly conserved and only present in higher eukaryotes (Davies et al., 2002). The crystal structure of the C-terminus domain of human TDP1 reveals two symmetrical α-β-α domains each consisting of seven beta sheets and two alpha helices, and a central catalytic site (Davies et al., 2002). Perpendicular to the boundary between the two domains, a narrow, positively-charged cleft of 8 Å runs through one side of the active site, while a widening cone-shaped cleft of up to 20 Å of mixed charge runs through the other side (Davies et al., 2002). This conformation allows binding of ssDNA in the narrow cleft and a TOP1 peptide moiety in the cone-shaped cleft (Davies et al., 2002; Debéthune et al., 2002; Davies et al., 2004; Interthal and Champoux, 2011).

Further structural and mutational studies revealed that TDP1 resolves TOP1-cc in a two-step reaction, firstly nucleophilic attack of the scissile phosphate by the H263 residue and protonation of the tyrosyl residue by the H493 residue cleave the TOP1 peptide from the DNA backbone, while forming a covalent phosphohistidine bond between TDP1 H263 and the 3’ phosphate end of the DNA backbone; the second step
involves activation of a water molecule by H493, which catalyses hydrolysis of the phosphohistidine bond and release of TDP1 (Interthal et al., 2001; Davies et al., 2003). Mutation of H493 therefore has a dominant negative effect, leading to formation of covalent TDP1-DNA intermediates similar to TOP1 (Interthal et al., 2005a; Hirano et al., 2007). Resolution of these TDP1-DNA intermediates has been proposed to be carried out by TDP1 itself (Interthal et al., 2005a), as TDP1 has been shown to process the 3’-phosphoamide bond in the TDP1-DNA intermediate in vitro (Interthal et al., 2005a); and that heterozygous carriers of H493R mutation do not develop SCAN1 (Takashima et al., 2002).

TDP1 has also been shown to process a variety of physiologically relevant 3’ termini, such as 3’-phosphoglycolate from oxidative damage and 3’-dRP from monofunctional alkylating agents (Inamdar et al., 2002; Interthal et al., 2005a; Zhou et al., 2009).

Besides its 3’ phosphodiesterase activity, TDP1 also has limited 3’ exonuclease activity, which removes one nucleoside from DNA or RNA with 3’-hydroxyl ends (Interthal et al., 2005a; Dexheimer et al., 2010). This activity has been linked to repair of lesions induced in the nucleus and mitochondria by chain-terminating anti-cancer and anti-viral nucleoside analogues (Huang et al., 2013; Tada et al., 2015).

1.5.2 Cellular functions

TDP1 is ubiquitously expressed in most human and mouse tissues, both in the nuclear and mitochondrial compartments (Hirano et al., 2007; Das et al., 2010; Fam et al., 2013a).

Cell lines established from SCAN1 patients, Tdp1−/− mice, and TDP1−/− DT40 cells all show hypersensitivity to CPT (El-Khamisy et al., 2005; Interthal et al., 2005b; Miao et al., 2006; Hirano et al., 2007; Katyal et al., 2007; Das et al., 2009; El-Khamisy et al., 2009; Hawkins et al., 2009; Murai et al., 2012), while overexpression of TDP1 increases resistance to CPT (Barthelmes et al., 2004; Nivens et al., 2004), confirming the role of TDP1 in repair of TOP1-cc in higher eukaryotes. Physical interaction of
TDP1 with XRCC1/Lig3α of the BER/SSBR pathway in mammalian cell lines (Plo et al., 2003; El-Kamisy et al., 2005) supports the prediction based on the crystal structure that TDP1 participates in the repair of single-stranded TOP1-linked DNA breaks in higher eukaryotes.

However, accumulation of DSBs with 3'-PG ends was also detected in SCAN1 patient-derived LCLs and Tdp1<sup>−/−</sup> MEFs (Zhou et al., 2005; Hawkins et al., 2009). Moreover, Tdp1<sup>−/−</sup> MEFs and DT40 cells are sensitive to 3'-PG DSB-inducing drug bleomycin (Hirano et al., 2007; Murai et al., 2012), while SCAN1 LCLs and TDP1-deficient HeLa cells are sensitive to calicheamicin (Zhou et al., 2009). Taken together, these data indicate that TDP1 also participates in the repair of 3'-PG DSBs in the cellular context.

Binding of TDP1 to DSB ends has been proposed to be achieved through binding to a short 3' overhang of the DSB (Zhou et al., 2009), a conformational change of the active site in vivo, or a 90° rotation of the dsDNA relative to the narrow cleft of TDP1, so that only 3 bases at a time are in contact with the narrow cleft (Raymond et al., 2005).

The role of TDP1 on repair of TOP2-cc linked DSBs is less clear. TDP1<sup>−/−</sup> DT40 cells showed sensitivity to the TOP2 poison etoposide (Murai et al., 2012), while this was not observed in SCAN1 cells (Miao et al., 2006) or Tdp1<sup>−/−</sup> MEFs (Hirano et al., 2007).

In vitro biochemical assays showed no TDP1 processing of 5' phosphotyrosyl substrate (Cortes Ledesma et al., 2009), while in yeast TDP1 has been shown to process a more physiologically relevant substrate with TOP2 peptide-linked 5' phosphotyrosyl terminus (Barthelmes et al., 2004; Nitiss et al., 2006; Borda et al., 2015). These inconsistent observations could be due to cell line- or species-specific modifications of TDP1 activity in vivo; and highlight the importance of identifying intracellular modifiers of TDP1 activity that may contribute to the disease phenotype of SCAN1, or when designing inhibitors against TDP1.
There are accumulating evidence supporting that the N-terminus domain of TDP1 regulates TDP1 function in the cellular context, through post-translational modifications and protein-protein interactions, which are discussed in detail in chapters 3 and 4.

1.5.3 Spinocerebellar axonal neuropathy 1 (SCAN1)

To date, three individuals with confirmed SCAN1 diagnosis have been described (OMIM #607250). They were all from a large consanguineous family and were homozygous for the TDP1 H493R mutation (Takashima et al., 2002). The presenting symptom was ataxic gait of adolescent onset. Clinical evaluation showed distal muscle weakness, areflexia, and disturbed proprioception. Cognition was normal in all three individuals. MRI scan showed cerebellar atrophy in individuals 1 and 2; and nerve conduction studies showed demyelination of the sural nerve in individual 3. All three individuals had mild hypoalbuminaemia and hyperlipidaemia. Mutational screens for Spinocerebellar ataxia (SCA) 1, 2, 3, 6, 7 and Friedreich ataxia (FRDA) were all normal for individual 1, and screens for metabolic disorders were negative in individual 2 (OMIM #607250) (Takashima et al., 2002). Taken together, the clinical phenotype from these three individuals resembles that of Ataxia Oculomotor Apraxia 1 (AOA1) (OMIM #208920), except for a later age of onset.

The lack of signs of genomic instability and immunodeficiency, and the overlap with AOA1 phenotype, suggest that the pathology of TDP1 H493R mutation is likely due to defective SSBR in postmitotic neurons. Lymphoblastoid cell lines from the three SCAN1-affected individuals were defective in repair of replication-independent chromosomal SSBs induced by CPT and H$_2$O$_2$ (El-Khamisy et al., 2005); as were cerebellar neurons and primary astrocytes from Tdp1$^{-/-}$ mice (Katyal et al., 2007). However, Tdp1$^{-/-}$ mice do not develop ataxia (Katyal et al., 2007). It has therefore been proposed that the pathogenic lesions in SCAN1 are a combination of TOP1-cc, TDP1-DNA intermediates (Interthal et al., 2005a; Hirano et al., 2007; Hawkins et al., 2009), and 3′-PG SSBs from endogenous ROS (Zhou et al., 2005), that together form a
vicious cycle to generate SSBs that eventually inhibit transcription and lead to cellular dysfunction (Caldecott, 2008).

Since cerebellar ataxia is a frequent symptom of mitochondrial DNA diseases (Lax et al., 2012), it has also been suggested that TDP1 and APTX may play a more important role in protecting the mitochondrial genome than the nuclear genome (Kazak et al., 2012; Sykora et al., 2012). As mitochondrial TOP1 has been implicated in maintaining mtDNA integrity (discussed in Section 6.1.2), if TDP1 plays a significant role in repair of TOP1mt-cc and oxidative mtDNA damages (Das et al., 2010), these could be the additional pathogenic lesions in SCAN1. This hypothesis was investigated and described in detail in chapters 5 and 6.

1.5.4 Tumorigenesis and targeted therapy

TDP1 has also been an emerging player in the field of cancer research, primarily because of its broad-spectrum of substrates that imply the potential to modulate sensitivity of vertebrate cells to TOP1, TOP2 poisons (Barthelmes et al., 2004; Nivens et al., 2004; Interthal et al., 2005b; El-Khamisy et al., 2005; Miao et al., 2006; Katyal et al., 2007; Murai et al., 2012), as well as alkylating agents (Alagoz et al., 2013), radiotherapy (El-Khamisy and Caldecott, 2007), and chain-terminating nucleoside analogues (Huang et al., 2013; Tada et al., 2015). However, precisely because of its broad-spectrum activity, finding a target that specifically inhibits TDP1 activity has proven challenging.

Chemical compounds known to inhibit TDP1 in vitro include vanadate and tungstate, which were used to co-crystallise with TDP1 (Davies et al., 2002), however they are broad-spectrum inhibitors of phosphatases (Makinen, 1985; Stankiewicz and Gresser, 1988). Antibiotics such as aminoglycosides (neomycin B, paromomycin and lividomycin) and bacterial ribosome inhibitors (thiostrepton, clindamycin and puromycin) showed weak inhibition of TDP1 in vitro (Liao et al., 2006), and they are also broad-spectrum inhibitors of PLD enzymes (Huang et al., 1999). Furamidine
DB75, NSC 305831), an anti-parasitic drug (Thuita et al., 2012), showed higher potency than the aminoglycosides and ribosome inhibitors, and likely acted through forming a ternary structure with ssDNA and TDP1, similar to CPT (Pommier, 2006; Antony et al., 2007). Interestingly, co-administration of furamidine and irinotecan augmented the effect of irinotecan on ameliorating nephritis in mouse model of systemic lupus erythematosus (SLE), possibly through inhibition of DNA relaxation and subsequent binding by anti-dsDNA antibodies (Frese-Schaper et al., 2014; Keil et al., 2015), indicating potential non-oncologic application for a TDP1 inhibitor. Two phosphotyrosine mimetics, methyl-3,4-dephostatin and NSC88915, identified through high-throughput screens (Dexheimer et al., 2009; Marchand et al., 2009), provided insights on the molecular basis for TDP1 active site inhibition. Lastly, using high-throughput DT40 whole cell lysate assay to validate activity in the cellular context, two new compounds, NCGC00183974 and JLT048, were identified to selectively interact with TDP1 over TDP2 (Marchand et al., 2014). However, neither compounds induced cell killing by CPT in cultured cells, suggesting either inefficient uptake by cells, unknown cellular mechanisms that inactivate the compounds, or a cell line-specific compensatory upregulation in TDP1 activity level.

It was therefore becoming clear that finding effective TDP1 inhibitors in terms of cytotoxicity also relies on understanding the downstream compensatory response that determines the ultimate cell fate. One of these responses appears to be regulation of TDP1 expression and function, as illustrated by several recent studies. Expression and enzymatic activity of TDP1 was found to be higher in over 50% of a panel of 34 treatment-naïve primary non-small cell lung carcinomas (NSCLC) compared to adjacent non-cancerous tissues from the same individuals (Liu et al., 2007); this was supported by another study using nanosensors to measure TDP1 activity in situ, whereby the activity was increased in 24 NSCLC tissues compared to adjacent non-cancerous tissues (Jakobsen et al., 2015). These findings suggest regulation of TDP1
function is intrinsic to tumourigenesis in NSCLC. In addition, there appeared to be a reciprocal downregulation of XPF overexpression in tumours overexpressing TDP1 (Liu et al., 2007), suggesting crosstalk between the parallel repair pathways of TOP1-cc repair. Another study showed that TDP1 mRNA levels were increased in a panel of 147 treatment-naïve primary rhabdomyosarcomas compared to normal skeletal tissues, and the protein levels of TDP1 as well as PARP1 were increased in 5 of the studied rhabdomyosarcoma cell lines compared to control cell lines (Fam et al., 2013b). Concomitant silencing of TDP1 and pharmacologic inhibition of PARP1 by rucaparib sensitised rhabdomyosarcoma cells to the DNA-damaging and cell-killing effect of CPT more than in control cells, suggesting an intrinsic DNA repair defect in these rhabdomyosarcoma cell lines that was compensated by TDP1 and PARP1 (Fam et al., 2013b). On the other hand, downregulation of TDP1 expression was found in six out of nine of lung cancer tissues from the NCI-60 panel, two of which showed undetectable TDP1 mRNA level and enzymatic activity, as well as increased DSBs after CPT treatment (Gao et al., 2014).

The studies described so far found heterogeneity in response to CPT in tissues with altered TDP1 expression levels. However, two small-scale studies suggest the ratio of TDP1:TOP1 may be a useful predictor of cellular response to CPT in colorectal cancers (Meisenberg et al., 2014a) and small cell lung cancers (Meisenberg et al., 2014b).

1.6 General aims and objectives

At the start of this project, the catalytic mode of action of TDP1 was well-established; its role in repair of TOP1-associated DSBs in yeast has been demonstrated; its association with components of the SSBR machinery was discovered in mammals; and a strong association of TDP1 catalytic mutation with the SCAN1 disorder was
established. However, little was known about how its function is regulated in the cellular context.

The interaction between XRCC1/Lig3α and TDP1 through its N-terminus domain (NTD) (El-Khamisy et al., 2005) was intriguing. It raised questions of the function of the NTD that evolved in higher eukaryotes. Perhaps in higher organisms, the larger genomic size and longer cellular lifespan would require a more efficient and regulated SSBR machinery, including TDP1. Does the addition of the NTD affect the catalytic activity in any way? Does it change the tertiary structure or the stability of the protein? Does it promote recruitment of TDP1 to sites of chromosomal breaks? Does it mediate interaction of TDP1 with other enzymes that participate in repair of TOP1-cc? All these questions are highly relevant to the process of developing effective TDP1 inhibitors as discussed in Section 1.5.4.

On the other hand, a major question of the specific vulnerability of cerebellar neuronal cells in SCAN1 patients remains. As the cerebellum is a metabolically active organ, with high ATP demand and high levels of ROS as by-products, I hypothesised that TDP1 may play a protective role against DNA damage in tissues with high levels of endogenous ROS. Specifically, I investigated whether cells with high endogenous ROS accumulate more chromosomal breaks in the absence of TDP1; whether TDP1 was involved in the repair and/or production of endogenous ROS; and whether these chromosomal damages impact on mitochondrial functions and cellular viability.

In short, the original contribution of this thesis is to provide insight into the cellular function of human TDP1, by characterising NTD-mediated post-translational modifications of the protein, and its role in the mitochondria.
CHAPTER 2

Materials and Methods
2.1 General chemicals and equipment

General laboratory chemicals were obtained from Sigma Aldrich or Fisher Scientific unless otherwise specified. Restriction endonucleases were obtained from New England Biolabs or Roche Diagnostic. DNA and RNA oligonucleotides were synthesised by Eurofins MWG Operon (Ebersberg, Germany) or Integrated DNA Technologies (Leuven, Belgium). Cell culture media and nutritional supplements were obtained from Gibco® Invitrogen or Sigma Aldrich. Foetal bovine sera of South American origin were sourced by Sigma Aldrich (F6524) or PAN-Biotech (Aidenbach, Germany). Tetracycline tested FBS of South American origin was from Labtech (FB1001T/500). Cell culture plastic-ware was manufactured by Nunc™ or Corning.

2.2 Molecular biology techniques

2.2.1 DNA plasmids

Sources of all plasmid DNA constructs used in this thesis are indicated in Tables 2.1, 2.2, and 2.3 respectively.

For yeast two-hybrid experiments, bait protein cDNA sequences were encoded in the pGBKKT7 vector (Clontech, 630443), which contains the GAL4 DNA-binding domain (amino acids 1 – 147) and a c-Myc epitope tag upstream of the multiple cloning site (MCS). Constitutive expression of the fusion protein in yeast is under the control of the ADH1 promoter. The vector also contains a TRP1 nutritional marker and kanamycin resistance gene for selection in yeast and E. coli, respectively.

The cDNA sequences of prey proteins were encoded in the pACT2 AD vector (Clontech, 638822), which contains the GAL4-activation domain (amino acids 768 – 881) and a HA epitope tag upstream of the MCS. Constitutive expression of the fusion protein in yeast is under the control of the ADH1 promoter. The vector also contains a
<table>
<thead>
<tr>
<th>Plasmid DNA construct</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGBKT7</td>
<td>Clontech</td>
</tr>
<tr>
<td>pGBKT7-TDP1</td>
<td>Prof. Sherif El-Khamisy</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;1-150&lt;/sup&gt;</td>
<td>Prof. Sherif El-Khamisy</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;151-608&lt;/sup&gt;</td>
<td>Prof. Sherif El-Khamisy</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;S81A&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;S81A 1-150&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;S81A 151-608&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;S81E&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pGBKT7-TDP1&lt;sup&gt;K111R&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pACT2</td>
<td>Clontech</td>
</tr>
<tr>
<td>pACT2-APTX</td>
<td>Prof. Keith Caldecott</td>
</tr>
<tr>
<td>pACT2.6-ERCC1</td>
<td>Dr John Rouse (Muñoz et al., 2009)</td>
</tr>
<tr>
<td>pACT2-Ku80</td>
<td>Prof. Keith Caldecott</td>
</tr>
<tr>
<td>pACT2-Lig3α</td>
<td>Prof. Keith Caldecott (Caldecott et al., 1996)</td>
</tr>
<tr>
<td>pACT2-SLX1</td>
<td>Dr John Rouse (Muñoz et al., 2009)</td>
</tr>
<tr>
<td>pACT2-UBE2I</td>
<td>This thesis</td>
</tr>
<tr>
<td>pACT2-XPF</td>
<td>Dr John Rouse (Muñoz et al., 2009)</td>
</tr>
<tr>
<td>pACT2-XRCC1</td>
<td>Prof. Keith Caldecott</td>
</tr>
<tr>
<td>pACT2-XRCC4</td>
<td>Prof. Keith Caldecott</td>
</tr>
</tbody>
</table>

**Table 2.1:** Yeast two-hybrid constructs

Plasmid DNA constructs used in this thesis for yeast two-hybrid analysis and their sources.
<table>
<thead>
<tr>
<th>Plasmid DNA construct</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pCI-puro-Myc</td>
<td>Prof. Keith Caldecott</td>
</tr>
<tr>
<td>pCI-puro-Myc-TDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pCI-puro-Myc-TDP1&lt;sup&gt;S81A&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pCI-puro-Myc-TDP1&lt;sup&gt;S81E&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>ΔT-Myc-DEST</td>
<td>Dr Helfrid Hocheggar</td>
</tr>
<tr>
<td>ΔT-Myc-DEST -UBE2I</td>
<td>This thesis</td>
</tr>
<tr>
<td>pMX-PIE-TopBP1-ER</td>
<td>Dr Oskar Fernandez-Capetillo (Toledo et al., 2008)</td>
</tr>
<tr>
<td>pMX-PIE-TDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pMX-PIE-TDP1&lt;sup&gt;S81A&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pMX-PIE-TDP1&lt;sup&gt;K111R&lt;/sup&gt;</td>
<td>Dr Jessica Hudson (Hudson et al., 2012)</td>
</tr>
<tr>
<td>pMX-PIE-SOD1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pMX-PIE-SOD1&lt;sup&gt;93A&lt;/sup&gt;</td>
<td>This thesis</td>
</tr>
<tr>
<td>pMC-EGFP-P-N-TDP1</td>
<td>Dr Morten Christensen</td>
</tr>
<tr>
<td>pMC-EGFP-P-N-TDP1&lt;sup&gt;K111R&lt;/sup&gt;</td>
<td>Mr Chris Rookyard (Hudson et al., 2012)</td>
</tr>
<tr>
<td>pEGFP-C1-SUMO1</td>
<td>Prof. Alan Lehmann</td>
</tr>
<tr>
<td>pMSP-shUBE2I</td>
<td>Open Biosystems/Dharmacon (clone V2HS_171771)</td>
</tr>
<tr>
<td>pcDNA6.2-GW-EmGFP</td>
<td>Thermo Fisher (cat. No. K4936-00)</td>
</tr>
<tr>
<td>pcDNA5-FRT-His</td>
<td>Prof. Stuart Wilson</td>
</tr>
<tr>
<td>pcDNA5-FRT-miScr</td>
<td>Prof. Stuart Wilson</td>
</tr>
<tr>
<td>pcDNA5-FRT-miTDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TDP1&lt;sup&gt;TR&lt;/sup&gt;-miScr</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TDP1&lt;sup&gt;TR&lt;/sup&gt;-miTDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-SOD1-miTDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-SOD1&lt;sup&gt;93A&lt;/sup&gt;-miScr</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-SOD1&lt;sup&gt;93A&lt;/sup&gt;-miTDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TOP1mt-miScr</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TOP1mt-miTDP1</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TOP1mt&lt;sup&gt;T554A,N558H&lt;/sup&gt;-miScr</td>
<td>This thesis</td>
</tr>
<tr>
<td>pcDNA5-FRT-TOP1mt&lt;sup&gt;T554A,N558H&lt;/sup&gt;-miTDP1</td>
<td>This thesis</td>
</tr>
</tbody>
</table>

**Table 2.2: Mammalian expression constructs**

Plasmid DNA constructs used in this thesis for expression of the indicated cDNA in mammalian cells and their sources.
<table>
<thead>
<tr>
<th>Plasmid DNA construct</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pET28b-SOD1</td>
<td>Dr Majid Hafezparasat</td>
</tr>
<tr>
<td>pET28b-SOD1&lt;sup&gt;G93A&lt;/sup&gt;</td>
<td>Dr Majid Hafezparasat</td>
</tr>
<tr>
<td>pcDNA5-FRT-TOP1mt</td>
<td>Dr Martin Meagher</td>
</tr>
</tbody>
</table>

**Table 2.3:** *Miscellaneous constructs used as cDNA templates*

Plasmid DNA constructs used in this thesis for subcloning the indicated cDNA into mammalian expression constructs and their sources.
LEU1 nutritional marker and ampicillin resistance gene for selection in yeast and E. coli, respectively.

For protein expression in mammalian cells, the vectors pCI-puro-Myc (Promega, E1731), pMC-EGFP-P-N (Barthelmes et al., 2004), pMX-PIE and pcDNA5-FRT were used. The pCI-puro-Myc vector contains a c-Myc epitope tag upstream of the MCS, which is useful for co-immunoprecipitation (Co-IP) experiments by Myc pull-down. The constitutional expression of the fusion protein is driven by the CMV promoter/enhancer sequence. The vector also contains a puromycin resistance gene under the SV40 promoter regulation for selection in mammalian cells; and an ampicillin resistance gene for propagation in E. coli cells.

The pMC-EGFP-P-N vector, derived from the plasmid pMC-2PS-delta HindIII-P (Mielke et al., 2000), contains the EGFP fluorophore epitope tag downstream of the MCS, which allows expression of C-terminally-tagged fusion proteins, useful for fluorescence microscopy and FACS experiments. The constitutional expression is driven by the CMV promoter/MPSV (myeloproliferative sarcoma virus) enhancer sequence. The vector allows expression of the puromycin resistance gene with the fusion protein as a bicistronic transcript linked by an Internal Ribosomal Entry Site (IRES) element. The vector also has an ampicillin resistance gene for propagation in E. coli.

For difficult to transfect mammalian cells, the pMX-PIE (pMX-puromycin-IRES-EGFP) vector was utilised for gene transfer by retroviral transduction of the virus packaging cells. The retrovirus vector was derived from the pMX vector (Kitamura et al., 2003), and contains an EGFP epitope tag downstream of the MCS linked by an IRES element, and puromycin and ampicillin selection markers. The transcript unit is flanked by the retroviral (Moloney Murine Leukaemia virus, or MMLV) long terminal repeats (LTRs) on the 5’ and 3’ ends. The LTRs encodes eukaryote-like promoter/enhancer sequences for transcription of the gene of interest after integration into the genome of
the virus packaging cell line, which also contains the viral env gene that encodes envelop protein required for assembly of complete viral particles.

The pcDNA5-FRT vector was used to encode cDNAs of proteins that require inducible expression, due to cytotoxicity from constitutional overexpression. The vector contains a CMV/2x TetO2 promoter/enhancer sequence upstream of the MCS, and a Flp Recombinase Target (FRT) site upstream of a hygromycin resistance gene, which is activated upon Flp recombinase-mediated integration into the host genome.

For microRNA-mediated gene silencing in mammalian cells, the expression vector pcDNA6.2-GW/EmGFP-miR (Life Technologies, K4939-00) was used. It allows polycistronic transcription of the EmGFP tag and up to three miRNA sequences under the control of the CMV promoter. It has blasticidin and spectinomycin resistance markers for selection in mammalian and bacterial cells, respectively.

2.2.2 Propagation of plasmid DNA

Chemically competent DH5α E. coli cells were slowly thawed on ice. 1 µg of plasmid DNA was incubated with 50 µL of cells on ice for 30 minutes. Cells were heat-shocked in 42°C water bath for 45 seconds, and cooled on ice for 2 minutes. 500 µL of LB was added to the cells, and the culture was incubated at 37°C for 1 hour at 225 rpm shaking. Transformants were selected on LB agar plates with 50 µg/mL selection antibiotic (ampicillin, kanamycin, or spectinomycin) at 37°C overnight. Single colonies were inoculated in 5 mL (for minipreps) or 100 mL (for midipreps) LB media with 50 µg/mL of appropriate selection antibiotic, and culture was incubated at 37°C overnight shaking at 225 rpm. Plasmids were extracted using the Qiagen DNA extraction kits (QIAprep® Spin Miniprep Kit and QIAprep® Plasmid Midiprep Kit) following the manufacturer’s instructions.
2.2.3 Quantification of DNA/RNA concentration

Plasmid DNA concentration was determined using the NanoDrop ND-Spectrophotometer (software version V) at a wavelength of 230 nm. A ratio of 260/280 absorbance between 1.8 – 2.0 indicates the preparation is free from contaminants that strongly absorbs at 280 nm.

2.2.4 DNA agarose gel electrophoresis

Electrophoresis grade agarose was dissolved in 1 x TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA pH 8.0) to make 1% w/v agarose gels. 2 µg/mL ethidium bromide was added to the gel mixture and the gel was poured and set in a gel tray. DNA samples were loaded to the gel in 1 x loading buffer (0.04% w/v bromophenol blue, 2.5% w/v Ficoll). 1 kb plus DNA ladder (Invitrogen, 10787018) was loaded as marker. The sample was subjected to electrophoresis at 100 V for 40 minutes. DNA was visualised by UV transillumination.

2.2.5 DNA sequencing

Plasmid DNA was sequenced by Sanger-sequencing (GATC Biotech) using plasmid-specific primers.

2.2.6 TOPO-TA Cloning

FastStart High Fidelity PCR System (Roche Applied Science, 03553426001) was used to generate PCR fragment for subsequent TOPO-TA Cloning. In a 25 µL reaction, 10 ng of template DNA, 200 µM dNTPs, 200 µM of each oligonucleotide primers, 1 U of Taq DNA polymerase, 1.8 mM MgCl₂, and 1 µL of DMSO were added in 1 x reaction buffer. Thermocycling was performed on a Techne TC-3000 x thermocycler (Bibby Scientific) as follows: initial denaturation at 95°C for 2 minutes; 35 cycles of 95°C for 30 seconds, (T_m of primers -5°C) annealing for 30 seconds, 72°C extension for 45 seconds plus 1 minute per additional kb plasmid length; with final extension at 72°C for 7 minutes.
Freshly amplified PCR product was analysed by agarose gel electrophoresis for specificity of the amplicon. Further purification was performed if necessary using the Qiaquick Gel Extraction Kit (Qiagen). The TOPO-TA Cloning Kit (Invitrogen) was used to ligate the PCR product with the pCR2.1-TOPO vector using the following reaction: 1 μL of salt solution, 1 μL of vector, 4 μL of PCR product. The ligation reaction was incubated at room temperature for 15 minutes, then added to 50 μL of the chemically competent TOP10 cells supplied with the kit. The cells were kept on ice for 10 minutes, then heat-shocked in 42°C water bath for 45 seconds, and cooled on ice for 2 minutes. 500 μL of LB was added to the cells, and the culture was incubated at 37°C shaking at 225 rpm for 1 hour. The transformants were selected on LB agar plates containing 50 μg/mL ampicillin and 40 mM x-gal at 37°C overnight. Single white colonies were picked to inoculate 5 mL LB media with 50 μg/mL ampicillin overnight at 37°C shaking at 225 rpm. Plasmid DNA was extracted with the QIAprep® Spin Miniprep Kit following manufacturer’s instructions. Purified minipreps were then digested with appropriate restriction endonucleases and analysed by agarose gel electrophoresis to confirm correct size and orientation of the inserts. Plasmid DNA with the correct size and orientation of inserts were then analysed by PCR sequencing to confirm no extra mutations were introduced to the insert during initial PCR amplification.

2.2.7 Restriction endonuclease digestion

DNA of the appropriate concentration (0.5 – 5 μg) was incubated with 1 – 2 U of appropriate restriction enzyme for 2 hours at 37°C. Complete digestion of the DNA was determined by comparison to an undigested control sample by agarose gel electrophoresis. If appropriate, DNA fragments were purified using Qiagen QIAquick® Gel Extraction Kit and the DNA concentration was quantified as described above.

2.2.8 DNA ligation

DNA ligation reactions were set up according to Sambrook and Russell protocol
(Sambrook and W Russell, 2001) at vector to insert molar ratio of **≥** 1:3. Reactions were incubated with 1 U of T4 DNA ligase overnight at 16°C in a total volume of 10 μL. 5 μL of the ligation reaction was transformed into chemically competent DH5α cells as described above in **Section 2.2.6**. Plasmid DNA was extracted according to manufacturer’s instructions for the QIAprep® Miniprep Kit (Qiagen, 27104). The presence of the insert and correct orientation was confirmed by digestion of the plasmid by restriction digest and analysis by agarose gel electrophoresis.

**2.2.9 Site-directed mutagenesis**

The KOD Hot Start DNA polymerase (Merck Millipore, 71086) was used to for PCR-based site-directed mutagenesis. Primers used are listed in **Table 2.4**. In a 50 μL reaction, 75 ng template DNA, 15 μM forward and reverse primers, 5 μL dNTPs (2 mM of each nucleoside), 2 μL MgSO₄ (25 mM), 1 μL PCR-grade DMSO and 1 μL KOD polymerase were added to 1 x reaction buffer. Thermocycling was performed using a Techne TC-3000X thermocycler with these conditions: initial denaturation at 95°C for 5 minutes; 18 cycles of 95°C for 1 minute, (Tₘ of primers -5°C) annealing for 1 minute, 68°C extension for 1 minute/kb template DNA; and final extension at 68°C for 10 minutes. 5 μL of the amplified PCR reaction was analysed by agarose gel electrophoresis to assess specificity of the amplicon. 20 U of *DpnI* (NEB, R0176) was added to the rest of the PCR reaction to digest away methylated parental strand of the template by incubation at 37°C for 1 hour. 5 μL of the digested PCR reaction was then used to transform 100 μL of chemically competent DH5α cells as described in **Section 2.2.6**. Single colonies were picked to inoculate 5 mL of LB with 50 μg/mL appropriate selection antibiotic, cultures were grown for 16 hours at 37°C shaking at 225 rpm. Plasmid DNA was extracted using the QIAprep® Spin Miniprep Kit following manufacturer’s instructions. Restriction endonucleases digestion followed by agarose gel electrophoresis was used to identify clones with correct insert size and orientation. These clones were sequenced by GATC Biotech (Konstanz, Germany), to confirm
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDP1&lt;sup&gt;S81A&lt;/sup&gt; (F)</td>
<td>GGCAGAAAAGCGGTGCCCAGGAGGACCTCGGC</td>
</tr>
<tr>
<td>TDP1&lt;sup&gt;S81A&lt;/sup&gt; (R)</td>
<td>GGCAGAGTCCTCCTGGGCAACCCTTTTCTGCC</td>
</tr>
<tr>
<td>TDP1&lt;sup&gt;S81E&lt;/sup&gt; (F)</td>
<td>GCCAGAAAAAGCGGTGAGCAGGAGGACCTCGGC</td>
</tr>
<tr>
<td>TDP1&lt;sup&gt;S81E&lt;/sup&gt; (R)</td>
<td>GGCAGAGTCCTGCTCACCCTTTTCTGCC</td>
</tr>
<tr>
<td>TDP1&lt;sup&gt;K111R&lt;/sup&gt; (F)</td>
<td>GCTGAGAAAGTGGTGATCAAGGAGAAAGACATCT</td>
</tr>
<tr>
<td>TDP1&lt;sup&gt;K111R&lt;/sup&gt; (R)</td>
<td>AGAGATGTCTTTTCTCTGATCACCACCTTTCTCAG</td>
</tr>
<tr>
<td>TDP&lt;sup&gt;TR&lt;/sup&gt; miRNA #1 (F)</td>
<td>GAGGTTCACTATCAGCCAGGAAAAGTGAGGAAGAAAC</td>
</tr>
<tr>
<td>TDP&lt;sup&gt;TR&lt;/sup&gt; miRNA #1 (R)</td>
<td>CTTTGCTGCTGCTTGATATCGTGAACCTCCTCCATAATC</td>
</tr>
<tr>
<td>TDP&lt;sup&gt;TR&lt;/sup&gt; miRNA #2 (F)</td>
<td>CTTCCTGCTGCTGCTTGATATCGTGAACCTCCTCCATAATC</td>
</tr>
<tr>
<td>TDP&lt;sup&gt;TR&lt;/sup&gt; miRNA #2 (R)</td>
<td>CTTCACGCTGCTGCTTGATATCGTGAACCTCCTCCATAATC</td>
</tr>
<tr>
<td>TOP1&lt;sup&gt;T456A,N460H&lt;/sup&gt; (F)</td>
<td>GCCCTGGGAGCGTCCAAGCTCACTACCTGG</td>
</tr>
<tr>
<td>TOP1&lt;sup&gt;T456A,N460H&lt;/sup&gt; (R)</td>
<td>CTTGAGGCTAGTGGAGCTTGGAGCCGAGGTCCTAATC</td>
</tr>
</tbody>
</table>

**Table 2.4: Site-directed mutagenesis PCR primers**

Primers were designed according to the QuikChange XL Site-Directed Mutagenesis Kit from Stratagene to incorporate a single amino acid change at the protein level. For targeting-resistant cDNA, silent mutations were introduced using primers designed according to Zheng et al., 2004 *Nucl. Acid Res.* 32(14): e115. Nucleotide changes are indicated in red.
presence of the desired mutation.

2.2.10 Phenol: chloroform DNA extraction

To extract DNA from samples containing proteins, an equal volume of phenol:chloroform:isoamyl alcohol solution (VWR, A0944.0100) was added to the DNA solution. The mixture was vortexed briefly, then centrifuged at 13000 rpm for 5 minutes. The top layer was carefully transferred to a clean tube, and mixed with equal volume of chloroform:IAA, vortexed briefly, then centrifuged at 13000 rpm for 2 minutes. The top layer is again transferred to a clean tube, then mixed with 2 x volume of 100 % ethanol containing 0.3 M sodium acetate and 20 µg glycogen. The DNA was precipitated by incubating at -80°C for 45 minutes and centrifugation at 13000 rpm for 30 minutes. The supernatant was carefully transferred to a clean tube, and the DNA pellet was washed twice with 70 % ethanol. The pellet was then air-dried until transparent, and resuspended in 50 µL distilled water. If after DNA quantification, the concentration was lower than expected, the saved supernatant was centrifuged again and the DNA pellet processed as described above.

2.3 Yeast two-hybrid assay

2.3.1 Yeast media

YPD medium: 20 g/L peptone, 10 g/L yeast extract, 20 g/L yeast granulated agar (for plates), 2 % glucose

Yeast minimum medium with Histidine (His+ YMM): 80 mg/L adenine, 40 mg/L histidine, 20 g/mL yeast granulated agar (for plates), 2 % glucose, 6.7 g/L yeast nitrogen base

Yeast minimum medium without Histidine (His- YMM): 80 mg/L adenine, 2 % glucose, 6.7 g/L yeast nitrogen base with ammonium sulphate, 25 mM 3-amino-1,2,4-triazole, 20 g/mL yeast granulated agar (for plates).
2.3.2 Yeast strain maintenance and storage

Wildtype *S. cerevisiae* strain Y190 (Clontech) was grown at 30°C on YPD agar plate, and re-streaked on fresh plate every third day or when cells turned pink. Transformed Y190 was selected and maintained on YMM plates. For long-term storage, untransformed Y190 cells were stored in YPD medium with 25% glycerol at -80°C. Transformed cells were stored in YMM with 25% glycerol at -80°C.

*tdp1Δ/rad1Δ S. cerevisiae* strain (YW812) was generated by Thomas Wilson (Vance and Wilson, 2002) and provided by Keith Caldecott.

2.3.3 Small-scale lithium acetate yeast co-transformation

2.3.3.1 Stock solutions

10 x TE buffer: 100 mM Tris HCl, 10 mM EDTA, pH 7.5. Autoclave to sterilise.

10 x Lithium acetate (LiAc): 1 M lithium acetate, pH 7.5 with dilute acetic acid. Autoclave to sterilise

50 % PEG: 50 % w/v PEG (MW 3350) in sterile distilled H₂O. Dissolve by warming to 50°C

Salmon sperm DNA: 10 mg/mL salmon sperm DNA (Sigma, D1626), sonicated 2 x 30 seconds

2.3.3.2 Preparation of competent Y190 cells

20 mL YPD medium was inoculated with a few colonies of healthy Y190 cells. Cells were grown at 30°C overnight at 200 rpm. Overnight culture was diluted in YPD medium to an OD₆₀₀ of ~ 0.2AU and incubated at 30°C at 200 rpm until OD₆₀₀ reached 0.6 – 0.8AU (at least two divisions). Culture was centrifuged at 2500 rpm for 5 minutes, then the pellet washed with 1 x TE buffer, followed by washing with 1 mL 100 mM LiAc. Cells were resuspended with 400 µL 100 mM LiAc, 50 µL of cell suspension were transferred to a 1.5 mL Eppendorf tube, briefly centrifuged to remove the LiAc, and
kept on ice until ready to use.

2.3.3.3 Lithium acetate transformation

Salmon sperm DNA was denatured by boiling at 90°C for 10 minutes, then cooled on ice for 10 minutes. The following were added to the cell pellet in this order: 240 µL 50 % PEG, 36 µL 1 M LiAc, 10 µL salmon sperm DNA, 1 – 5 µg plasmid DNA, and sterile H₂O to make up to 360 uL final volume. The transformation reaction was vortexed vigorously for 1 minute, then incubated at 30°C for 30 minutes. The cells were heat-shocked in 42°C water bath for 20 minutes (strain specific), then centrifuged at 6000 rpm for 15 seconds. The cells were gently resuspended in 1 mL sterile H₂O, and 200 µL of the suspension was plated on His+ YMM selection plate. Transformants were selected by growing at 30°C for 72 hours. 10 – 20 colonies were transferred to 100 µL 1 x TE, and 50 µL each were plated on fresh His+ and His- YMM selection plates, then incubated for 2 – 3 days at 30°C until enough healthy cells were gown for β-galactosidase lift assay.

2.3.4 β-galactosidase lift assay

Stock solutions

Z buffer: 62.5 mM Na₂HPO₄,40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄

X-gal: 40 mg/mL in dimethylformamide

Cells from His+ YMM selection plate were transferred to a 3 mm Whatman filter paper by gentle pressure applied with a roller. The filter paper was then snap frozen with liquid nitrogen for 10 seconds and thawed completely at room temperature. This was repeated three times to permeabilise the yeast cell wall. The filter paper was place with cells side up on top of a clean 3 mm Whatman filter paper pre-soaked in x-gal/Z-buffer solution (83.5 µL X-gal, 10 mL Z Buffer, 27 µL β-mercaptoethanol) at 30°C for up to 8 hours until blue colour development.
2.3.5 Histidine prototrophy

Following lithium acetate transformation, Y190 cells were grown on YMM plates lacking histidine for 72 hours at 30°C. Successfully transformed clones would co-express histidine thus allowing for growth on His- YMM plates.

2.3.6 Quantitative β-galactosidase assay

2.3.6.1 Preparation of yeast culture

For each yeast strain 1 – 2 mm of cells from a single colony was picked to inoculate 5 mL His+ YMM (for transformed strain) or YPD medium (for untransformed strain), and incubated at 30°C at 250 rpm shaking for 16 hours. Overnight culture was diluted in 50 mL YPD medium, and incubated at 30°C at 250 rpm shaking until OD_{600} reached 0.5 – 0.8AU (at least two doubling cycles). 10 mL of the culture was pelleted for the assay.

2.3.6.2 Liquid culture assay

Cell pellets were washed and resuspended in 300 µL buffer 1 (100 mM Hepes, 155 mM NaCl, 4.5 mM L-aspartate, 1 % w/v BSA, 0.05 % v/v Tween 20, pH 7.3). 10 µL cell suspension was diluted in 990 µL buffer 1 and OD_{600} was measured with a spectrophotometer. 100 µL of cell suspension was snap frozen in liquid nitrogen for 30 seconds, and thawed in 37°C water bath for 30 seconds. Three freeze-thaw cycles were required to permeabilise the cell wall. The cells were then mixed with 700 µL of 2.23 M CPRG in buffer 1. When reaction mixture turned from yellow to red, 500 µL of 3 mM ZnCl₂ was added to stop the reaction. Cells were spun down and the OD_{578} of the supernatant was measured. β-galactosidase units were calculated as:

\[ 1000 \times \text{OD}_{578} \times (t \times V \times \text{OD}_{600}) \]

where \( t = \) stop time – start time (in minutes), \( V = 0.1 \times \) concentration factor

1 unit of β-galactosidase is defined as the amount which hydrolyses 1 µmol of CPRG to chlorophenol red and D-galactose per minute per cell.
2.3.7 Yeast protein extraction

Yeast culture prepared as for quantitative β-galactosidase assay was pelleted and washed twice with distilled H₂O. Cells were then lysed in 100 µL SDS lysis buffer (8 M urea, 5 % w/v SDS, 40 mM Tris-HCl pH 6.8, 0.1 mM EDTA pH 8.0, 0.4 mg/mL bromophenol blue, 1 % v/v β-mercaptoethanol, 1 % v/v yeast protease inhibitors cocktail) per 7.5 OD₆₀₀ units of cells, at 70°C for 10 minutes. To completely disrupt the cell wall, 100 µL of acid-washed glass beads was added to the lysate, followed by vigorous vortexing for 1 minute, centrifugation at 14000 rpm for 5 minutes, and boiling the supernatant at 90°C for 5 minutes.

2.3.8 Yeast two-hybrid library screen

2.3.8.1 Test transformation

Maxiprep of the pACT2 human cDNA library was serially diluted to 10⁻⁴, 10⁻⁵, 10⁻⁶ and 10⁻⁷ on ice. 20 µL of freshly thawed DH10β cells were diluted with 30 µL of sterile H₂O. 1 µL of DNA was added and gently mixed, and the cells were then transferred to a 1 mm electroporation cuvette. The cells were electroporated at 200 Ω, 25 µF, 2.0 kV, and immediately transferred to 1 mL SOC medium and recovered for 1 hour at 37°C shaking at 225 rpm. 100 µL of the culture was plated on LB plates containing 100 µg/mL ampicillin and grown at 37°C overnight. Transformation efficiency was calculated and the concentration of DNA dilution that gave at least 10⁷ clones per µg DNA was used for subsequent large-scale library transformation.

2.3.8.2 Large-scale library transformation of DH10β

Stock solutions

2 x LB: 100 g peptone, 50 g yeast extract, 50 g NaCl. Bring to 5 L with sterile H₂O

2 x LB agarose: 1.8 g SeaPrep agarose (Lonza, 50302), 450 mL 2 x LB. Make 10 bottles of 500 mL. Stir to dissolve and autoclave.
2 x LB glycerol: 43.75 mL 2 x LB, 6.25 mL 100 % glycerol. Autoclave.

His+ Trp- YMM: 50 mg/L adenine, 50 mg/L histidine, 150 mg/L leucine, 125 mg/L lysine, 50 mg/L methionine, 50 mg/L uracil, 2 % glucose, 6.7 g/L yeast nitrogen base with ammonium sulphate, yeast granulated agar (for plates)

Bottles of 2 x LB agarose were warmed to 37°C and supplemented with 100 µg/mL ampicillin. 200 µL of DH10β cells were diluted with 300 µL of sterile H₂O, and transformed with 10 x the optimal amount of library DNA that gave 10⁷ transformants as determined by small-scale test transformation. 1/10 of the transformation was added to each bottle of 2 x LB agarose, and stirred for 2 minutes. Bottles were then cooled in ice bath for 1 hour, then incubated at 30°C for 2 days. Thereafter, transformants were collected by stirring the agarose for 2 minutes, then centrifuging 100 mL of the culture at 6000 rpm for 20 minutes at room temperature. The pellet was resuspended in 50 mL sterile 2 x LB glycerol, cooled on ice for 1 hour, then stored at -80°C for long-term. The remainder of the 900 mL culture was similarly centrifuged to recover the cell pellet, then washed with distilled H₂O at 4500 rpm for 10 minutes. Plasmid DNA was extracted using the Qiagen Endotoxin-free Maxiprep kit following the manufacturer’s instructions.

2.3.8.3 Optimisation of library transformation

Y190 cells were first transformed with the bait plasmid pGBK7-TDP1 or pGBK7-TDP1⁴⁸¹ showing the small-scale lithium acetate based method as outlined in Section 2.3.3.3. Single clones of stable transformants were propagated on His+ Trp- YMM plate, or stored in 25 % glycerol at -80°C for long-term. These clones were then transformed with the human cDNA library in pACT2 (pACT2-cDNA library) as described in Section 2.3.3.3. 10-fold serial dilutions of the transformation reaction were plated on His+ YMM plates at 30°C for 3 days. Transformation efficiency was determined by:
\[
\text{Cfu/µg} = \frac{\text{No. of clones} \times \text{final cell volume}}{\text{volume plated} \times \text{dilution factor} \times \text{µg DNA}}
\]

2.3.8.4 Library transformation

Once the optimal concentration of library DNA that gave \(10^7\) transformants or higher per µg DNA was identified, the large-scale transformation was performed. A few colonies of Y190 stably transformed with pGBK7-TDP1 or pGBK7-TDP1^{S81E} were used to inoculate 20 mL of His+ Trp- YMM and grown at 30°C at 200 rpm overnight. After measuring the \(\text{OD}_{600}\) of the overnight culture, the culture was diluted approximately 1:6 to give an \(\text{OD}_{600}\) of 0.2 and a volume of ~ 120 mL. The culture was then incubated at 30°C shaking at 200 rpm for approximately 4 hours until the \(\text{OD}_{600}\) reached 0.6. The cells were pelleted at 4500 rpm for 8 minutes, washed once with sterile water, then washed with 3 mL of 100 mM LiAc, and resuspended in a final volume of 1.2 mL of 100 mM LiAc. The library transformation was then performed as for the small-scale lithium acetate transformation in 21 simultaneous repeats, including one transformation using the empty pACT2 vector as negative control for histidine prototrophy. After heat-shock the cells were washed and pelleted, and the entire transformation reaction was plated on His- YMM plate and grown at 30°C for 5 – 7 days. Single colonies that formed were picked and re-streaked on a His+ YMM and a His- YMM plate each and grown for 3 days at 30°C. A few colonies from each His- YMM plate were picked and used to inoculate 2 mL of His- YMM culture overnight at 30°C shaking at 200 rpm. From the overnight culture, 0.7 mL was frozen down in 25% glycerol for long-term storage, the remaining was used for plasmid extraction and analysis.

2.3.8.5 Plasmid extraction and analysis

Approximately 1.3 mL of the freshly grown cells in His- YMM culture was pelleted and resuspended in 250 µL of Buffer P1 of the Qiagen Miniprep kit. 250 µL of acid-washed glass beads were added to the cell suspension, and the mixture vortexed vigorously for
1 minute to disrupt the cell wall, then briefly centrifuged. The supernatant was then used for plasmid extraction using the Qiagen Miniprep kit following the manufacturer’s instructions, and the plasmid eluted with 25 µL EB buffer. The plasmid DNA was then used to transform the electrocompetent *E. Coli* strain DH10β. 5 µL of DNA was mixed with 50 µL of DH10β cells and transferred to a 1 mm electroporation cuvette on ice, the electroporation was performed at 2 kV, 200 Ω, 25 µF, and the cells were immediately transferred to a 1.5 mL Eppendorf tube containing 1 mL SOC medium and recovered at 37°C at 225 rpm for 1 hour. The entire transformation mixture was plated on LB agar plate containing 50 µg/mL ampicillin and incubated at 37°C overnight. One single colony was then picked from each plate to inoculate 5 mL LB medium containing 50 µg/mL ampicillin and grown at 37°C overnight. The overnight culture was used to extract the pACT library plasmid DNA using the Qiagen Miniprep kit according to the manufacturer’s instructions. The purified plasmid DNA was then sequenced by GATC Biotech. The DNA sequence was identified using the Genome Browser Human BLAT database (Feb. 2009 version) hosted by the University of California Santa Cruz (http://genome.ucsc.edu/cgi-bin/hgBlat?command=start).

### 2.4 Yeast clonogenic survival assay

Wildtype (Y190) or *tdp1Δ rad1Δ* (YW812) *S. cerevisiae* cells were transformed with pGKT7 plasmids encoding myc-TDP1, myc-TDP1<sup>S81A</sup> or Myc (empty vector) as described in Section 2.3.3.3. The transformants were selected on His+ Trp- YMM plates at 30°C for 72 hours. A single colony was picked from each plate and resuspended in 200 µL sterile water and serially diluted at 10-fold up to 10<sup>-4</sup> dilutions. 10 µL from each dilution was plated on His+ Trp- YMM with or without 20 µM of CPT. Cells were left at 30°C for 72 hours to form macroscopic colonies.
2.5 Mammalian cell culture

2.5.1 Maintenance of cell lines

The human cell lines A549, HEK293, MRC5 were grown as monolayers in α-MEM media supplemented with 10 % FCS, 100U Penicillin, 100 µg Streptomycin, and 2 mM L-glutamine. Cells were maintained in humidified 5 % CO₂ incubators set at 37°C for no more than 20 passages.

Primary mouse embryonic fibroblasts were grown as monolayers in D-MEM media containing 4500 mg/L D-glucose, sodium bicarbonate, and pyruvate supplemented with 15 % FCS, 100 U Penicillin, 100 µg Streptomycin, 2 mM L-glutamine and 1 x non-essential amino acid solution. Cells were maintained in humidified 2 % O₂, 5 % CO₂ incubators set at 37°C for no more than 7 passages. Mouse embryonic fibroblasts grown for more than 13 passages were considered immortalised, and were maintained in growth media lacking non-essential amino acids, and at normal atmospheric O₂ level.

Chicken DT40 B-lymphocytes were grown in suspension at no more than 10⁶ cells/mL in RPMI medium supplemented with 10 % FCS, 1 % chicken serum (Sigma, 16110-082), 100 U Penicillin, 100 µg Streptomycin, 2 mM L-glutamine and 25 μM β-mercaptoethanol. Cells were maintained in humidified 5 % CO₂ incubators set at 39°C for no more than 40 passages.

Human lymphoblastoid cells (AG87 and JRL1) were grown in suspension at a density of 5 x 10⁵ cells/mL. Cells were maintained in RPMI1640 media supplemented with 10 % FCS Good US origin (PAN Biotech, P40-38500), 100 U Penicillin, 100 µg Streptomycin, and 2 mM L-glutamine.

Flp-In T-Rex 293 cells (Thermo Fisher, R780-07) were grown in monolayer and maintained in DMEM supplemented with 10 % Tetracycline-free FCS (Biosera, FB1001T/500), Pen/Strep, L-glutamine, 100 µg/mL zeocin (InvivoGen, ant-zn-1) and
10 µg/mL blasticidin (InvivoGen, ant-bl-1).

For long-term storage cells were suspended in 1 mL aliquots of 90 % FBS with 10 % DMSO, slowly cooled to -80°C overnight and transferred to liquid nitrogen storage. To revive cells, the frozen aliquot was quickly thawed in 37°C water bath and resuspended in warmed media. Cells were centrifuged at 1500 rpm for 5 minutes to remove residual DMSO, and grown in fresh media for 2 – 3 passages before experimental use.

2.5.2 DNA-mediated gene transfer

2.5.2.1 Calcium phosphate co-precipitation

Plasmid DNA for transfection was prepared using Qiagen Plasmid Midiprep Kit following manufacturer’s instructions. HEK293 cells in logarithmic phase of growth were seeded at a density of 5 x 10^6 cells per 10 cm dish and left to adhere at 37°C overnight. Fresh media was added to the cells one hour prior to transfection. 0.5 mL of DNA/CaCl_2 mix (10 µg of plasmid DNA, 245 mM CaCl_2) was added drop-wise to 0.5 mL of 2 x Hepes Buffered Saline (275 mM NaCl, 1.5 mM Na_2HPO_4, 55 mM Hepes) and mixed by continuous bubbling using a Pasteur pipette. The transfection mixture was then added drop-wise over cells. Cells were incubated at 37°C overnight, then washed twice with PBS, and left to recover in fresh media for another 24 hours before harvesting.

2.5.2.2 Liposome-based transfection reagent

Plasmid DNA for transfection was prepared using Qiagen® Plasmid Midiprep Kit. A549 or Flp-In T-Rex 293 cells in logarithmic phase of growth were seeded at a density of 2 x 10^5 cells per 3.5 cm dish and left to adhere at 37°C overnight. Fresh media was added to the cells one hour prior to the transfection. 3 µL Genejuice transfection reagent (Novagen, 70967-3) per µg plasmid DNA was added drop-wise to 100 µL serum free OptiMEM culture medium, mixed briefly and incubated for 5 minutes at
room temperature. 1 – 2 μg of each plasmid DNA was added drop-wise to the Genejuice®/medium, mixed by pipetting and incubated for 10 – 15 minutes at room temperature. 100 μL of Genejuice®/DNA mix was added drop-wise to the cells and incubated for 24 hours at 37°C.

2.5.2.3 Retroviral transduction

The retroviral packaging cell line Phoenix (gift from Dr Conchita Vens) were transfected with pMXPIE-TDP1, pMXPIE-TDP1K111R, pMXPIE-hSOD1, pMXPIE-hSOD1G93A or pMX-PIE (empty vector) using GeneJuice Transfection Reagent as described by manufacturer. Transfection efficiency was estimated by GFP co-expression using fluorescence microscopy. If the estimated transfection efficiency was above 80 %, the supernatant containing recombinant protein-expressing retrovirus particles was collected and filter-sterilised. 10 μg/mL polybrene was added to improve viral adherence to target cell surface. The supernatant was then added to a 6 cm dish containing 2 x 10^5 adherent immortalised Tdp1^−/− MEFs and incubated at 37°C overnight. The supernatant was removed and replaced with fresh growth media and left for another 24 hours before harvesting.

2.5.3 Gene-targeted silencing

The sequences of RNAi-mediated gene silencing are listed in Table 2.5. Approximately 3 x 10^5 MRC5 cells in log phase growth were suspended in 5 mL normal growth media in 6 cm dish immediately before transfection. 80 μL of serum-free medium Opti-MEM was mixed with 5 μL of Metafectene Pro Transfection Reagent (Cambio, T040-2.0). In a separate tube, 80 μL of Opti-MEM was mixed with 80 μM of siRNA. The siRNA mixture was added to the Metafectene mixture, and incubated at room temperature for 20 minutes. The Metafectene/siRNA mixture was then added drop-wise on top of the cells, and incubated at 37°C for 24 hours. A second transfection was then repeated, and cells were harvested after further 24-hour
<table>
<thead>
<tr>
<th>Target</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scrambled siRNA</td>
<td>UUCUUCGAACGUGUCACG</td>
</tr>
<tr>
<td>Human TOP1 siRNA*</td>
<td>#1 GAAAAUGGCUCUCUCAGUC</td>
</tr>
<tr>
<td></td>
<td>#2 GAUUUCGAAUAUGGUAU</td>
</tr>
<tr>
<td></td>
<td>#3 GCACAUCACAUCACACCCA</td>
</tr>
<tr>
<td></td>
<td>#4 CGAAGAGGUAGAGGAGG</td>
</tr>
<tr>
<td>Human TDP1 siRNA*</td>
<td>#1 GGAGUUAAGCCAAAGUAUA</td>
</tr>
<tr>
<td></td>
<td>#2 UCAGUUAUCUGGAAGGCUUA</td>
</tr>
<tr>
<td></td>
<td>#3 GACCAUAUCAGAGUGAGGA</td>
</tr>
<tr>
<td></td>
<td>#4 CUAGACAGUUUCAAAAGGA</td>
</tr>
<tr>
<td>Scrambled shRNA*</td>
<td>TGCTGTTGACGAGGTGAGGATGAGCAATCTCGCTTTGGGCGAGAGGT</td>
</tr>
<tr>
<td></td>
<td>AAGTAGTGAAGCCACACAGATGTACTTACTCTGCACCAA</td>
</tr>
<tr>
<td></td>
<td>GCGAGAGTGCTACTCGCTCGGA</td>
</tr>
<tr>
<td>Human UBE2I shRNA*</td>
<td>TGCTGTTGACGAGGTGAGGACAGCTACACGAGATTTACTGCGACATGAGCTGTATTGGCCAGTAATCGT</td>
</tr>
<tr>
<td></td>
<td>GTAGGCGCTGCTACTGCTCGCGA</td>
</tr>
<tr>
<td>TDP1 miRNA</td>
<td>#1 TGCTGATCCTACTAGATATGTTGAGTTTCAGTTTG</td>
</tr>
<tr>
<td></td>
<td>GCCACTGACTGACTGGACCATCTGAGTACGTTGAGCTAGTACGAGCTGAGTCACGACGACAGTTTTT</td>
</tr>
</tbody>
</table>

Table 2.5: *RNAi sequences
* indicate purchases from Dharmacon. TDP1 miRNA designed using Thermo Fisher BLOCK-IT™ RNAi Designer
(https://rnaidesigner.lifetechnologies.com/rnaiexpress/design.do) and synthesized by Integrated DNA Technologies, Belgium)
incubation.

MRC5 cells in log phase growth were seeded at $8 \times 10^4$ in 3 cm petri dishes, 16 – 24 hours before transfection. Transfection of the plasmid encoding shRNA against UBE2I was done using Genejuice transfection reagent. After 48 hours cells were transferred to T75 flasks and stably integrated clones were selected with 0.5 µg/mL puromycin for 7 days.

2.5.4 Selection and maintenance of stable cell lines

MEFs transduced with hTDP1, hTDP1$^{K111R}$, hSOD1 and hSOD1$^{G93A}$ were selected with 1 µg/mL puromycin for 3 days. Pooled populations of stable clones were analysed for GFP expression by fluorescence microscopy, and TDP1 or SOD1 expressions by Western blotting using antibodies against TDP1 or SOD1 antibody, respectively (Tables 2.6A, 2.7A).

Stable Flp-In T-Rex 293 cell lines expressing miRNA sequences were selected with 100 µg/mL hygromycin B (Invivogen, ant-hg-1) for 3 weeks until formation of macroscopic colonies. Single colonies were picked and expanded for 2 more weeks. The cells were then harvested and the whole cell lysates analysed for protein expression by Western blotting using antibodies listed in Tables 2.6A and 2.7A.

2.6 Analyses of cellular protein extracts

2.6.1 Preparation of whole cell protein extracts

Approximately $5 \times 10^5$ cells were harvested, washed with PBS twice, resuspended in 50 µL of lysis buffer (20 mM Tris-HCl pH 7.5, 10 mM EDTA pH 8.0, 100 mM NaCl, 1 % Triton X-100, 1 x protease inhibitor cocktail (Roche, 4693159001), 1 x phosphatase inhibitor cocktail (Roche, 4906837001), 25 U.ml$^{-1}$ benzonase (Merck, 71205) and incubated on ice for 30 minutes. Cell lysates were cleared by centrifugation at 13000 rpm at 4°C for 15 minutes. The concentration of soluble proteins was quantified
by the Bradford assay (Bio-Rad, 500-0001). For long-term storage the cell lysates were kept at -80°C.

2.6.2 Protein co-immunoprecipitation

Human HEK293 cells were seeded at 2 x 10^6 cells per 10 cm petri dish 24 hours before transfection. Cells were transfected with plasmids coding for Myc-tagged proteins of interest using calcium phosphate-based method and harvested after 48 hours. For cross-linking experiments, cells were fixed with 1% paraformaldehyde for 10 minutes, washed once with PBS, washed with 100 mM glycine, then washed again with PBS. 200 μL lysis buffer (20 mM Hepes pH 7.4, 40 mM NaCl, 2 mM MgCl_2, 0.5% NP40, 1 x protease inhibitor cocktail, 1 x phosphatase inhibitor, 20 mM N-ethyl maleimide, and 25 U.ml^{-1} benzonase) was used to lyse 10 cm dish of cells on ice for 30 minutes. The lysate was centrifuged at 13000 rpm for 10 minutes at 4°C to isolate the soluble fraction, 30 μL of which was removed and resuspended in 30 μL of 2 x SDS lysis buffer and boiled at 90°C for 15 minutes, the sample was used as input control on a SDS-PAGE gel later. For the rest of the lysate, the NaCl concentration was adjusted to 140 mM, and 2 μL of anti-Myc antibody was added. The lysate was incubated with the antibody for 1 hour at 4°C, then in 30 μL proteinase G beads for 1 hour at 4°C. The beads were centrifuged at 1500 rpm, and washed at least three times with wash buffer (20 mM Hepes pH 7.4, 140 mM NaCl). The beads were resuspended in 50 μL 2 x SDS-PAGE lysis buffer (Section 2.6.3), boiled at 90°C for 15 minutes, then briefly centrifuged. 10 μL of the supernatant was loaded on SDS-PAGE gel along with the 3 μL of the input sample.

2.6.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

For protein fractionation by SDS-PAGE, polyacrylamide gels were made using the Sambrook and Russell method (Sambrook and W Russell, 2001) and cast in a 1 mm XCell SureLock Mini-Cell cassette (Fisher Scientific, VXNC2010). 50 – 100 μg of
soluble proteins from each cell lysate sample were mixed with SDS-PAGE lysis buffer (final concentration 50 mM Tris pH 8.0, 2 % w/v SDS, 10 % v/v glycerol, 0.1 % w/v bromophenol blue, 200 mM DTT). Samples were denatured at 90°C for 5 minutes, briefly centrifuged, then loaded onto a polyacrylamide gel. The Precision Plus Protein Dual Colour Standards (Bio-Rad, 1610374) was used as protein marker for proteins between 10 – 250 kDa. Electrophoresis was performed in the XCell SureLock Mini-Cell system using 1 x SDS running buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1 % SDS) at 150 V for 1.5 – 2 hours.

The fractionated protein samples were either visualised by Coomassie brilliant blue staining (Bio-Rad, 161-0435) for 30 minutes, followed by de-staining in 30 % methanol, 10 % acetic acid; or processed for Western blotting by transferring to a 0.45 μm nitrocellulose membrane (Bio-Rad, 170-4271) at 25 V for 1.5 hour in transfer buffer (25 mM Tris, pH 8.3, 192 mM glycine, 20 % methanol) using the XCell SureLock Mini-Cell system.

2.6.4 Western blotting

Nitrocellulose membrane with transferred proteins was blocked with blocking buffer (5 % milk, 0.1 % Tween-20 diluted in PBS) for 1 hour at room temperature. The primary antibody was diluted in blocking buffer according to Table 2.6A. The membrane was incubated in the primary antibody overnight at 4°C, then washed three times for 5 minutes with PBS containing 0.1 % Tween-20. The HRP-conjugated secondary antibodies (Table 2.7A) were diluted 1:4000 in blocking buffer. The membrane was incubated in the secondary antibody for 1 hour at room temperature, then washed three times for 5 minutes with PBS containing 0.1 % Tween-20. The membrane was then incubated in the Clarity Western ECL blotting substrate (Bio-Rad, 1705060) for 5 minutes at room temperature and visualised using the ChemiDoc MP gel docking system (Bio-Rad, 1708280).
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host species</th>
<th>Source (cat. no.)</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>A</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β-actin</td>
<td>Mouse</td>
<td>Sigma (A5316)</td>
<td>1:2000</td>
</tr>
<tr>
<td>Gal4-AD</td>
<td>Rabbit</td>
<td>Millipore (ABE476)</td>
<td>1:2000</td>
</tr>
<tr>
<td>GFP</td>
<td>Rabbit</td>
<td>Abcam (ab290)</td>
<td>1:2000</td>
</tr>
<tr>
<td>Ligase 3</td>
<td>Mouse</td>
<td>Abcam (ab587)</td>
<td>1:2000</td>
</tr>
<tr>
<td>Myc</td>
<td>Mouse</td>
<td>Cell Signalling (2276)</td>
<td>1:2000</td>
</tr>
<tr>
<td>Human</td>
<td>Mouse</td>
<td>Abcam (ab110411)</td>
<td>1:500</td>
</tr>
<tr>
<td>OXPHOS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cocktail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD1</td>
<td>Rabbit</td>
<td>Santa Cruz (sc-11407)</td>
<td>1:1000</td>
</tr>
<tr>
<td>TDP1</td>
<td>Rabbit</td>
<td>Abcam (ab4166)</td>
<td>1:2000</td>
</tr>
<tr>
<td>TOP1</td>
<td>Mouse</td>
<td>Santa Cruz (sc-32736)</td>
<td>1:1000</td>
</tr>
<tr>
<td>TOP1mt</td>
<td>Rabbit</td>
<td>Abcam (ab135423)</td>
<td>1:250</td>
</tr>
<tr>
<td>β-Tubulin</td>
<td>Mouse</td>
<td>Abcam (ab7792)</td>
<td>1:2000</td>
</tr>
<tr>
<td>UBE2I</td>
<td>Rabbit</td>
<td>Abcam (ab21193)</td>
<td>1:2000</td>
</tr>
<tr>
<td>VDAC1</td>
<td>Rabbit</td>
<td>Abcam (ab15895)</td>
<td>1 µg/ml</td>
</tr>
<tr>
<td>p-XRCC1 (S485, T488)</td>
<td>Rabbit</td>
<td>Bethyl Laboratories (A300-231A)</td>
<td>1:2000</td>
</tr>
<tr>
<td><strong>B</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53BP1</td>
<td>Rabbit</td>
<td>Bethyl Laboratories (A300-271A)</td>
<td>1:1000</td>
</tr>
<tr>
<td>p-H2AX (Ser139)</td>
<td>Mouse</td>
<td>Millipore (05-636)</td>
<td>1:800</td>
</tr>
</tbody>
</table>

**Table 2.6: Primary antibodies**
Source, type and working concentration for primary antibodies used for (A) immunoblotting and (B) immunofluorescence.
### Table 2.7: Secondary antibodies

Source, type and working concentration for secondary antibodies used for (A) immunoblotting and (B) immunofluorescence.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Host species</th>
<th>Source (cat. no.)</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse IgG (H + L)-HRP Conjugate</td>
<td>Goat</td>
<td>Bio-Rad (170-6516)</td>
<td>1:4000</td>
</tr>
<tr>
<td>Rabbit IgG (H + L)-HRP Conjugate</td>
<td>Goat</td>
<td>Bio-Rad (170-6522)</td>
<td>1:4000</td>
</tr>
<tr>
<td>Goat Anti-Mouse IgG (H+L)-Alexa Fluor 488</td>
<td>Goat</td>
<td>Molecular Probes (A28175)</td>
<td>1:800</td>
</tr>
<tr>
<td>Rabbit IgG-Alexa Fluor 555</td>
<td>Goat</td>
<td>Molecular Probes (A27039)</td>
<td>1:800</td>
</tr>
</tbody>
</table>
2.6.5 TDP1 activity assay using the Gyrasol system

WCE proteins prepared as described in Section 2.6.1 was diluted to 1 μg/μL in 1 x assay buffer (50 mM Tris pH 8.0, 5 mM MgCl₂, 80 mM KCl, 0.05 % TritonX-100) supplemented with 1 mM DTT. 13-mer DNA oligonucleotide substrate with 5’-FITC label and 3’-phosphotyrosine (5’-FITC-GATCTAAAAGACT(pY)-3’) (Midland Certified Reagent, TX, USA) was diluted to 30 nM in 1 x assay buffer. 2 μg of WCE proteins was incubated with 10 nM substrate in 1 x assay buffer in a 15 μL reaction volume in a 384-well black flat-bottomed immunoassay plate for 10 minutes at 25°C. 30 μL of enhancer buffer (Gyrasol Technologies, KS, USA) and 2 μL sensor buffer (Gyrasol Technologies, KS, USA) were mixed together and added to each well to quench the reaction. FITC fluorescence was immediately measured using a BMG Labtech Pherastar plate reader at excitation and emission wavelengths of 490 nm and 520 nm, respectively (Walker et al., 2014).

2.6.6 TDP1 activity assay using C5.5-conjugated oligonucleotide substrate

Reactions were performed in 10 μL reaction volumes containing assay buffer (25 mM HEPES, pH 8.0, 130 mM KCl, 1 mM DTT), WCE (50 – 100 ng) and 50 nM Cy5.5 labelled substrate oligomer containing a 3’-phosphotyrosyl group, (5’-(Cy5.5)-GATCTAAAAGACT(pY)-3’ ) (Midland Certified Reagent Company Texas, USA). Reactions were carried out at 37°C for 1 hr and stopped by addition of 10 μL loading buffer (44 % deionized formamide, 2.25 mM Tris-borate, 0.05 mM EDTA, 0.01 % xylene cyanol, 1 % bromophenol blue). Samples were then heated at 90°C for 10 minutes prior to separation on a 20 % Urea SequaGel (Fisher, EC-833-1) by gel electrophoresis at 150 V for 1 hr. Reaction products were visualised by gel imaging using the Bio-Rad ChemiDoc MP imaging system at 635 nm and bands quantified using Image Studio Lite v5.2 (LI-COR).
### Table 2.8: qPCR primers

qPCR primers used for amplifying gDNA of the target genes and their sequences from 5' to 3'.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human ND1 (F)</td>
<td>CCCTAAAACCAGCCACATCT</td>
</tr>
<tr>
<td>Human ND1 (R)</td>
<td>GAGCGATGAGTGAAGCTAAGGT</td>
</tr>
<tr>
<td>Human B2M (F)</td>
<td>CCAGCAGAGATGGAAAGTCAA</td>
</tr>
<tr>
<td>Human B2M (R)</td>
<td>TCTCTCTCCATCTCTCAGTAAAGTCACT</td>
</tr>
<tr>
<td>Human TOP1mt* 15873 (F)</td>
<td>TACTCAAATGCGCTGTCT</td>
</tr>
<tr>
<td>Human TOP1mt* 15873 (R)</td>
<td>AAAGACTTTTCTCTGTATTTGTCC</td>
</tr>
<tr>
<td>Mouse CO1 (F)</td>
<td>TGCTAGCGAGCGATTAC</td>
</tr>
<tr>
<td>Mouse CO1 (R)</td>
<td>GGGTGCCAAAGAATCGAAC</td>
</tr>
<tr>
<td>Mouse NDUVF1 F1</td>
<td>CTTCCCAGCTGGCCTCAAG</td>
</tr>
<tr>
<td>Mouse NDUVF1 R1</td>
<td>CCAAAAACCAGTGATCCAGC</td>
</tr>
</tbody>
</table>

The table lists the primer names and their corresponding sequences for qPCR amplification of specific genes.
2.6.7 Protein stability assay

Human TDP1, TDP1<sup>S81A</sup> and TDP1<sup>S81E</sup> were cloned into mammalian expression vector pCI-puro-Myc, and transfected into human A549 cell line using Genejuice transfection reagent. Expression levels were confirmed at two days by Western blotting. Transfected cells were treated with 30 μM CPT for 2 hours at 37°C, washed and left to recover in normal growth media for up to 24 hours in the presence or absence of cycloheximide, an inhibitor of protein synthesis. Samples were taken at 6- and 24-hour intervals to assess TDP1 expression levels by Western blotting.

2.7 DNA damage repair assays

2.7.1 Clonogenic survival assay

Sod1<sup>−/−</sup> and SOD1<sup>G93A−/−</sup> primary MEFs were seeded at 2000 –10000 cells per 9 cm petri dish and incubated overnight in normal growth media. Similarly, immortalised Tdp1<sup>−/−</sup> MEFs complemented with wildtype hSOD1, hSOD1<sup>G93A</sup> or empty vector were seeded at 1000 – 5000 cells; MRC5 cells were seeded at 500 – 3000. Cells were then treated with CPT (1 hour at 37°C), x-ray (250 kV at 12 mA), or H<sub>2</sub>O<sub>2</sub> (10 minutes on ice), at the indicated doses. Cells treated with CPT or H<sub>2</sub>O<sub>2</sub> were washed twice in PBS, and grown in normal growth media for 7 days. Cells were then fixed with 80 % ethanol for 15 minutes and stained with 1 % methylene blue. Percentage of colony survival was normalised to mock-treated sample. The average ±1 standard errors of the mean (S.E.M.) were calculated from 3 independent experiments.

2.7.2 Cell viability assay using CellTiter-Blue reagent

Fip-In T-Rex 293 cells were induced with 1 μg/mL doxycycline for 24 hours, then seeded at densities of 2000 – 20000 cells/100 μL, and treated with the indicated concentrations of CPT or TBH in the absence of doxycycline for 48 hours. Cell viability was measured using the CellTiter-Blue Viability Assay kit (Promega, G8080). 20 μL of the CellTiter-Blue reagent was mixed with the cells and incubated at 37°C for 1 hour.
Fluorescence intensity was measured at Ex584/Em590-10 nm using a FLUOstar Omega microplate reader (BMG Labtech). Viability of untreated cells was set to 1 and error bars represent standard error from 3 independent biological repeats.

2.7.3 Alkaline single cell gel electrophoresis (comet assay)

Immortalised Tdp1+/− and Tdp1−/− MEFs (~ 3 x 10^5 cells/sample) were suspended in normal growth media (for IR treatment) or cold PBS (for H_2O_2 treatment) and subjected 20 Gy (caseum 137, Cammael 1000) or 10 µM H_2O_2 on ice, then incubated in normal growth media at 37°C for the indicated repair time. Repair was stopped by placing cells on ice and replacing media with cold PBS. ~ 5,000 cells were mixed with equal volumes of PBS and 1.2 % type VII agarose (Sigma, A0701) at 42°C, and plated on frosted microscope slides pre-coated with 0.6 % agarose and chilled until set. Cells were then incubated in lysis buffer (2.5 M NaCl, 10 mM Tris-HCl, 100 mM EDTA pH 8, 1 % Triton X-100, 1 % DMSO, pH 10) at 4°C for 1 hour, and washed twice with cold distilled water. Slides were equilibrated in alkaline electrophoresis buffer (50 mM NaOH, 1 mM EDTA, 1 % DMSO) for 45 minutes, then subjected to electrophoresis at 12 V (100 mA) for 25 minutes. Quantification of DNA breaks were performed using Comet Assay IV software, counting 100 cells per sample.

2.7.4 Modified alkaline single gel electrophoresis for TOP1-cc detection

For modified alkaline comet assay that detects protein-linked DNA breaks, 0.8 mg/mL proteinase K was added to the cells straight after CPT or H_2O_2 treatment, cells were then mixed with equal volumes of PBS and 1.2 % type VII agarose and plated on frosted microscope slides pre-coated with 0.6 % agarose. Lysis was performed in the presence of 0.4 mg/mL proteinase K at 37°C for 3 hours. Slides were then processed as described in the previous section.
2.7.5 γH2AX and 53BP1 immunofluorescence assay

*Tdp1*−/− MEFs complemented with hTDP1, hTDP1^K111R, or empty vector were plated on 13 mm round coverslips in 30mm dish format and incubated overnight. Cells were then treated with 2 Gy γ-irradiation or 1 μM CPT (1 hour at 37°C), and repaired for the indicated periods. Cells were washed three times with PBS and fixed with 3% paraformaldehyde for 10 minutes. Cold 0.2% Triton was added for 2 minutes to permeate cell membrane, cells were then washed 3 time with PBS, and incubated in 2% BSA for 30 minutes. Cells were probed with primary antibodies listed in Table 2.6B for 30 minutes at room temperature, washed 3 times with PBS, then stained with fluorophore-conjugated secondary antibodies listed in Table 2.7B for 30 minutes and washed 3 times with PBS. The coverslips were transferred to 26 x 76 mm microscope slides and fixed with VectorShield mounting medium H-1000 (Vector). Cells were visualised on a Nikon E400 microscope and γ-H2AX foci (red channel) were counted in 50 GFP-positive cells (complemented with pMXPIE-TDP1, pMXPIE-TDP1^K111R or pMX-PIE alone).

2.7.6 UV laser tracking using confocal microscopy

MRC5 cells (control and UBE2I knockdown) growing in log phase were plated at 1 x 10^5 cells per 3 cm dish and transfected with either pMC-EGFP-TDP1 or pMC-EGFP-TDP1^K111R using GeneJuice transfection reagent (Novagen). After 24 hours, transfection efficiency was assessed by FACS analysis of GFP-positive cells. At least 3 x 10^5 cells were fixed with cold 70% ethanol at 4°C for at least 4 hours, washed once with PBS, then resuspended in 0.5 mL PBS and transferred to a BD Falcon 35 μm cell strainer in 12 x 75 mm polystyrene tube and analysed on a FACS Canto machine (BD Biosciences). Mean EGFP intensities of 10^4 cells were recorded for each cell line.

A parallel transfection was performed on cells similarly plated on 3 cm glass-bottomed
dishes (MatTek) for confocal microscopy. At 24 hours post-transfection, cells were stained with 10 µg/mL Hoechst 33285 (Sigma) for 30 minutes at 37°C. Cells were then visualised under a Zeiss Axiovert confocal microscope with 40x/1.2-W objective. GFP-positive cells were irradiated with 351 nm UVA (4.36 J/m²) on an area of 0.1 µm width “track” and images were taken at 5-second intervals for 95 seconds. Quantification of track fluorescence intensity was performed using LSM 520 Meta software.

2.8 Mitochondrial morphological and functional assays

2.8.1 Qualitative analysis of mitochondrial network morphology by high resolution fluorescence microscopy

2 x 10⁵ MEFs were seeded on glass coverslips (0.08 – 0.13 mm) in 6-well dishes and treated with or without 10 µM tert-Butyl hydroperoxide (TBH) for 24 hours at 37°C. Cells were stained with 250 nM of Mitotracker Deep Red FM (Life Technologies, M22426) for 30 minutes, then fixed with 3 % paraformaldehyde for 10 minutes. Cell membranes were permeabilised with cold 0.2 % Triton-X100 for 2 minutes, washed three times with PBS, then stained with 1:10000 DAPI. Coverslips were then mounted on microscope slides with VectorShield Mounting medium (Vector Laboratories, H-1000). Single-cell images were taken with Core DeltaVision at 60 x magnification, 640 x 640 resolution, with excitation filters for DAPI or Cy5, with Z-stacking. 3D images were deconvoluted using the OMERO software.

2.8.2 Quantitative analysis of mitochondrial membrane potential by FACS

3 x 10⁵ MEFs were seeded in 6-well dishes for 24 hours at 37°C. Cells were stained with 250 nM Mitotracker Red CMXRos (Life Technologies, M22425) and Mitotracker Green FM (Life Technologies, M7514) for 30 minutes, then harvested and washed twice with PBS and analysed on a BD FACSCanto machine (BD Bioscience) using the PE and FITC channels. Mean fluorescence intensity from 10⁴ events were recorded.
2.8.3 Quantitative analysis of mitochondrial superoxide production by FACS

3 x 10^5 MEFs were seeded in 6-well dishes for 24 hours at 37°C. Cells were treated with 1 μM rotenone or DMSO (mock) for 10 minutes at 37°C, then stained with 250nM MitoSOX Red (Life Technologies, M36008) for 30 minutes at 37°C, then harvested and washed twice with PBS and analysed on a BD FACSCanto machine (BD Bioscience) using the PE channels. Mean fluorescence intensity from 10^4 events were recorded.

2.8.4 Mitochondrial bioenergetics profiling by Seahorse Bioanalyzer

10^6 Flp-In T-Rex 293 cells were induced by 1 μg/mL doxycycline for 24 hours, then seeded at 6 x 10^4 cells per well in a XF24 cell microplate (Seahorse Bioscience, 100777-004) pre-coated with Cell-Tak cell adhesive (Corning, 354240) in 575 μL XF assay media (Seahorse Bioscience, 101022-100) supplemented with 4.5 mg/mL glucose, 2 mM L-glutamine and 1 x sodium pyruvate. Cells were incubated at 37°C with atmospheric CO_2 for 1 hour. A XF24 flux plate pre-hydrated in calibrant (Seahorse Bioscience, 100840-000) was loaded with 75 μL of 10 μM oligomycin, 82.5 μL of 3 μM FCCP, and 91.6 μL of 5 μM rotenone (final concentrations of 1 μM, 0.3 μM and 1 μM, respectively) diluted in the supplemented XF assay medium. Three basal readings were taken over 3 minutes each after 3 minutes of mixing and 2 minutes waiting. The same protocol was repeated after addition of each drug. Cells were then washed with PBS once, and incubated in normal growth medium containing 25 μg/mL Hoechst 33342 at 37°C for 30 minutes. The images were captured with an IN Cell Analyzer 6000 cell imaging system (GE Healthcare), and the nuclei number in each well was quantified using the IN Cell Developer software (GE Healthcare).
2.9 Mitochondrial DNA metabolism

2.9.1 Mitochondrial DNA copy number quantification by qPCR

3 x 10^5 MEFs were treated with or without 240 µM H_2O_2 for 1 hour on ice, washed twice with PBS, then left to recover in normal medium for 24 hours. Cells were then harvested and the genomic and mitochondrial DNA extracted using the Qiagen DNAeasy Blood and Tissue Kit (Qiagen, 69504). The DNA concentrations were measured using the QuantiFluor dsDNA system (Promega, E2670) and a FLUOstar Omega microplate reader (BMG Labtech) at EX485/EM520. The DNA templates were diluted to 10 ng, then serial dilutions of 10^{-1} – 10^{-5} were used to establish the standard curve for the mtDNA amplification reaction; and serial dilutions of 10^{-1} – 10^{-3} were used to establish the standard curve for the nDNA amplification reaction. For the qPCR reaction, 1 µL of DNA and 15 µM of each primer (Table 2.8) were diluted in 2 x LightCycler 480 SYBR-Green I mastermix (Roche, 04707516001) and TE buffer in a 20 µL reaction volume, and amplified using the following cycling conditions: initial 95°C for 2 minutes, then 40 cycles of 95°C for 10 second and 60°C for 20 seconds, with signal acquisition at end of each cycle using a Roche LightCycler 480 qPCR machine. Mitochondrial copy number was calculated by \(2 \times 2^{\Delta C_T}\) whereby \(\Delta C_T = C_{\text{NDUFV1}} - C_{\text{CO1}}\) average.

2.9.2 Mitochondrial transcript abundance by RT-qPCR

Total RNA from 5 x 10^6 Flp-In cells was extracted using Qiagen RNAeasy Plus kit (Qiagen, 74134) as per manufacturer’s instructions, which included removal of genomic DNA from the samples, followed by reverse transcription of 5 µg total RNA using the Tetro cDNA synthesis kit (Bioline, BIO-65042). PCR primers used are listed in Table 2.9. Removal of genomic mtDNA contamination was confirmed by standard PCR amplification of non-reverse transcribed sample and analysis by DNA gel electrophoresis. Quantitative PCR was set up using 1:10 dilution of cDNA samples and 6 µM of primers in a 1 x SensiMix SYBR Hi-ROX master mix (Bioline, QT605-05) in a
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human CO1 (F)</td>
<td>GGAGCAGGAACAGGTTGAACAG</td>
</tr>
<tr>
<td>Human CO1 (R)</td>
<td>GTTGTGATGAAAATTGATGGC</td>
</tr>
<tr>
<td>Human CO2 (F)</td>
<td>CCCTTACCATCAAATCAATTGCC</td>
</tr>
<tr>
<td>Human CO2 (R)</td>
<td>ATTTGCAACGTCAAGGAGTGC</td>
</tr>
<tr>
<td>Human ND1 (F)</td>
<td>CTACTAACCCTTCCGCTGAC</td>
</tr>
<tr>
<td>Human ND1 (R)</td>
<td>GGATTTGAGTAAACGGCTAGGC</td>
</tr>
<tr>
<td>Human CYTB (F)</td>
<td>CTGATCCTCCAAATCACCACAG</td>
</tr>
<tr>
<td>Human CYTB (R)</td>
<td>GCGCCATTGGCGTGAAGGTA</td>
</tr>
<tr>
<td>Human RNR1 (F)</td>
<td>TAGAGGAGCCTGTTCGTAATCGAT</td>
</tr>
<tr>
<td>Human RNR1 (R)</td>
<td>CGACCCCTTAAGTTCATAAGGGCTA</td>
</tr>
<tr>
<td>Human GAPDH (F)</td>
<td>ACATCGCTCAGACACCATG</td>
</tr>
<tr>
<td>Human GAPDH (R)</td>
<td>TGTAGTTGAGGTCATGAAGGG</td>
</tr>
</tbody>
</table>

**Table 2.9: RT-qPCR primers**
qPCR primers used for amplifying reverse-transcribed mRNA of the target genes and their sequences from 5’ to 3’.
Rotor-Gene 6000 qPCR machine (Corbett Research). The thermocycling conditions are: 95°C for 10 minutes, followed by 40 cycles of 95°C for 15 seconds, 50°C for 15 seconds, and 72°C for 30 seconds.

2.9.3 Quantification of TOP1mt-cc by caesium chloride fractionation

2 x 10^7 Flp-In cells were induced with 1 μg/mL doxycycline for 48 hours and harvested. Mitochondria were isolated using the mitochondria isolation kit for cultured cells (Thermo Scientific, 89874) following manufacturer’s instructions. The mitochondria pellet was lysed in 1.1 mL lysis buffer (8 M guanidine hydrochloride, 30 mM Tris-HCl pH 7.5, 10 mM EDTA, 1 % sarkosyl, pH adjusted to 7.5) for 15 minutes at 65°C. 1 mL of mitochondrial lysate was gently layered on top of a 4-step caesium chloride gradient (densities of 1.45 g/ml, 1.5 g/ml, 1.72 g/ml, 1.82 g/mL of 1 mL each) in a 5 mL polyallomer centrifuge tube (Beckman, 326819), and centrifuged at 30000 rpm in a swinging rotor in a Beckman Ultima LE-80K ultracentrifuge for 24 hours at 25°C without brake. From the remaining 100 μL of mitochondrial lysate, 10 μL was mixed with 90 μL of 1 x TE buffer containing 0.5 μg/mL RNAse A and incubated at 37°C overnight. The lysate was briefly centrifuged at maximum speed, then 50 μL of the supernatant was mixed with 50 μL of 1 x TE buffer containing 1:200 dilution of PicoGreen (Invitrogen, P7581). In parallel, 50 μL of 1 x TE (as blank control) and 50 μL of λ DNA diluted to 25 – 500 ng in 1 x TE buffer (as standards) were prepared. DNA concentration was quantified using a FLUOstar Omega microplate reader (BMG) at EX485-12/EM520 spectra. To collect the CsCl fractionated lysates, the centrifuge tube was pierced near the bottom with a 19G syringe needle at 45° (bevel facing upwards), the needle was connected to a peristaltic pump via silicone tubing. Ten fractions of 0.5 mL were collected per cell line. To visualise TOP1mt-cc, the fractions were slot-blotted onto a 0.45 μm nitrocellulose membrane (GE Healthcare, 106000002) pre-wetted in PBS, using equal amounts of DNA across cell lines (equivalent to the amount in 200 μL of the cell line with the lowest DNA concentration). The membrane was air-dried, then
blocked in 5 % milk/TBS for 30 minutes on a shaker. The GFP antibodies (Abcam, ab290) were diluted 1:2000, then added to the membrane, which was left shaking at 4°C overnight. The membrane was then further processed as described in Section 2.6.4. Quantification was performed using Image Studio Lite (LI-COR).

2.9.4 Chromatin immunoprecipitation and quantification of TOP1mt-cc

1.5 x 10⁷ Flp-In T-Rex 293 cells were induced by 1 μg/mL doxycycline for 48 hours then scraped and lysed in 0.6 mL ChIP lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8, 1 % Triton X-100, 0.1 % sodium deoxycholate, 0.1 % SDS, 1 x protease inhibitors cocktail) on ice for 30 minutes. The chromatin was sonicated for 30 cycles at 30 seconds on 30 seconds off at high speed setting, then the supernatant collected. A 50 μL aliquot was taken and the remaining chromatin snap-frozen and stored at -80°C. The 50 μL aliquot was treated with 1 μg RNase A at 37°C for 30 minutes, then 25 μg of Proteinase K at 45°C for 30 minutes. The DNA was extracted using phenol-chloroform and precipitated by ethanol (Section 2.2.10), and run on a 1.5 % TBE-agarose gel to confirm that the size of the sheared chromatin ranged from 200 – 500 bp. The frozen chromatin was then thawed and 45 μL (10 % of total chromatin) was set aside as input. The remainder was diluted 4-fold with RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM EDTA pH 8, 1 % NP-40, 0.5 % sodium deoxycholate, 0.1 % SDS, 1 x protease inhibitors cocktail). 20 μL/sample of GFP-conjugated magnetic agarose beads (Chromotek, gtma-10) were washed with 2 x bead volume of RIPA buffer twice, then blocked in 5 mg/mL BSA/RIPA buffer at 4°C for 1 hour. The GFP beads were then mixed with the diluted chromatin overnight at 4°C. The beads were then washed in a thermomixer at 25°C for 5 minutes in low salt wash buffer (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8, 150 mM NaCl) twice, then for 5 minutes in high salt wash buffer (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8, 500 mM NaCl) twice, for 5 minutes in lithium chloride buffer (0.25 M LiCl, 1 % NP-40, 1 % sodium deoxycholate, 1 mM EDTA,
10 mM Tris-HCl pH 8) once, and finally for 5 minutes in 1 x TE buffer (10 mM Tris pH 9, 1 mM EDTA) twice. The immunoprecipitated complex was then eluted from the beads in 150 μL of elution buffer (1 % SDS, 100 mM NaHCO₃). The eluent, together with the input samples, were treated with RNase A at 37°C for 30 minutes then Proteinase K at 45°C for 30 minutes. The DNA was then purified using phenol chloroform extraction and ethanol precipitation. The pellet was resuspended in 30 μL distilled water.

For qPCR, the input and ChIP samples were diluted 1:10, then 5 μL was mixed with 2.8 μL of 5 μM forward and reverse primers (Table 2.8) and 10 μL of 2 x SensiMix SYBR Hi-ROX mastermix (Bioline, QT605-05). The mastermix was aliquoted into 20 μL reaction volumes in duplicates using a robotics workstation (Corbett Robotics, CAS 1200). The PCR reactions were carried out in a Rotor-Gene 6000 qPCR machine (Corbett Research) with thermocycling conditions as follows: 95°C for 10 minutes, then 40 cycles of 90°C for 15 seconds, 50°C for 15 seconds, and 72°C for 30 seconds, with signal acquisition at end of each cycle. Mitochondrial copy number was calculated by $2 \times 2^{(ΔC_T)}$ whereby $ΔC_T = B2M$ average $C_T – ND1$ average $C_T$. Enrichment of the TOP1mt-bound region was expressed as percentage to the input sample, and was calculated as: $10 \times 2^{(adjusted \ Input \ CT - \ IP \ CT)}$, whereby adjusted Input $C_T = Input \ C_T - 3.32$. The percentage input was then normalised against the mtDNA copy number.

### 2.10 Mitochondrial protein analysis

Mitochondrial pellets from Flp-In T-Rex 293 cells were isolated as described in Section 2.9.4. and resuspended in 50 μl homogenisation buffer (0.6 M mannitol, 10 mM Tris-HCl pH 7.4, 1 mM EGTA, 1 mM PMSF, 0.1 % BSA), then quantified using Bradford assay (Bio-Rad, 500-0001). To remove nuclear and cytoplasmic contaminants, 20 ng RNAse-free proteinase K was added per 5 μg of mitochondria for 30 minutes on ice. The reaction was stopped by adding 100 μM PMSF before centrifugation at 12000 g for 10 minutes. The mitochondrial pellets were washed with
<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human ND1 (F)</td>
<td>CCCTAAAACCCGCCCATCT</td>
</tr>
<tr>
<td>Human ND1 (R)</td>
<td>GAGCGATGGTAGAGCTAAGGT</td>
</tr>
<tr>
<td>Human B2M (F)</td>
<td>CCAGCAGAGAATGGAAAGTCAA</td>
</tr>
<tr>
<td>Human B2M (R)</td>
<td>TCTCTCTCCATTCTTCTAGTAAGTCAACT</td>
</tr>
<tr>
<td>Human TOP1mt* 15873 (F)</td>
<td>TACTCAAATGGCCTGCTCT</td>
</tr>
<tr>
<td>Human TOP1mt* 15873 (R)</td>
<td>AAAGACTTTTTTCTCTGATTTGTCC</td>
</tr>
<tr>
<td>Mouse CO1 (F)</td>
<td>TGCTAGCCGCAGGCATTAC</td>
</tr>
<tr>
<td>Mouse CO1 (R)</td>
<td>GGGTGCCCAAGAATCAGAAC</td>
</tr>
<tr>
<td>Mouse NDUFV1 F1</td>
<td>CTTCCCCACTGGCCCTCAAG</td>
</tr>
<tr>
<td>Mouse NDUFV1 R1</td>
<td>CCAAAACCCAGTGATCCAGC</td>
</tr>
</tbody>
</table>

**Table 2.8: qPCR primers**

qPCR primers used for amplifying gDNA of the target genes and their sequences from 5’ to 3’.
500 µL homogenisation buffer with 100 mM PMSF and centrifuged as previous. The pellets were then lysed as described in Section 2.6.1 and quantified with Bradford assay. 5 µg of mitochondrial lysate was fractionated using SDS-PAGE (Section 2.6.3) and immunoblotted (Section 2.6.4) to assess levels of protein expression.

2.11 Transgenic mice genotyping

*Tdp1*<sup>−/−</sup> mice were generated as described previously (Katyal *et al*., 2007). *Tdp1*<sup>+/−</sup> mice were mated with SOD1<sup>G93A</sup> mice (Gurney *et al*., 1994) to generate *Tdp1*<sup>+/−</sup> SOD1<sup>G93A</sup> males, which were backcrossed with *Tdp1*<sup>+/+</sup>, *Tdp1*<sup>+/−</sup> or *Tdp1*<sup>−/−</sup> females. Genotyping of adult mice was confirmed using tail biopsies, which were lysed in 100 µL of 25 mM NaOH at 95°C for 2 hours, then neutralised in 400 µL of 10 mM Tris-HCl pH 8. 5 µL of lysates were used as templates in PCR reactions as described previously (Katyal *et al*., 2007). Genotyping for SOD1<sup>G93A</sup> was performed using primers Fwd: CATCAGCCCTAATCCATCTGA and Rev: CGCGACTAACAATCAAAGTGA. All animals were housed and maintained in accordance with the institutional animal care and ethical committee at the University of Sussex.

2.12 Statistical analysis

For the survival assays, the mean and standard errors were calculated from at least three biological repeat experiments consisting of three technical replicates at each treatment condition. The *p* values of samples from each time point or concentration were analysed by two-tailed Student t-test. For the alkaline comet assays, the mean and standard errors were calculated from at least three biological repeat experiments consisting of tail moment scores from 50 cells. For H<sub>2</sub>O<sub>2</sub> comet assay, the mean comet tail moments of all samples were normalized to the mock-treated wildtype sample. The *p* values of samples from each time point or concentration analysed by two-tailed Student t-test unless otherwise specified. For RT-qPCR experiments, relative quantification of the C<sub>T</sub> values of all samples were extrapolated from the standard
curve, and normalized against GAPDH values. The normalized values were then expressed as fold change relative to the control miScr cell line. The mean values and standard errors were calculated from three biological repeat experiments. The $p$ values were calculated using two-tailed Student t-tests. For Seahorse analysis, the OCRs under basal and stressed conditions were normalized against cell numbers derived from Hoechst 33342 staining. The mean OCRs and standard errors were calculated from three biological repeat experiments consisting of three technical replicates. The $p$ values were calculated using two-tailed Student t-tests.
CHAPTER 3

*TDP1* serine 81 mediated interaction with DNA 
*Lig3α* promotes *TDP1* protein stability and DNA repair
3.1 Introduction

Although catalytic mutation of TDP1 is clearly associated with defective SSBR at a cellular level and cerebellar degeneration at an organism level (Takashima et al., 2002; Katyal et al., 2007), little was known about the mechanisms that regulate TDP1 function at a molecular level. As with many DNA repair proteins that form stable complexes during the multi-step process, TDP1 has been shown to associate with XRCC1 to increase the efficiency of SSBR (Plo et al., 2003). Previous work from our lab has shown that TDP1 directly interacts with another component of the SSBR machinery, DNA ligase 3α (Lig3α), using the yeast two-hybrid system. Specifically, Lig3α binds to the N-terminus domain of TDP1 (El-Khamisy et al., 2005). This domain is only present in higher eukaryotes, with very low sequence homology amongst them (Chiang et al., 2010). This late addition and rapid evolution of the N-terminus domain suggest a non-essential but advantageous role in the function of the protein. For this reason, the N-terminus domain is highly relevant to the hypothesis of my thesis, i.e. in higher organisms, suboptimal control of the function of TDP1 in vivo may contribute to the neurodegeneration phenotype of SCAN1 patients.

Post-translational modifications by small molecule modifiers fine-tune enzymatic activities, protein-protein interactions, subcellular localisation, solubility and degradation. Phosphorylation, the addition of a phosphate group to an amino acid by covalent bonding, is mediated by protein kinases. The kinases ATM, ATR and DNA-PK play a crucial role in orchestrating the complex DNA damage response (Section 1.3.1.1), and the lists for their biological substrates are constantly expanding. A proteomic screen of potential substrates of ATM and ATR identified TDP1, and mapped the putative phosphorylation sites to S81, S365, and S563 (Zhou et al., 2005; Mu et al., 2007). S81 is of particular interest since it is the only site in the N-terminus domain identified in this study. S81 is conserved amongst several higher organisms
I was therefore intrigued by the possibility that the interaction between TDP1 and Lig3α may be regulated by phosphorylation of S81 by ATM or ATR in response to DNA damage. If so, this would be the first indication of the regulatory role of the N-terminus domain, which would support the hypothesis that regulation of TDP1 activity is important for TDP1 function in higher organisms.

This may have practical implications, as TDP1 inhibitors are currently being developed as novel anti-cancer drugs (Huang et al., 2011). Understanding TDP1 activity in the broader context of DNA repair could help identify potential factors that can contribute to understanding how resistance to TDP1 inhibitors can develop in cancer cells, as well as how neuronal cells repair DNA damage.

In this chapter, I will present evidence for the requirement of S81 phosphorylation in the interaction between TDP1 and Lig3α. I will also assess its functional importance in the cellular context. I will look at how S81 phosphorylation and interaction with Lig3α impacts on TDP1 protein metabolism, catalytic activity, and DNA repair efficiency.

### 3.2 Methods

#### 3.2.1 Identifying novel protein-protein interactions using yeast two-hybrid assay

First described in 1989 (Fields and Song, 1989), the yeast two-hybrid assay is a well-established method for studying protein-protein interactions in a cellular system. It utilises the fact that many transcription factors in higher eukaryotes are modular, i.e. the different domains can be expressed separately and transcription can be activated when the different domains are brought near each other at the promoter site. In *Saccharomyces cerevisiae*, the transcription factor Gal4 contains a DNA binding domain (BD), and an activation domain (AD). When Gal4-BD is fused to a bait protein and Gal4-AD is fused to a prey protein, if the two proteins of interest interact, the proximity of the two Gal4 domains at its target promoter site would activate transcription of two reporter genes, *his3* and *lacZ* in the Y190 host strain. Activation of
his3 confers histidine prototrophy, which allows growth in histidine depleted medium; while activation of lacZ produces β-galactosidase, which metabolises a synthetic galactose substrate (x-gal) and produces a blue by-product.

The procedure of a standard two-hybrid assay involves transforming the host strain with two plasmids, one of which encodes the bait protein fused to Gal4-BD; the other plasmid encodes the prey protein fused to Gal4-AD. The vectors also contain nutritional selection markers to allow selection of clones that stably express the fusion proteins, and a nuclear localisation signal to ensure transcription of the reporter gene. The readouts were performed 72 hours after transformation using histidine prototrophy or β-galactosidase assay.

The advantages of using the yeast two-hybrid system over standard biochemical assays include:

- It utilises an easily manipulated model cellular system with many conserved cellular processes in higher eukaryotes;
- The post-translational processing of proteins is more sophisticated than in prokaryotes;
- It requires only small amount of plasmid DNA, which is easier to prepare than purified proteins;
- The readouts are fast and can be quantitative;
- It allows mapping of the interaction site by testing interaction with truncated or point-mutated forms of the protein of interest.

However, the main caveat in the yeast two-hybrid assay is false positive results. These can be due to technical or biological reasons:

- When proteins are overexpressed, the interaction can be forced (non-specific and not physiological);
• Targeting of proteins tagged with the transcription factor domains to the nucleus can potentially induce non-specific transcription of the reporter genes without physical interaction of the bait and prey proteins (“auto-activation”);
• Overexpression or targeting the proteins of interest to the nucleus may be cytotoxic and inhibits transcription or cell growth;
• Truncated proteins may interact differently than full-length proteins due to conformational changes;
• The interaction between two proteins may be indirect via a third protein or DNA;
• Yeast lacks certain post-translational modifications such as glycosylation, disulphide bonds and certain phosphorylations, which may inhibit interactions in the host species;
• In library screens using a cDNA library, interactions may be biased towards high expressing genes specific to the cell type from which the library is prepared; and each subsequent round of propagation of the cDNA library in bacteria may increase bias towards high expressers in bacteria.

(Van Criekinge and Beyaert, 1999; Brückner et al., 2009).

Measures that I have taken in this thesis to address the possibility of false negative results include:

• For “auto-activation”, include a negative control where Gal4-BD-tagged bait protein and untagged Gal4-AD are overexpressed; use two reporter genes his3 and lacZ;
• Use immunoblotting to confirm levels of over-expressed proteins;
• Use phosphomimetic and phosphomutant versions of the target phosphorylation site;
• Use protein co-immunoprecipitation to validate the interaction in the mammalian system.
3.2.2 Single Cell Gel Electrophoresis (SCGE)/Comet Assay

The comet assay is widely-used for measuring DNA damage in single cells. Originally developed by Östling & Johansson (Ostling and Johanson, 1984) and modified by Singh et al. (Singh et al., 1988), it was based on the concept of combining DNA electrophoresis with fluorescence microscopy. The procedure entails first “encapsulating” single cells in agarose, then disrupting cellular protein and RNA contents by a detergent and high salt solution. The remaining DNA is then dissociated from the chromatin and nuclear membrane and fills up the entire encapsulated space of the cell, forming a “nucleoid”. When the nucleoid is subjected to electrophoresis, damaged DNA ends migrate out of the nucleoid due to loss of supercoiling, forming the appearance of a comet under the microscope when stained with a fluorescent dye that binds dsDNA (Olive and Banáth, 2006). The intensity and length of the comet tail (containing loops of relaxed DNA) relative to the comet head (supercoiled undamaged DNA) can be expressed as the tail moment (Olive et al., 1990), which can be calculated for each individual cell.

The main advantages of the comet assay are:

- Simple and inexpensive to set up;
- Can be used on a wide range of nucleated cells;
- Can measure SSBs, DSBs, abasic sites, and protein-linked breaks, and interstrand cross-linked breaks, and the repair kinetics thereof;
- Can detect apoptotic cells (distinct appearance from viable cell with large number of DNA breaks);
- Can detect heterogeneity in response to genotoxins, especially useful in screening of potential drug-resistant clones of cancer cell lines;
- Has high sensitivity especially for SSBs (as low as 50 breaks per cell);
- Does not require a large cell number (as low as a few thousands);
- Does not require radiolabelling as in alkaline elution assay.
Disadvantages of the method include:

- Only suitable for fresh live cells
- Requires single cell suspension, therefore not suitable for tissues not easily dissociated without inadvertent damage to the DNA content (can be circumvented in certain tissue types by culturing overnight to allow recovery);
- When working with genetically-modified cell lines, a homogenous expressing population is required expressing and non-expressing cells are weighted equally in the scoring process;
- Does not quantify sizes of DNA fragments;
- The unmodified protocol does not allow distinction between different types of DNA lesions, e.g. H$_2$O$_2$ which generates many different types of lesions;
- For drugs requiring long period of treatment (e.g. cisplatin), or breaks rapidly repaired during treatment (e.g. H$_2$O$_2$ and CPT), the readout is a mixture of damage induction and repair at steady-state;
- The amount of DNA damage does not necessarily correlate with the cell fate or viability

(Olive and Banáth, 2006)

To conclude, the comet assay is a useful technique in our lab to monitor DNA repair kinetics in cell lines and to screen for DNA damage repair defect of a new cell line (usually from patients, transgenic mice, or genetically-modified human or mouse cell lines). Examples of genotoxins used in this thesis and the predominant lesion they produce are listed in Table 3.1.

To assess the cell fate after DNA damage, I used clonogenic survival assay to measure the ability of cells to recover from geneotoxic stress and proliferate to form colonies.
<table>
<thead>
<tr>
<th>Genotoxins</th>
<th>Types of DNA breaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide (H₂O₂)</td>
<td>SSBs, AP-sites, complex DSBs at high dose, protein-DNA breaks (PDBs)</td>
</tr>
<tr>
<td>tert-butyl hydroperoxide (TBH)</td>
<td>SSBs, AP-sites, complex DSBs at high dose</td>
</tr>
<tr>
<td>Gamma-ray</td>
<td>SSBs, DSBs (~ 40:1 SSBs:DSBs)</td>
</tr>
<tr>
<td>Camptothecin (CPT)</td>
<td>TOP1-cc</td>
</tr>
</tbody>
</table>

*Table 3.1 Genotoxins and the types of associated DNA damage.*
3.2.3 Clonogenic Survival Assay (Colony Formation Assay)

In the presence of genotoxic stress, immortalised/cancer cell lines can respond by complete recovery, partial recovery, or death. Complete recovery is indicated by retention of reproductive integrity, i.e. the ability to divide indefinitely and form macroscopic colonies. Partial recovery is indicated by retention of viability (to produce proteins and synthesise DNA) for a few cell divisions but not indefinitely (Franken et al., 2006). Cell death can occur by apoptosis, autophagy, or necrosis (Section 1.3.3). It is noteworthy that loss of specific pathway (e.g. apoptosis) does not usually result in reversion to reproductive integrity, instead an alternative pathway of cell death is often activated (e.g. necrosis).

The clonogenic survival assay was developed as early as 1956 by Puck and Marcus (Puck and Marcus, 1956) to measure the radiosensitivity of HeLa cells. Since then, it has been used to generate most of the radiotherapy and chemotherapy response data on known mammalian cell lines.

The clonogenic survival assay entails plating a known number of single cells in a number of petri dishes corresponding to each treatment condition (usually increasing drug concentrations), then incubating the cells in optimal growth medium until they are fully adhered (but not undergone cell divisions yet), then treating with the genotoxin for a defined period. Cells are left to recover in optimal growth medium to form macroscopic colonies. The plating efficiency of each dish is calculated in percentage as the number of colonies counted divided by the number of cells plated. The surviving fraction is calculated in percentage as the plating efficiency of treated samples to untreated sample. The surviving fraction of each drug concentration can be plotted as a dose-response to obtain a "survival curve", whereby the IC$_{50}$ of the drug can be deduced.
The clonogenic survival assay is highly sensitive in detecting cellular response to genotoxic drugs. However, it is labour-intensive and time-consuming, making it unsuitable for high-throughput screening.

3.3 Results

3.3.1 The N-terminus domain of TDP1 interacts with Lig3α

To determine the mechanism of interaction between TDP1 and Lig3α using the yeast two-hybrid system, it was important to first confirm the interaction between the N-terminus of TDP1 and Lig3α as previously published (El-Khamisy et al., 2005). Fig. 3.1 shows that the N-terminus domain (TDP1^{1-150}) but not the C-terminus domain (TDP1^{151-608}) interacted with Lig3α, as detected by both histidine prototrophy and β-galactosidase assays. The interaction was specific, as confirmed by the lack of auto-activation of either Gal4BD-TDP1^{1-150} or the Gal4AD-Lig3α (Fig. 3.1A). Immunoblotting of whole cell lysates confirmed all proteins of interest were expressed (Fig. 3.1B).

3.3.2 TDP1 S81 mediates interaction with Lig3α

I then generated constructs encoding TDP1^{S81A} (phosphomutant), or TDP1^{S81E} (phosphomimetic with a negatively charged –COOH group). In Fig. 3.2A, again using the yeast two-hybrid assay, interaction between TDP1 and Lig3α was shown to be abrogated in the S81A mutant but not in the S81E mutant, indicating that it was likely the phosphorylation status, rather than structural modification, that mediated the loss of interaction. To ascertain whether the apparent mild activation of the his3 gene in TDP1^{S81A} was significant, quantitative β-gal assay using CPRG as substrate was performed. Fig. 3.2B,C show that TDP1^{S81A} interaction with Lig3α was close to background level, i.e. when no TDP1 was expressed.

I then looked at this interaction event in the mammalian cell system using the human alveolar adenocarcinoma cell line A549, suitable for transient over-expression of proteins. Cells were transfected with either Myc-TDP1 or Myc-TDP1^{S81A}, and the
Figure 3.1 The N-terminus domain of TDP1 interacts with Lig3α. (A) Y190 cells co-transformed with the indicated pGBK7 and pACT constructs were plated onto selective media containing either histidine (“Control”) or lacking histidine and containing 3-aminotriazole (“His”) to test for the activation of the his3 reporter gene. The activation of the β-gal reporter gene was detected using the filter lifts from control plates (“β-Gal”). (B) WCEs (10 µL of 0.075 OD_600/µL) from (A) were fractionated with SDS-PAGE and immunoblotted using antibodies against Myc and Gal4AD. WCE from untransformed cells was included as negative control (far left lane). A duplicate gel was stained with Coomassie blue as loading control.
Figure 3.2 TDP1 S81 is required for interaction with Lig3α in yeast two-hybrid system. (A) Yeast Y190 co-transformed with pACT-Lig3α and pGBKT7-TDP1, pGBKT7-TDP1<sup>S81A</sup> or pGBKT7-TDP1<sup>S81E</sup> were plated onto selective media containing either histidine (“Control”) or lacking histidine and containing 3-aminotriazole (“His”) to test for the activation of the his3 reporter gene. The activation of the β-gal reporter gene was detected using the filter lifts from control plates ("β-Gal"). (B) WCEs (10 μL of 0.075 OD<sub>600</sub>/μL) were fractionated with SDS-PAGE and immunoblotted using antibodies against Myc and Gal4AD. WCE from untransformed cells was included as negative control (far right lane). A duplicate gel was stained with Coomassie blue as loading control.
interacting proteins purified using Myc immunoprecipitation. The interaction of TDP1\(^{S81A}\) with endogenous Lig3\(\alpha\) was greatly diminished but not completely abolished (Fig. 3.3). This interaction is again TDP1-specific as no Lig3\(\alpha\) pull-down was detectable in cells transfected with Myc alone.

### 3.3.3 Interaction between TDP1 and Lig3\(\alpha\) is independent of exogenous genotoxic stress

That the interaction between TDP1 and Lig3\(\alpha\) depends on conservation of a putative ATM/ATR consensus site suggests that this interaction may be regulated by DNA damage. To test this, I co-expressed TDP1 and Lig3\(\alpha\) in the yeast two-hybrid system, and quantified the interaction after treatment with CPT or IR using CPRG-based quantitative β-gal assay. However, there was no change in the amount of β-gal metabolised at the doses known to induce detectable levels of DNA damage (Redon et al., 2003), suggesting the interaction was constitutive (Fig. 3.4). This result should be interpreted in the context of the yeast two-hybrid system, whereby the other regulatory mechanisms of the interaction in humans such as XRCC1 and PNK are not conserved in yeast (Kelley et al., 2003).

### 3.3.4 TDP1 S81-mediated interaction with Lig3\(\alpha\) promotes TDP1 stability

Incidentally, while I observed that the TDP1\(^{1-150}\) truncated protein interacted with Lig3\(\alpha\) in the yeast two-hybrid system, I was unable to express the S81A version of TDP1\(^{1-150}\) (data not shown), despite correct cDNA sequence and reading frame in the plasmid. To test the possibility that the S81-mediated interaction of TDP1 with Lig3\(\alpha\) stabilises TDP1 and prolongs its half-life, I overexpressed Myc-TDP1 or Myc-TDP1\(^{S81A}\) in A549 cells, challenged the cells with CPT, then inhibited protein synthesis with cyclohexamide (CHX) for up to 24 hours. Immunoblotting of Myc-TDP1 showed minimal degradation of the wildtype Myc-TDP1 during this period, while the level of Myc-TDP1\(^{S81A}\) was visibly lower reduced within 24 hours (Fig. 3.5A). Alternatively, inhibiting TDP1 phosphorylation by caffeine, an inhibitor of ATM, ATR and DNA-PK
Figure 3.3 TDP1 S81 promotes interaction with Lig3α in human A549 cells. A549 cells were transiently transfected with pCI plasmids encoding Myc-TDP1, Myc-TDP1^{S81A}, or untagged Myc. 100 μg WCEs were immunoprecipitated with antibodies against Myc. Levels of Lig3α, Myc-TDP1 and Myc-TDP1^{S81A} present in WCEs (“Load”) and in immunoprecipitated samples (“E”) were determined by immunoblotting with antibodies against Lig3α or Myc.
Figure 3.4 Interaction of TDP1 with Lig3α is constitutive in the yeast two-hybrid system. Y190 cells were transformed with the indicated plasmids and selected on yeast minimal medium lacking histidine and containing 3-aminotriazole for 72 hours. Transformants were then grown in complete culture medium for two doubling cycles, followed by treatment with 30 µM CPT for 6 hours or 200 Gy ionising radiation, then harvested. The WCEs were incubated in CPRG until the medium turned from yellow to red colour and the reaction was stopped with 3 mM ZnCl₂. The OD₅₇₈ of the supernatant was measured. β-galactosidase units was calculated as 1000 x OD₅₇₈ (t x V x OD₆₀₀), where t = stop time – start time (in minutes), V = 0.1 x concentration factor. 1 unit of β-galactosidase is defined as the amount which hydrolyses 1 µmol of CPRG to chlorophenol red and D-galactose per minute per cell. 1 unit of β-galactosidase equals the amount of enzyme required to hydrolyse CPRG per minute.
Figure 3.5 TDP1 S81 promotes protein stability  

(A) A549 cells transfected with the indicated pCI-Myc constructs were treated with DMSO ("Mock") or 35 μM CPT for 2 hours at 37°C (left), then incubated in CPT-free medium with 10 μg/ml cycloheximide ("CHX") for the indicated time periods (right). (B) A549 cells transfected with pCI-Myc-TDP1 were treated with or without 2 mM caffeine for 30 minutes, followed by 35 μM CPT treatment for 2 hours at 37°C, then incubated in CPT-free medium containing 10 μg/ml cycloheximide ("CHX") and caffeine for 12 hours at 37°C. Cells were harvested for immunoblotting using antibodies against Myc or β-actin as loading control. (C) A549 cells transfected with pCI-Myc-TDP1, pCI-Myc-TDP1S81A, or pCI-Myc-TDP1S81E were similarly treated as described in (A) and WCEs were immunoblotted using antibodies against Myc and β-actin as loading control. Data collected with help from Prof. Sherif El-Khamisy.
activities (Blasina et al., 1999; Hall-Jackson et al., 1999; Sarkaria et al., 1999; Zhou et al., 2000), reduced the stability of wildtype Myc-TDP1 after 12 hours of CHX incubation (Fig. 3.5B). To exclude the effect of caffeine as being non-specific, the half-life of the phosphomimetic mutant Myc-TDP1^{S81E} was assessed by CHX and appeared even longer than that of Myc-TDP1 (Fig. 3.5C).

Phosphorylation of S81 could promote TDP1 protein stability by inducing a conformational change that inhibits proteasomal targeting, or due to complex formation with Lig3α. This was tested in HeLa cells stably depleted of Lig3α, which were transfected with pCI-Myc-TDP1, treated with CPT, and left to incubate in CHX as described before. In cells depleted of Lig3α, Myc-TDP1 degraded faster than Lig3α-expressing cells (a decrease of 47 % compared to ~ 26 % after 6 hours), which was further exacerbated by treatment with CPT (a decrease of ~ 91 % compared to ~ 67 % after 6 hours) (Fig. 3.6). Taken together, these data suggest that TDP1 S81 promotes formation of a stable complex with Lig3α via its N-terminus domain both constitutively as well as in response to CPT treatment, thereby protecting it from degradation.

3.3.5 The catalytic activity of TDP1 is independent of S81

Next we examined whether maintaining protein stability in response to CPT damage was required for enzymatic activity of TDP1. My lab colleague Jean Carroll performed an in vitro enzymatic assay using 10 x His-TDP1 and 10 x His-TDP1^{S81A} purified from E. coli, and a substrate of 43-mer duplex oligonucleotide containing a nick with a 3'-phosphotyrosyl group (3'-PY) (Fig. 3.7A). In the absence Lig3α, the efficiency of 10 x His-TDP1 and 10 x His-TDP1^{S81A} to process the 3'-PY to 3'-hydroxyl group (3'-OH) was similar (Fig. 3.7B). To confirm this in cells, I complemented a CPT-hypersensitive strain of S. cerevisiae (tdp1Δ/rad10Δ) (Vance and Wilson, 2002) with human TDP1 or TDP1^{S81A}, and observed similar levels of protection against CPT conferred by TDP1^{S81A} as wildtype TDP1 (Fig. 3.8). Since S. cerevisiae lacks known
Figure 3.6 Lig3α promotes stability of Myc-TDP1. HeLa cells depleted of Lig3α by shRNA were treated with DMSO ("Mock") or 35 μM CPT for 2 hours at 37°C, then incubated in CPT-free medium with 1 μg/ml cycloheximide ("CHX") for the indicated time periods. Cells were harvested and the WCEs were immunoblotted with antibodies against Lig3α, Myc or β-actin as loading control. The level of Myc-TDP1 in each sample was quantified and normalised against the β-actin level using ImageJ. The numbers at the bottom row indicate the fraction of Myc-TDP1 of the treated samples relative to the untreated sample (far left lane). Where not shown, quantification was not accurate due to low levels of Myc-TDP1 or β-actin.
Figure 3.7 TDP1 S81 is not required for enzymatic activity in vitro. (A) Histidine-tagged TDP1 and TDP1^{S81A} were purified from BL21 E. coli and 300 ng of each was analysed by SDS-PAGE and stained with Coomassie blue. (C) 32P-radiolabelled 43-mer duplex (50 nM) containing a nick with a tyrosine (Y) linked to the 3'-terminus of the labelled 18-mer was incubated in the absence or presence of the 30 nM of the indicated purified recombinant proteins for 1 hr at 37°C. Repair products were analysed by denaturing PAGE and phosphorimaging. Positions of the 32P-radiolabelled substrate (18-Y) and product (18-P) are indicated in red. Data collected by Dr Jean Carroll.
Figure 3.8 Interaction with Lig3α is not required for TDP1 activity in vivo. Serial dilutions of wild-type (top) and *tdp1Δ/ rad1Δ* (bottom) yeast cells transformed with empty pGBKT7, pGBKT7-TDP1 or pGBKT7-TDP1<sup>S81A</sup> and plated in 10-fold dilutions onto leucine-lacking media with or without 20 μM CPT, and left to form macroscopic colonies at 30°C for 72 hours.
homologues of Lig3α, XRCC1 and PNK, the rescue was most likely due to the catalytic activity of TDP1S81A and not dependent on interaction with Lig3α.

**3.3.6 The rapid phase repair of TOP1-cc by TDP1 is independent of S81**

As both the *in vitro* and yeast data relied on expression of the human TDP1 protein in non-native hosts, they may not reflect the situation in human cells. To address this, repair of TOP1-cc was assessed in the SCAN1 patient lymphoblastoid cells complemented with recombinant His-TDP1 or His-TDP1S81A and treated with CPT for 1 hour. Immunoblotting of whole cell lysates at start of CPT treatment showed equal levels of the recombinant proteins (*Fig. 3.9A*). Cells complemented with recombinant TDP1S81A were able to repair TOP1-cc as efficiently as cells complemented with recombinant TDP1, although not to the same extent as wildtype cells (*Fig. 3.9B*). This could be due to the dominant negative effect of the TDP1H493R mutation in SCAN1 cells, which gets trapped on the DNA break itself, forming persistent covalent DNA complexes (Interthal *et al.*, 2005a). In Tdp1−/− MEFs complemented with recombinant hTDP1 or hTDP1S81A (*Fig. 3.10A*), the efficiency of SSBR was comparable between the two groups (*Fig. 3.10B*). Therefore, TDP1 S81 does not seem to be required for rapid phase of repair of repair of SSBs induced by CPT.

**3.3.7 TDP1 S81 promotes cellular survival following genotoxic stress**

The alkaline comet assay assessed the repair kinetics of primarily SSBs within an hour after damage. However, since TDP1 has also been implicated in the repair of replication-associated TOP DSBs (*Section 1.5.1*), the effect of TDP1S81A on replicating cells was assessed indirectly by measuring clonogenic survival after CPT treatment. Tdp1−/− MEFs complemented with recombinant TDP1 or TDP1S81A were challenged with bolus doses of CPT for one hour to induce TOP1-cc, then left to recover in drug-free medium up to 7 – 10 days. Only cells which retained replicative potential were able to form macroscopic colonies. *Fig. 3.11* shows that complementation with recombinant TDP1 rescued the survival of CPT-treated Tdp1−/− MEFs while mock (BSA)
Figure 3.9 TDP1 81 is not required for rapid-phase single-strand break repair in human lymphoblastoid cells. (A) SCAN1 lymphoblastoid cells ("LCLs") were electroporated with 200 μg BSA, 10xHis-TDP1, or 10xHis-TDP1<sup>S81A</sup> and left to recover at 37°C for 2 hrs. Cells were harvested and WCEs were immunoblotted with antibodies against TDP1 and β-actin as loading control. Arrow points at 10xHis-TDP1. (B) LCLs were incubated with 14 μM CPT for 1 hr and DNA strand breakage was quantified immediately by alkaline comet assay. Data are the mean of 3 independent experiments (100 cells per experiment) and error bars indicate ±1 S.E.M. Data collected with help of Prof. Sherif El-Khamisy.
Figure 3.10 TDP1 S81 is not required for rapid-phase single-strand break repair in MEFs. (A) Tdp1<sup>−/−</sup> MEFs were electroporated with 200 μg BSA, recombinant TDP1, or recombinant TDP1<sup>S81A</sup> and left to recover at 37°C for 2 hrs. Cells were harvested and WCEs were immunoblotted with antibodies against TDP1 and β-actin as loading control. (B) Electroporated cells were treated with 14 μM CPT or DMSO (“Mock”) for 1 hr at 37°C. DNA strand breakage was quantified by alkaline comet assay. Data are the mean of 3 independent experiments (100 cells per experiment) and error bars indicate ±1 S.E.M. Data collected with help of Prof. Sherif El-Khamisy.
Figure 3.11 TDP1 S81 promotes survival after genotoxic stress in MEFs. Tdp1−/− MEFs were electroporated with 200 μg BSA, recombinant TDP1, or recombinant TDP1S81A and left to recover at 37°C for 2 hrs. Cells were plated in 10 cm dishes and treated with the indicated doses of CPT for 1 hr at 37°C (A), or irradiated with the indicated doses of ionizing radiation (IR) (B). Cells were then left to recover in normal growth medium for 7 – 10 days to allow formation of macroscopic colonies. Surviving fraction was calculated by dividing the number of colonies on treated plates by the number on untreated plates. Data are the mean of 3 independent experiments for each drug and error bars represent ±1 S.E.M. Where not visible, error bars are smaller than the symbols. Data collected with help of Prof. Sherif El-Khamisy.
complemented cells did not. TDP1S81A complementation conferred an intermediate level of resistance, suggesting a defect in repair of TOP-associated DSBs by TDP1S81A.

3.4 Discussion

In this chapter, I have present data confirming that, in the yeast two-hybrid system, human TDP1 directly interacts with Lig3α (Fig. 3.1, 3.2), but not XRCC1 or APTX, nor the other candidate proteins of the NER and DSBR pathways tested. I also confirmed the previous finding that TDP1 N-terminus is the binding site for Lig3α (Fig. 3.1).

I have then shown that this interaction requires the serine 81 residue both in the yeast two-hybrid system (Fig. 3.2) and the mammalian cell system (Fig. 3.3) in the absence of exogenous DNA damage. Adding exogenous damage by CPT or IR did not alter the speed or intensity of the interaction in the yeast two-hybrid system (Fig. 3.4).

The apparent constitutive nature of interaction between TDP1 and Lig3α needs to be interpreted with caution. As mentioned, protein-protein interactions in a non-native host species may lack physiological regulatory elements. Furthermore, as the quantitative β-gal assay readout can take up to 12 hours, after induction of exogenous DNA damages transcription may be stalled globally, and dampen any effect of increased interaction due to lower protein expression level. A protein co-immunoprecipitation experiment using mammalian cells was performed to address these issues, and will be presented in chapter 4 (Fig. 4.5). The result indicates that CPT damage did not alter the quantity of complex formation between TDP1 and Lig3α, suggesting that this interaction is mainly regulated by endogenous sources of damage, the most likely being TOP1-cc in the proximity of abasic sites, oxidised bases, or the transcription or replication machinery (Pommier et al., 2003).

Concurrent with my project, a study by Yves Pommier’s group also showed that in mammalian cells, TDP1 S81 is phosphorylated in response to CPT and IR (Das et al., 2009). This phosphorylation event is dependent on ATM and DNA-PK, and that
phospho-TDP1 co-localises with phospho-ATM, γH2AX and XRCC1 at sites of CPT-induced DSBs. Phosphorylated TDP1 is also retained at sites of DNA damage for up to hours, suggesting a stable complex formation with XRCC1 (Das et al., 2009). These findings are consistent with my result, as XRCC1 and Lig3α form a stable heterodimer in the nucleus (Caldecott et al., 1994; Caldecott et al., 1995).

More recently, the Pommier group also showed a physical interaction between TDP1 and PARP1, a crucial factor in BER/SSBR. PARP1 binds TDP1151-168 (Das et al., 2014). PARylation of TDP1 by PARP1 promotes its protein stability, interaction with XRCC1, and recruitment to sites of DNA damage induced by UVA, CPT, (Das et al., 2014) and monofunctional alkylating agents (Murai et al., 2012; Alagoz et al., 2013; Lebedeva et al., 2015). Interestingly, inhibition of PARP1 activity seemed to promote accumulation of phospho-S81 TDP1, suggesting a negative feedback mechanism of TDP1 PARylation on S81 phosphorylation.

The fortuitous finding that human TDP11-150 S81A did not express in yeast pointed me to the possibility that S81 may play a role in stabilising the protein. While it is common for truncated proteins to be unstable, the large size of the Gal4BD tag could have stabilised the truncated TDP11-150. In addition, as Lig3α was absent in yeast (Kelley et al., 2003), the stabilising effect was not due to Lig3α. It was therefore important to examined this in human cells. I used cycloheximide to determine the half-lives of Myc-TDP1 and Myc-TDP1S81A in A549 cells (Fig. 3.5), as well as HeLa cells depleted of Lig3α (Fig. 3.6). The results indicate that in human cells, S81 promotes TDP1 stability by forming a complex with Lig3α. Although it is possible that the N-terminal Myc-tag could alter the protein structure at the N-terminus domain, this was unlikely to be the case, as the finding was reproduced by another group, whereby Flag-TDP1 and Flag-TDP1S81A were used (Das et al., 2009). To conclusively test this, tertiary structural analysis would need to be performed, but that would fall outside the time frame of this thesis. However, characterising the binding sites of TDP1 and Lig3α could be of
therapeutic potential, as more effective small molecule inhibitors of TDP1 are being developed to improve the clinical outcome of TOP-based therapies commonly used in breast, lung and colorectal cancers (Huang et al., 2011).

Although the molecular mechanism by which TDP1:Lig3α interaction regulates TDP1 protein turnover in cells has been established, in vitro the enzymatic activity seemed independent of this interaction (Fig. 3.7). This was not too surprising as the N-terminus domain has been shown to be dispensable for catalytic activity in vitro (Interthal et al., 2001).

Next the effect of TDP1:Lig3α interaction on DNA repair in the chromosomal context was explored. Again, TDP1 S81 phosphorylation appeared not to play a role in the repair of TOP1-cc, which are expected to be predominantly SSBs in the time frame of the treatment (Fig. 3.9, 3.10). It must be noted that recombinant proteins from E. coli were used instead of cDNA transfection, as the efficiency of DNA transfection is low in MEFs, therefore unsuitable for comet assay. The possibility of the recombinant proteins lacking important post-translational modifications could explain the discrepancy between my data and that published by Das et al, who found a reduction in SSBR capacity after CPT treatment in MEFs complemented with hTDP1S81A. The MEFs used by this group were transduced with lentiviral particles containing the cDNA of the relevant proteins, and repair in cells complemented with wildtype TDP1 was as efficient as Tdp1 MEFs (Das et al., 2009).

With the clonogenic survival assay, although a partial defect was seen in cells expressing recombinant TDP1S81A compared to wildtype TDP1, this again could be due to the shorter half-life of the recombinant TDP1S81A without compensation by increased protein synthesis. As shown by Das et al, phosphorylated TDP1 is retained at sites of CPT-induced breaks for hours, even long after the removal TOP1-cc. The shorter half-life of TDP1S81A could account for more unrepaired lesions persisting into S-phase and the subsequent cell killing.
To conclude, TDP1 S81 prolongs the protein half-life, likely by forming a stable complex with Lig3α. This interaction does not promote enzymatic activity in vitro, but promotes DNA repair efficiency as measured by clonogenic survival assays.

In the next chapter, I will describe the discovery and characterisation of another element of post-translational modification in the N-terminus domain of TDP1 that regulates its DNA repair efficiency – the Small Ubiquitin-like Modifier (SUMO) pathway.
SUMOylation of TDP1 at K111 accelerates recruitment to DNA damage sites and promotes cellular survival after genotoxic stress
4.1 Introduction

Although I have confirmed that TDP1 S81 is required for its interaction with Lig3α, its significance in SSBR and SCAN1 pathology is still not clear. Lig3α knockout mice are embryonically lethal (Puebla-Osorio et al., 2006), but Lig3α is dispensable for nuclear SSBR (Gao et al., 2011; Simsek et al., 2011), as there is a functional overlap with Lig1. As Lig3α is the only form of DNA ligase in the mitochondria, it is possible that TDP1 S81 is more important for mitochondrial DNA repair than nuclear DNA repair. It is also possible that TDP1 interacts with other DNA ligases in the nucleus such as Lig1 or Lig4. To explore the possibility that S81 may mediate specific interactions with other DNA repair proteins, I used the yeast two-hybrid system again to screen for proteins interacting with the TDP1^S81E mutant, which acts as a phosphomimetic and should increase the likelihood of detecting S81 phosphorylation-dependent protein-protein interactions. To this end, a novel interacting partner was discovered, which has a clear role in the SUMOylation pathway. This suggests that TDP1 is post-translationally modified by a second mechanism. This chapter describes the characterisation of N-terminus domain – SUMOylation of lysine 111 (K111) by SUMO1, and the mechanism by which it regulates TDP1 function at a cellular level.

4.1.1 The SUMOylation pathway and TOP1

SUMOylation can regulate the activity of target proteins in terms of transcription, stability, protein-protein interaction, and sub-cellular localisation. Increasing evidence confirms its role in DNA damage response and repair (Dou et al., 2011). The SUMOylation pathway, similar to the ubiquitination pathway, is a multi-step process involving: 1) processing of SUMO precursor to mature form; 2) activation of SUMO by SUMO-activating enzyme (E1), consisting of the heterodimer Uba2(Sae2)/Aos1(Sae1); 3) conjugation of SUMO to target protein by SUMO-conjugating enzyme (E2), UBC9, with or without the help of a SUMO ligase (E3) (Dohmen, 2004) (Fig. 4.1). SUMO
Figure 4.1 The SUMOylation pathway. (A) The SUMO precursor is activated by cleavage of its C-terminal tail by sentrin-specific proteases ("SENPs"), exposing a di-glycine site. The di-glycine site forms a covalent bond with Uba2 of the E1 activating heterodimeric enzyme Uba2/AOS1 in an ATP-dependent reaction. (B) Activated SUMO is transferred from Uba2/AOS1 to UBC9 via a transesterification reaction. (C) In vitro, UBC9 can directly conjugate to the lysine residue in the \( \Psi-K-x-[D/E] \) consensus site of the target protein. However in vivo it is facilitated by a target-specific E3 ligase, resulting in transfer of SUMO to the target protein. (D) SUMO2/3 can form poly-SUMO chains on target proteins while SUMO1 cannot. However SUMO1 can terminate a SUMO2/3 chain. (E) De-SUMOylation of target protein occurs through cleavage of SUMO by SENPs. Free activated SUMO can re-enter the pathway and bind another target protein. (F) SUMOylation/de-SUMOylation can affect protein-protein interaction by modifying their binding sites. (G) Poly-SUMO-chains can be recognised by SUMO-targeted ubiquitin ligases (STUbL’s) and be ubiquitinated through the ubiquitination pathway, targeting the protein for proteasomal degradation. Adapted from Dohmen, 2004; Geiss-Friedlander and Melchior, 2007.
conjugation is usually transient, as de-SUMOylation by SUMO/Sentrin-specific proteases (SENPs) is very rapid (Mukhopadhyay and Dasso, 2007; Yeh, 2009). In humans, there are four SUMO paralogues: SUMO-1 to SUMO-4 (Dou et al., 2011). SUMO-1 has been shown to interact with TOP1 after CPT damage (Mao et al., 2000; Yang et al., 2006); and dominant-negative UBC9 mutant is associated with cellular hypersensitivity to CPT (Mo et al., 2004; Jacquiau et al., 2005). However, TOP1 SUMOylation has also been shown to increase cellular sensitivity to CPT (Horie et al., 2002). In addition, although it has been suggested that TOP1 activity is regulated after CPT-induced damage, by translocating TOP1 from the nucleolus to the nucleus (Mo et al., 2002), it may not be SUMO-dependent (Christensen et al., 2004). The conflicting data possibly reflect the underlying complexity of the mechanisms through which SUMOylation regulates TOP1 activity and DNA damage response. It has been shown that in yeast, SUMO-targeted ubiquitin ligase (STUbI), SUMO-mimetic Rad60, and E3 ligase Nse2 function as TDP1 independent pathway in repairing TOP1 linked breaks (Heideker et al., 2011). The identification of a novel interaction between TDP1 and a component of the SUMOylation pathway suggest SUMOylation may have a role in TDP1-mediated DNA repair. Understanding how and why TDP1 is SUMOylated would provide important information on this regulatory system.

4.2 Results

4.2.1 Yeast two-hybrid library screen of TDP1<sup>S81E</sup> interacting proteins

For the library screen for TDP1 S81 phosphorylation dependent interacting proteins, I used sequential transformation of first the bait plasmid, pGBKT7-TDP1<sup>S81E</sup>, then the prey, human cDNA library-encoding pACT constructs, in order to improve transformation efficiency of the cDNA library. Y190 cells were transformed with pGBKT7-TDP1<sup>S81E</sup> and selected in yeast minimal media without leucine. Four individual clones were picked, and the expression of Gal4-BD-TDP1<sup>S81E</sup> was confirmed by Western blotting (data not shown). A large-scale transformation of the TDP1<sup>S81E</sup>-
expressing clone with 14 μg of cDNA library was performed, with transformation efficiency of ~ 4 x 10^4 colonies per μg DNA. 56 clones were confirmed by for histidine prototrophy, of which 35 encoded known genes. Fourteen of the 35 clones encoded full-length UBE2I, the human homologue of the SUMO E2 conjugating enzyme UBC9. Two clones encoded SETDB1, which has been recently been identified as a chromatin compacter at sites of DSBs required for efficient homologous recombination (Alagoz et al., 2015). Other hits of some interest were KPNA2, MYCBP2, PIAS4, NPM1, and MCART1, which could mediate TDP1 sub-cellular translocation or ubiquitination. However, these clones were either in the wrong orientation or lacked the start codon therefore could not be expressed. To rule out any technical errors during Sanger sequencing, these clones were re-streaked and interaction with TDP1^S81E were re-tested by yeast two-hybrid. However, none of the interactions could be reproduced (data not shown).

4.2.2 S81 phosphomimetic mediates TDP1 interaction with UBE2I

The interaction of TDP1^S81E with two clones of UBE2I (clone 5 and clone 6) was confirmed by yeast two-hybrid assays (Fig. 4.2). This interaction was mediated by phosphorylation of S81, as wildtype TDP1 was able to interact with UBE2I, while TDP1^S81A largely abrogated the interaction, as confirmed by CPRG-based quantitative yeast two-hybrid assay (Fig. 4.3). These interactions were specific, as expression of neither pGBK7-TDP1^S81E nor pACT-UBE2I alone auto-transactivated the β-gal or His prototrophic reactions (Fig. 4.2A, Right panel) and the expression levels of TDP1, TDP1^S81E and TDP1^S81A were comparable (Fig. 4.2B).

To validate this interaction in mammalian cells, I transfected HEK293 cells with pCI-Myc-TDP1 and immunoprecipitated the whole cell lysates using Myc antibodies. As the step of UBE2I binding to TDP1 to transfer SUMO is likely to be transient, cellular proteins were crosslinked with 1% paraformaldehyde before cell lysis, to increase the chance of detecting this interaction. Fig. 4.4A shows that endogenous UBE2I co-
Figure 4.2 Validation of TDP1<sup>S81E</sup> interaction with UBE2I in yeast two-hybrid. (A) Y190 cells were co-transformed with the indicated pGBK7 and pACT constructs. Transformants were selected on selective medium containing histidine ("Control") or lacking histidine and containing 3-aminotriazole ("His") to test for the activation of the his3 reporter gene. The activation of the β-gal reporter gene was detected using the filter lifts from control plates ("β-Gal"). (B) WCEs (10 µL of 0.075 OD<sub>600</sub>/µL) were fractionated with SDS-PAGE and immunoblotted using antibodies against Myc and Gal4AD. A duplicate gel was stained with Coomassie blue as loading control.
Figure 4.3 Quantification of TDP1 interaction with UBE2I in yeast two-hybrid. Y190 cells were transformed with pACT-UBE2I or pACT and the indicated pGBK7 constructs and selected on yeast minimal medium lacking histidine and containing 3-aminotriazole. Transformants were then grown in complete culture medium for two doubling cycles and harvested. The WCEs were incubated in CPRG until the medium turned from yellow to red colour and the reaction was stopped with 3 mM ZnCl₂. The OD₅₇₈ of the supernatant was measured. β-galactosidase units was calculated as 1000 x OD₅₇₈ (t x V xOD₆₀₀), where t = stop time – start time (in minutes), V = 0.1 x concentration factor. 1 unit of β-galactosidase is defined as the amount which hydrolyses 1 µmol of CPRG to chlorophenol red and D-galactose per minute per cell. 1 unit of β-galactosidase equals the amount of enzyme required to hydrolyse CPRG per minute. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M.
Figure 4.4 TDP1 interacts with UBE2I in HEK293 cells. (A) HEK293 cells were transfected with pCI-Myc-TDP1 (+) or empty pCI-Myc vector (-). 48 hours post-transfection, cells were fixed with 1% paraformaldehyde for 10 minutes to crosslink proteins, washed with 100 mM glycine, then lysed. WCEs were immunoprecipitated using Myc antibodies. Levels of Myc-TDP1, UBE2I and Lig3α in the WCEs ("Input") and in the immunoprecipitates ("IP") were determined by immunoblotting with antibodies against Myc, UBE2I and Lig3α. Lig3α served as positive IP control. Levels of IgG heavy chain served as loading control. (B) HEK293 cells were transfected with ΔT-Myc-DEST-UBE2I or empty ΔT-Myc-DEST vector, and WCEs were immunoprecipitated with Myc antibodies. Levels of Myc-UBE2I and TDP1 in the input and IP samples were determined by immunoblotting with antibodies against Myc and TDP1.
immunoprecipitated with Myc-TDP1 but not untagged Myc. Lig3α blotting was used as positive control and detected no non-specific binding, possibly due to paraformaldehyde fixing. Reciprocal IP showed that endogenous TDP1 co-immunoprecipitated with Myc-UBE2I (Fig. 4.4B).

4.2.3 TDP1 is covalently modified by SUMO1

My colleague Dr Jessica Hudson tested SUMO-modification of TDP1 by SUMO1, SUMO2 and SUMO3 in the mammalian system, and confirmed that TDP1 is SUMOylated by all three paralogues, but predominantly by SUMO1 (Hudson et al., 2012).

To detect covalent binding of SUMO1 with TDP1 in mammalian cells, I overexpressed Myc-TDP1 and GFP-SUMO1 in HEK293 cells. GFP-SUMO1 appeared to co-immunoprecipitate with Myc-TDP1 (Fig. 4.5). Although there were non-specific pull-down of GFP-SUMO1 in cells overexpressing untagged Myc, the interaction was stronger in cells co-transfected with Myc-TDP1 and GFP-SUMO1. In this experiment, the effect of CPT treatment on TDP1/SUMO1 interaction was unclear, as SUMO1 pull-down was increased in the absence of TDP1. Interestingly, Lig3α pull-down appeared to be increased in the presence of GFP-SUMO1, although this was not CPT-dependent.

Taken together, my results indicate that TDP1 is SUMOylated by SUMO1, and this modification may promote TDP1 interaction with Lig3α.

4.2.4 SUMOylation of TDP1 at K111 is not required for interaction with Lig3α

In silico prediction indicated that there are five putative SUMO modification sites on TDP1, two in the N-terminus domain and three in the C-terminus domain (Fig. 4.6). Sequence alignment shows that K111 is conserved amongst vertebrates. My lab colleague Dr Jessica Hudson confirmed that K111 is the main SUMOylation site in mammalian cells (Hudson et al., 2012). Since K111 is in the N-terminus domain of TDP1, we postulated that it may regulate the function of TDP1.
Figure 4.5 TDP1 interacts with SUMO1 in HEK293 cells. HEK293 cells were co-transfected with pCI-Myc-TDP1 (+) or empty pCI-Myc vector (−) and pEGFP-C3-SUMO1 (+) or empty pEGFP-C3 vector (−). 48 hours post-transfection the cells were treated with 30 µM CPT (+) or DMSO (−) for 30 minutes at 37°C, washed with PBS, then lysed. WCEs were immunoprecipitated with Myc antibodies. Levels of Myc-TDP1, GFP-SUMO1 and Lig3α present in total cell extracts ("Input") and the immunoprecipitates ("IP") were determined by immunoblotting with antibodies against Myc, GFP and Lig3α. Lig3α served as positive control for Myc-TDP1 IP. Levels of IgG heavy chain served as loading control in the IP samples.
Figure 4.6 TDP1 K111 is conserved in higher eukaryotes. The SUMOsp 2.0 online database was used to predict potential sites for SUMO modification. K111 and K139 were predicted based on the consensus sequence Ψ-K-X-E, while prediction of K231, K417 and K527 was based on non-consensus sites. Multiple sequence alignment of TDP1 using ClustalW indicates that K111 is conserved in humans (Homo sapiens; NP_001008744), cattle (Bos taurus; NP_001180084; XP_874680), monkey (Pongo abelii; XP_002825063), chicken (Gallus gallus; XP_421313), frog (Xenopus tropicalis; NP_001039242), and zebrafish (Danio rerio; XP_700174).
It has been shown that SUMOylation can modulate protein-protein interactions and subcellular localisation of target proteins (Bergink and Jentsch, 2009). This could indirectly regulate TDP1 activity, for example, by promoting its interaction with components of the SSBR or DSBR machinery, and recruiting it to sites of DNA damage.

I first tested whether K111 SUMOylation influenced TDP1 interaction with Lig3α by yeast two-hybrid. Mutation of K111 to arginine (K111R) did not affect TDP1 interaction with Lig3α (Fig. 4.7). My lab colleague also confirmed in HEK293 cells that K111R mutation did not abrogate co-immunoprecipitation of Lig3α with TDP1 (Hudson et al., 2012).

Another lab member also showed that TDP1\textsuperscript{K111R} mutation did not cause structure conformational changes, nor impact on enzymatic activity \textit{in vitro} (Hudson et al., 2012).

4.2.5 TDP1 K111 SUMOylation promotes cell survival after CPT damage

I then tested the importance of TDP1 SUMOylation on DNA repair in mammalian cells. Tdp1\textsuperscript{−/−} MEFs complemented with wildtype hTDP1, TDP1\textsuperscript{K111R} or empty vector were treated with CPT or γ-radiation, and the cellular repair response was assessed by clonogenic survival assay. TDP1\textsuperscript{K111R}-complemented cells showed a mild CPT survival defect compared to wildtype TDP1-complemented cells (Fig. 4.8A, \( p < 0.05 \); Student's t-test), but no defect was observed for IR damage repair. The difference in CPT survival was not due to differences in protein expression levels (Fig. 4.8B) or cell cycle arrest after CPT, as assessed by FACS (Fig. 4.9). These results suggest that TDP1 SUMOylation promotes repair of CPT-induced damage throughout the cell cycle.

4.2.6 TDP1 K111 SUMOylation promotes repair of chromosomal strand breaks induced by CPT and IR

To confirm a direct effect of TDP1 SUMOylation on DNA damage repair, we measured CPT-induced chromosomal strand breaks by the alkaline comet assay. Tdp1\textsuperscript{−/−} MEFs complemented with human TDP1\textsuperscript{K111R} accumulated ~ 3 fold more breaks compared to
Figure 4.7 TDP1 K111 SUMOylation is not required for interaction with Lig3α. (A) Y190 cells co-transformed with the indicated pGBK77 and pACT constructs were plated onto selective media either containing histidine ("Control") or lacking histidine and containing 3-aminotriazole ("His") to test for the activation of the his3 reporter gene. Activation of the β-Gal reporter gene was determined using filter lifts from control plates ("β-Gal"). (B) WCEs (10 μL of 0.075 OD600/μL) from (A) were fractionated with SDS-PAGE and immunoblotted using antibodies against Myc and Gal4AD. A duplicate gel was stained with Coomassie blue as loading control.
Figure 4.8 TDP K111 SUMOylation promotes cellular survival after CPT damage. (A) Tdp1−/− MEFs complemented with hTDP or hTDP1K111R by retroviral transduction were plated on 10 cm dishes and incubated at 37°C overnight. Cells were then treated with the indicated doses of CPT for 1 hour at 37°C (left), or x-ray at 12 mA / 250V on ice (right), then left to recover in drug-free medium for 7–10 days until macroscopic colonies formed. Surviving fraction was calculated by dividing the number of colonies on treated plates by the number on mock treated plates. Data are the mean of 4 independent experiments and error bars represent ±1 S.E.M. p values were derived using two-tailed Student's t-test. (B) Expression levels of hTDP1 and hTDP1K111R in Tdp1−/− MEF WCEs from experiments in (A) were assessed by immunoblotting with antibodies against TDP1 and β-actin.
**Figure 4.9 TDP1 K111 SUMOylation does not affect cell proliferation.** *Tdp1−/−* MEFs complemented with hTDP1, hTDP1\(^{K111R}\), or empty vector were treated with (A) DMSO ("Mock"), or (B) 20 µM CPT for 1 hour at 37°C, then recovered in drug-free medium for 6 to (C) 24 hours. Cells were fixed with 70% ethanol and stained with 50 µg/ml propidium iodide. DNA content was analysed by FACS using the 585/42 spectrum filter.
cells complemented with wildtype TDP1 (Fig. 4.10A, \( p < 0.05 \); Student’s t-test). The difference was due to K111 SUMOylation, as overexpression of SUMO1 in wildtype TDP1-complemented HEK293 cells reduced the number of CPT-induced breaks (Fig. 4.10B, \( p < 0.01 \); Student’s t-test), which was not seen with the hTDP1\(^{K111R}\) complemented cells. With IR damage, Tdp1\(^{-/-}\) MEFs complemented with TDP1\(^{K111R}\) accumulated \( \sim 25\% \) more breaks than wildtype TDP1-complemented cells (Fig. 4.10C, \( p < 0.05 \); Student’s t-test), and showed a delay in the repair kinetics comparable to that of Tdp1\(^{-/-}\) cells. These results indicate that SUMOylation at K111 promotes DNA repair efficiency of TDP1.

4.2.7 TDP1 SUMOylation does not affect repair of DSBs induced by IR and CPT

Unrepaired CPT and IR induced single-stranded DNA breaks can be converted into cytotoxic double-stranded breaks during DNA replication, which are then repaired by homologous combination (HR). I used immunofluorescence quantification of the DSB marker \( \gamma-H2AX \) to assess DSBR after CPT or IR treatments. After one hour of recovery following CPT treatment, Tdp1\(^{-/-}\) cells showed a clear delay in the repair of DSBs, while cells complemented with wildtype TDP1 or hTDP1\(^{K111R}\) exhibited similar rates of repair (Fig. 4.11A). This is in agreement with the cell cycle analysis in Fig. 4.9B&C showing no difference in the S- and G2/M arrested populations between cells complemented with hTDP1\(^{K111R}\) or wildtype hTDP1. After 2 Gy IR damage, there was no difference in the number of \( \gamma-H2AX \) foci in all three cell lines, indicating that at this IR dosage, TDP1 was dispensable for DSBR (Fig. 4.11B). These results suggest the survival defect in TDP1\(^{K111R}\)-complemented MEFs treated with CPT was not due to attenuated DSBR or cell cycle checkpoint response.

4.2.8 TDP1 SUMOylation accelerates its recruitment to DNA damage sites

A lab member then showed that TDP1\(^{K111R}\) mutation did not affect the nuclear and nucleolar localization of TDP1 after CPT damage (Hudson et al., 2012). I then examined the kinetics of EGFP-TDP1 or EGFP-TDP1\(^{K111R}\) accumulation at sites of
Figure 4.10 TDP1 K111 SUMOylation promotes early-phase repair of SSBs induced by CPT and ionising radiation. Tdp1−/− MEFs complemented with hTDP1, hTDP1K111R, or empty vector were treated with (A) 20 μM CPT for 1 hour at 37°C, then incubated in drug-free medium at 37°C for the indicated periods. DNA strand breakage was quantified by alkaline comet assay. (B) HEK293 cells transfected with pCI-Myc-TDP1 or pCI-Myc-TDP1K111R and an empty GFP−"SUMO1" or GFP1-SUMO1+"SUMO1" vector were treated as described in (A) and analysed by alkaline comet assay. (C) MEFs from (A) were treated with 20 Gy γ-ray then left to recover at 37°C for the indicated periods. DNA strand breakage was quantified by alkaline comet assay. The average of DNA strand breaks was from 3 independent experiments (100 cells per experiment) and error bars represent ±1 S.E.M. p values were derived using two-tailed Student’s t-test.
Figure 4.11 TDP1 K111 is not required for repair of double-stranded DNA breaks induced by IR and CPT. (A) Tdp1−/− MEFs complemented with hTDP1, hTDP1K111R, or empty vector were treated with 1 µM CPT for 1 hour at 37°C, then incubated in drug-free medium for the indicated periods. Cells were then fixed and immunostained with γH2AX antibodies and DAPI (left). Percentage of cells with more than 80 foci per cell or pan-nuclear staining, indicating S- and G2-phase cells (right). (C) Tdp1−/− MEFs as in (A) were subjected to 2 Gy γ-ray and left to repair for the indicated periods. Cells were then fixed and immunostained with γH2AX antibodies and DAPI. Data are the mean of 3 independent experiments (50 cells per experiment) and error bars represent ±1 S.E.M. p values were derived using two-tailed Student’s t-test.
nuclear DNA damage induced by UVA irradiation in live cells. UVA produces a spectrum of DNA lesions that can trap TOP1, as well as 3’-phosphoglycolate and 3’-dRP ends that can be repaired by TDP1 (discussed in Section 1.5.1). I used laser microirradiation to induce UVA damage in MRC5 cells overexpressing EGFP-TDP1 or EGFP-TDP1K111R (Fig. 4.12A, top panel), and measured the EGFP fluorescence intensity within the laser track before and after damage (Fig. 4.12B) as an indicator of recruitment of EGFP-TDP1 or EGFP-TDP1K111R to the sites of DNA damage. The background fluorescence immediately before irradiation was comparable between EGFP-TDP1- and EGFP-TDP1K111R-complemented cells (Fig. 4.12A, bottom panel). After irradiation, EGFP-TDP1K111R accumulated significantly slower than EGFP-TDP1 at the laser tracks during the 90 seconds. Whereas EGFP-TDP1 level peaked within 15 seconds after irradiation, EGFP-TDP1K111R level failed to reach saturation even at 90 seconds (Fig. 4.12C). Notably, depletion of the obligate SUMO E2 conjugating enzyme, UBE2I, (Fig. 4.13A) in MRC5 cells expressing GFP-TDP1 (Fig. 4.13B) attenuated the recruitment of EGFP-TDP1 to the laser track, while having no further impact on recruitment of EGFP-TDP1K111R (Fig. 4.13C), suggesting the slower recruitment of GFP-TDP1K111R to DNA damage sites was due to loss of SUMOylation.

4.3 Discussion

TDP1 plays a role in repairing endogenous TOP1-associated DNA breaks (TOP1-cc), and its deficiency leads to neurodegeneration and cerebellar ataxia in humans. Although it is generally accepted that TDP1 functions within the context of the SSBR machinery, how TDP1 is recruited to and activated at the sites TOP1-cc was unclear. This is a physiologically relevant question, as repair of TOP1 breaks have been shown to require high concentrations of TDP1 in vitro (Raymond et al., 2005). The findings presented in this chapter answer this question by showing a second molecular mechanism through which the N-terminus domain of TDP1 regulates its function, specifically, by increasing its concentration at sites of nuclear DNA damage.
Figure 4.12 TDP1 K111 SUMOylation promotes its accumulation at sites of DNA damage. (A) Human MRC5 cells were transfected with pMC-EGFP-TDP1 or pMCEGFP–TDP1^K111R and the expression levels of EGFP-TDP1 and EGFP-TDP1^K111R were compared by immunoblotting WCEs with antibodies against TDP1 and β-actin (top) and FACS using the EX493/EM525 spectrum (bottom). (B) MRC5 cells from (A) were plated onto glass-bottomed dishes and transfected with pMC-EGFP-TDP1 or pMC-EGFP–TDP1^K111R. Cells expressing similar levels of GFP signal were locally irradiated with UV-A laser (351 nm), and images were taken with a Zeiss ConfoCor 2/LSM510 confocal microscope every 5 seconds up to 90 seconds. (B) EGFP–TDP1 accumulation at the sites of damage was quantified by LSM 520 Meta software for the indicated time periods, where “C” represents undamaged control. Data are the average of ~ 60 cells measured from 6 independent experiments, and error bars indicate ± 1 S.E.M. p values were derived using two-tailed Student’s t-test. Figures taken from Hudson et al., 2012.
Figure 4.13 UBC9 promotes TDP1 accumulation at sites of DNA damage. (A) MRC5 cells were stably depleted of UBC9 by shRNA transfection and selected with 1 μg/ml puromycin for 2 weeks. Expression levels of UBC9 in knocked-down (“UBC9 KD”) and control (“CT”) cells were compared by immunoblotting WCEs with antibodies against UBC9 and β-actin. (B) MRC5 cells with or without UBC9 knock-down as described in (A) were transfected with pMC-EGFP-TDP1 or pMC-EGFP-TDP1 and the mean EGFP intensity was measured by FACS using the EX493/EM525 spectrum. (C) EGFP–TDP1 accumulation at the sites of damage was quantified by LSM 520 Meta software for the indicated time periods, where “C” represents undamaged control. Data are the average of ~60 cells measured from 6 independent experiments, and error bars indicate ±1 S.E.M. Figures taken from Hudson et al., 2012.
The interaction of TDP1 with UBE2I, the human homologue of the obligate SUMO E2 conjugating enzyme Ubc9, implies modification of TDP1 by SUMOylation. SUMOylation is an important post-translational modification that regulates protein activity in terms of transcription, stability, protein-protein interaction, and sub-cellular localisation. Increasing evidence confirms its role in DNA damage response and repair (Dou et al., 2011).

My results showed that TDP1 interacts with UBE2I/UBC9 in yeast two-hybrid assay and co-immunoprecipitation in HEK293 cells (Fig. 4.2 – 4.4). In the yeast two-hybrid assays, interaction of TDP1 with UBE2I was dependent on S81. In human cells, my lab colleague has showed that overexpression of TDP1\textsuperscript{S81A} in HEK293 reduced the \textit{in vitro} SUMOylation of TDP1, while overexpression of TDP1\textsuperscript{S81E} also reduced it, but to a lesser extent than the phosphomutant (Wells, 2014). This could suggest that a dynamic phosphorylation/de-phosphorylation switch is required for maintaining SUMOylation of TDP1. Interestingly, he also identified a casein kinase 2 phosphorylation site at S91/S92 that may negatively regulate SUMOylation. The crosstalk between post-translational modification mechanisms implies a high level of regulation of TDP1 activity in higher organisms.

In HEK293 cells overexpressing Myc-TDP1 and GFP-SUMO1, interaction between TDP1 and SUMO1 appeared to be increased after treatment with CPT (Fig. 4.5). However, it appeared to be somewhat non-specific, as SUMO1 pull-down was also increased after CPT treatment in cells not overexpressing Myc-TDP1. Dr Jessica Hudson then showed that there was no detectable increase in SUMO1-conjugated TDP1 after CPT treatment (Hudson et al., 2012), suggesting that the interaction is constitutive and likely has a housekeeping function against DNA damage arising from endogenous sources. This is in contrast to the SUMO2/3 modification triggered by damage as seen in COS-7 cells (Saitoh and Hinchey, 2000). However, the preference between SUMO1 or SUMO2/3 modification in response to exogenous damage appears
to be cell line-specific, as SUMO1 modification seems to be the predominant response to exogenous stress in HeLa cells (Vertegaal et al., 2006; Impens et al., 2014). In HEK293 cells, modifications of protein extracts from PML bodies by both SUMO1 and SUMO3 have been shown to be increased by after arsenic trioxide damage (Galisson et al., 2011).

Interestingly, overexpression of SUMO1 increases TDP1 interaction with Lig3α (Fig. 4.5). However, SUMOylation of TDP1 at K111 is not required for this interaction in the yeast two-hybrid assay (Fig. 4.7), and in HEK293 co-immunoprecipitation experiments (Hudson et al., 2012). It is possible that in this case SUMOylation occurs on Lig3α, or another protein such as XRCC1 that can stabilise TDP1/Lig3α interaction (Gocke et al., 2005; Bruderer et al., 2011; Weber et al., 2014).

TDP1 K111 SUMOylation promotes cellular survival following CPT (Fig. 4.8), and repair of CPT and IR induced DNA strand breaks (Fig. 4.10). The molecular basis of these effects does not appear to be mediated by altered catalytic activity, protein structure and stability, subcellular translocation, interaction with DNA ligase 3α (Hudson et al., 2012), involvement in DSBR (Fig. 4.11) (El-Khamisy and Caldecott, 2007; Katyal et al., 2007) or cell cycle checkpoint signalling (Fig. 4.9).

I did observe a significant reduction in the rate of recruitment of TDP1\^{K111R} to UVA-induced DNA damage sites (Fig. 4.12). This effect was SUMOylation-specific, as depletion of the obligate E2 conjugating enzyme UBE2I/UBC9 decreased the rate of recruitment of TDP1 but not TDP1\^{K111R} (Fig. 4.13). Although I could only use cells transiently overexpressing EGFP-TDP1 and EGFP-TDP1\^{K111R} (due to constitutive TDP1 overexpression being poorly tolerated by mammalian cells), I tried to account for the intrinsic inter-clonal variations by examining only cells expressing similar levels of GFP-TDP1 or GFP-TDP1\^{K111R} before UVA irradiation (Fig. 4.12A, 4.13B).

Using the transcription inhibitor 5,6-dichlorobenzimidazole 1-b-d-ribofuranoside (DRB), my colleague Mr Chris Rookyard also showed that recruitment of both TDP1 and
TDP1<sup>K111R</sup> was partially inhibited (Hudson et al., 2012). This suggests that: 1) a portion of the UVA-induced DNA damage sites were transcription-mediated SSBs, or 2) a subgroup of TDP1 (independent of the SUMOylation status) is recruited to the damage sites that are being actively transcribed. Given the short duration of the irradiation and recruitment time-course of the laser microirradiation experiment, the latter explanation seems more plausible, although this does not automatically exclude the former explanation. Either way, the implication that TDP1 accumulates at transcriptionally active sites points to its functional significance in postmitotic, highly-transcribing neurons, in which endogenous SSBs are the most abundant chromosomal lesions. Indeed, Tdp1<sup>−/−</sup> mouse neuronal cells complementation with hTDP1<sup>K111R</sup> could not fully protect against cell killing following CPT treatment compared to cells complemented with wildtype hTDP1 (Hudson et al., 2012).

How does SUMOylation promote recruitment of TDP1 at transcription-associated break ends? SUMOylation is widely used to regulate transcription, chromatin remodeling, and DNA damage repair (Garcia-Dominguez, 2013; House et al., 2014). One specific mechanism may be through interaction with stalled TOP1, which is SUMOylated after CPT treatment and undergoes proteasomal degradation (Mao et al., 2000; Yang et al., 2006). This could act as a signal to recruit TDP1 to further process the lesion. Our lab has preliminary data demonstrating interaction between TDP1 and chromatin-bound TOP1 (data not shown).

Further pressing questions include: what is this subgroup of TDP1 that interacts with the transcription machinery? What is its role in repair of transcription-associated SSBs? Does TDP1 associate with products of stalled transcription such as R-loops? Does TDP1 play a role in transcription of the mitochondrial genome?

Clearly, the regulation of TDP1 activity at the cellular level is more complex than we initially anticipated. It also points to new areas of biological processes in which TDP1 is involved. In the next two chapters, I will explore the role of TDP1 in repair of DNA
lesions from endogenous oxidative stress, and the impact it has on mitochondrial functions and cellular viability.
CHAPTER 5

*Tdp1 protects against endogenous oxidative stress in mouse embryonic fibroblasts*
5.1 Introduction

The second part of my PhD project was to test the hypothesis that TDP1 repairs a broader spectrum of ROS-induced DNA lesions other than TOP1-DNA adducts, which may contribute to cerebellar neurodegeneration.

In postmitotic neurons, oxidative stress induces lesions that can trap TOP1 (Pourquier and Pommier, 2001; Daroui et al., 2004; Pommier et al., 2003; Katyal et al., 2007; Katyal et al., 2014), which in turn can impede transcription (Sordet et al., 2009; Alagoz et al., 2013; Katyal et al., 2014), generate DSBs, and activate apoptosis or lead to cellular senescence (Sordet et al., 2003; Sordet et al., 2009). However, Tdp1−/− mice demonstrated only late-onset cerebellar degeneration and no ataxia (Hirano et al., 2007; Katyal et al., 2007), suggesting that the effect of the unrepaired DNA lesions in the absence of Tdp1 is gradual. This makes the mouse model less useful for studying the role of ROS in SCAN1 in vivo, due to the short life-span of the organism.

In vitro studies suggest that TDP1 can repair a broader spectrum of ROS-induced breaks other than TOP1-DNA adducts, such as 3′-phosphoglycolates, 3′-phosphates and abasic sites in vitro (Inamdar et al., 2002; Interthal et al., 2005a; Zhou et al., 2005). Tdp1−/− astrocytes, MEFs and chicken B-lymphocytes (DT40) showed hypersensitivity to hydrogen peroxide, ionising radiation, and bleomycin which induce broad-spectrum oxidative DNA damage (Hirano et al., 2007; Katyal et al., 2007; Murai et al., 2012). Incidentally, using Tdp1−/− MEFs complemented with hTDP1 as a control, I also observed the hypersensitivity to H2O2 and IR in Tdp1−/− MEFs (Fig. 5.1).

However, acute treatment with ROS-inducing agents in cultured cells may not recapitulate the situation induced by endogenous ROS in vivo. Our lab has previously generated a mouse model which uncovered the role of another SSBR factor, aprataxin (APTX), against endogenous oxidative stress (Carroll et al., 2015). By crossing Apx−/−
Figure 5.1 Tdp1−/− MEFs are sensitive to exogenous ROS. (A) Tdp1−/− MEFs were complemented with hTDP1 or empty vector by retroviral transduction and selection in 1 μg/ml puromycin for 2 weeks. WCEs were analysed by immunoblotting using antibodies against human TDP1 and β-actin. Arrow indicate the hTDP1 product. Between 2000 – 6000 MEFs from (A) were plated in 10 cm petri dishes and incubated at 37°C overnight. Cells were then treated with the indicated doses of H2O2 for 10 minutes on ice (B), or x-ray at 12 mA / 250V on ice (C), then left to recover in normal growth medium for 7 – 10 days until macroscopic colonies formed. Surviving fraction was calculated by dividing the number of colonies on treated plates by the number on untreated plates. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M.
mice, which exhibited no DNA repair and survival defect against oxidative stress, with mice overexpressing mutated human SOD1 (SOD1\textsuperscript{G93A}), which have documented mitochondrial defect and elevated levels of endogenous ROS and ROS-induced DNA lesions (Gurney et al., 1994; Robberecht, 2000), it was shown that Aptx indeed repairs endogenous ROS-induced DNA lesions and promotes neuronal viability.

Thus, I used the same approach to generate a mouse model, whereby Tdp1\textsuperscript{-/-} mice were crossed with those overexpressing hSOD1\textsuperscript{G93A}, to study the role of Tdp1 against endogenous oxidative stress,

\textbf{5.1.1 Endogenous ROS generation by SOD1\textsuperscript{G93A}}

SOD1 is a Cu/Zn superoxide dismutase, ubiquitously expressed in the cytosol, mitochondrial intermembrane space (IMS) (Weisiger and Fridovich, 1973; Okado-Matsumoto and Fridovich, 2001; Sturtz et al., 2001), nucleus, and peroxisomes (Chang et al., 1988; Del Maestro and McDonald, 1989; Keller et al., 1991; Crapo et al., 1992). It acts as a first-line ROS scavenger by converting superoxide to hydrogen peroxide, which is in turn catalysed into water and oxygen by catalase and glutathione peroxidase (Fridovich, 1986).

Mutations of \textit{SOD1} account for \(~5\%\) of the motor neuron disease amyotrophic lateral sclerosis (ALS) (Andersen et al., 2003; Valentine et al., 2005). The pathogenesis of SOD1\textsuperscript{G93A} mutation, although rare in ALS patients, has been extensively studied in the transgenic mouse model overexpressing human SOD1\textsuperscript{G93A} (Gurney et al., 1994). hSOD1\textsuperscript{G93A}-overexpressing mice exhibit higher oxidative stress (Ferrante et al., 1997; Andrus et al., 1998; Liu et al., 1998; Poon et al., 2005; Casoni et al., 2005) and mitochondrial dysfunctions with reduced ATP production (Jung et al., 2002; Browne et al., 2006), defective ETC function (Mattiazi et al., 2002; Kirkinezos et al., 2005), dysregulation of calcium homeostasis and loss of membrane potential (Damiano et al., 2006; Jaiswal and Keller, 2009; Jaiswal et al., 2009), and mitochondrial axonal transport (Magrane and Manfredi, 2009; Sotelo-Silveira et al., 2009).
The SOD1\textsuperscript{G93A} protein is catalytically active (Cleveland, 1999) but possesses reduced zinc-binding capacity, which destabilizes the structure and promotes aggregate formation (Chattopadhyay \textit{et al.}, 2008; Furukawa \textit{et al.}, 2008). SOD1\textsuperscript{G93A} aggregates targeted to inclusion bodies are particularly toxic as they can sequester Hsp70 and inhibit proteolysis and overall protein quality control (Matsumoto \textit{et al.}, 2005; Matsumoto \textit{et al.}, 2006; Wang \textit{et al.}, 2009; Weisberg \textit{et al.}, 2012). SOD1\textsuperscript{G93A} aggregates in the mitochondria (Vijayvergiya \textit{et al.}, 2005; Kawamata and Manfredi, 2008) can sequester the anti-apoptotic protein Bcl-2 and promote motor neuron death (Pasinelli \textit{et al.}, 2004; Pedrini \textit{et al.}, 2010; Tan \textit{et al.}, 2013). SOD1\textsuperscript{G93A} has also been shown to promote apoptosis through the endoplasmic reticulum stress response (Kieran \textit{et al.}, 2007; Nishitoh \textit{et al.}, 2008). It has also been proposed that the conformational change of SOD1\textsuperscript{G93A} promotes its binding with hydrogen peroxide, converting it to more reactive hydroxyl radicals in the presence of ferric ions through Fenton reaction (Wiedau-Pazos \textit{et al.}, 1996). This aberrant peroxidase activity of SOD1\textsuperscript{G93A} has been linked to increased oxidative DNA damage in the mitochondria and nucleus of the spinal cord of SOD1\textsuperscript{G93A} mice (Warita \textit{et al.}, 1999; Martin \textit{et al.}, 2007) and human SH-SY5Y neuroblastoma cells (Barbosa \textit{et al.}, 2010). More recently, it has been shown that SOD1 translocates to the nucleus in response to hydrogen peroxide (but not superoxide) in an ATM-dependent manner, and promotes transcription of antioxidant and DNA repair genes (Tsang \textit{et al.}, 2014). Whether SOD1\textsuperscript{G93A} translocates to the nucleus as efficiently as wildtype SOD1 is controversial and may depend on the level of overexpression (Sau \textit{et al.}, 2011; Barbosa \textit{et al.}, 2010; Gertz \textit{et al.}, 2012). Taken altogether, there is overwhelming evidence for the increased endogenous ROS production by SOD1\textsuperscript{G93A} overexpression, through multiple mechanisms in the mitochondria and nucleus.

5.2 Results
5.2.1 Generation of hSOD1\(^{G93A}\);Tdp1\(^{-/-}\) double mutant MEFs

Transgenic SOD1\(^{G93A}\) male mice (Gurney et al., 1994) were crossed with female mice with different Tdp1 backgrounds (Katyal et al., 2007), as female SOD1\(^{G93A}\) mice are infertile. The genotypes of live offspring are listed in Table 5.1.

The first observation was that only 2 live births out of the predicted ~ 61 were SOD1\(^{G93A}\);Tdp1\(^{-/-}\) double mutants. Secondly, the genotypes of the offspring differed significantly from the predicted Mendelian ratio when the male SOD1\(^{G93A}\) parents were heterozygous for Tdp1 deletion (Table 5.1A) but not in the case when both copies of Tdp1 were present (Table 5.1B). Specifically, the numbers of Sod1\(^{+/+}\);Tdp1\(^{-/-}\) offspring were significantly decreased (6 as opposed to the predicted 54.5). This is unexpected as Tdp1\(^{-/-}\) mice do not have known developmental defects. Conversely, the numbers of Sod1\(^{+/+}\);Tdp1\(^{-/-}\) and hSOD1\(^{G93A}\);Tdp1\(^{-/-}\) offspring were significantly increased (115 and 96, respectively, compared to the expected 54.5). These anomalies were present at early embryonic state (Table 5.1C). Taken together, these findings suggest non-random segregation of the hSOD1\(^{G93A}\) alleles and Tdp1 alleles.

The hSOD1\(^{G93A}\) transgenic mice were generated with multiple copies (~ 10) randomly integrated into the mouse genome (Gurney et al., 1994). It may be possible that one copy was inserted close to the Tdp1 locus. On closer inspection, SOD1\(^{G93A}\) seemed to co-segregate with the Tdp1 wildtype allele, making the statistical probability of generating the SOD1\(^{G93A}\);Tdp1\(^{-/-}\) offspring very low.

To circumvent this problem, we decided to use a cellular model instead to further investigate the role of Tdp1 in cells with high endogenous ROS levels. To do this, I established Tdp1\(^{-/-}\) MEFs which overexpress either wildtype Sod1 or hSOD1\(^{G93A}\).

5.2.2 Tdp1 modulates levels of SOD1\(^{G93A}\)-induced DNA free radicals

To measure the levels of endogenous ROS generated by hSOD1\(^{G93A}\), our collaborator Dr Nick Kassouf used 5,5-Dimethyl-1-Pyrroline-N-Oxide (DMPO) to capture intracellular free radicals induced by UVA photolysis, and analysed the profile by
<table>
<thead>
<tr>
<th>Male parent</th>
<th>hSOD1(^{G93A}); Tdp1(^{+/+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female parent</td>
<td>Sod1(^{+/+}); Tdp1(^{-/-})</td>
</tr>
<tr>
<td><strong>Offspring (No. live births)</strong></td>
<td>Expected</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{-/+})</td>
<td>6.25</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{+/+})</td>
<td>54.5</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{-/+})</td>
<td>54.5</td>
</tr>
<tr>
<td>hSOD1(^{G93A}); Tdp1(^{+/+})</td>
<td>6.25</td>
</tr>
<tr>
<td>hSOD1(^{G93A}); Tdp1(^{+/+})</td>
<td>54.5</td>
</tr>
<tr>
<td>hSOD1(^{G93A}); Tdp1(^{-/+})</td>
<td>54.5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>218</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Male parent</th>
<th>hSOD1(^{G93A}); Tdp1(^{+/+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female parent</td>
<td>Sod1(^{+/+}); Tdp1(^{-/-})</td>
</tr>
<tr>
<td><strong>Offspring (No. live births)</strong></td>
<td>Expected</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{-/-})</td>
<td>15.25</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{+/-})</td>
<td>24.5</td>
</tr>
<tr>
<td>Sod1(^{+/+}); Tdp1(^{-/-})</td>
<td>15.25</td>
</tr>
<tr>
<td>hSOD1(^{G93A}); Tdp1(^{+/-})</td>
<td>24.5</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td>49</td>
</tr>
</tbody>
</table>
Table 5.1: Genotypes of offspring of crossing $hSOD1^{G93A}$ mice with different Tdp1 backgrounds

<table>
<thead>
<tr>
<th>Male parent</th>
<th>Female parent</th>
<th>Offspring (No. of E12 embryos)</th>
<th>Expected</th>
<th>Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>$hSOD1^{G93A}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>6.5</td>
<td>0</td>
</tr>
<tr>
<td>$hSOD1^{G93A}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>$hSOD1^{G93A}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>6.5</td>
<td>12</td>
</tr>
<tr>
<td>$hSOD1^{G93A}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>$Sod1^{+/+}; Tdp1^{+/+}$</td>
<td>6.5</td>
<td>0 (1 underdeveloped embryo)</td>
</tr>
</tbody>
</table>

Sod1$^{+/+}$ = wild-type Sod1; $hSOD1^{G93A+/+}$ = heterozygous for multiple copies of $hSOD1^{G93A}$ transgene; Tdp1$^{+/+}$ = wild-type Tdp1; Tdp1$^{+/+}$ = heterozygous for Tdp1 deletion; Tdp1$^{+/+}$ = homozygous for Tdp1 deletion.

(A, B): number of offspring surviving past one month postnatal

(C): number of E12 embryos

Highlighted in red where the numbers of offspring obtained differed from predicted.
electron spin resonance (ESR) spectroscopy. He confirmed that the pattern of free radicals captured corresponded to that of purified salmon sperm DNA (Haywood et al., 2008; Haywood et al., 2011) (Fig. 5.2A), suggesting they were of DNA origin. He then showed that Tdp1<sup>−/−</sup> MEFs accumulated ~ 6 fold more carbon adducts than wildtype MEFs (Fig. 5.2B, \( p < 0.001 \); Student’s t-test). Importantly, the level of carbon adducts correlated with SOD1 expression, as overexpression of hSOD1 largely reversed this phenotype (Fig. 5.2B, \( p < 0.01 \); Student’s t-test), while overexpression of SOD1<sup>G93A</sup> increased the carbon adducts by ~ 12 fold (Fig. 5.2B, \( p < 0.01 \); Student’s t-test). This effect correlated with the level of SOD1<sup>G93A</sup> expression, as reduction in the ratio of ectopic hSOD1<sup>G93A</sup> to endogenous SOD1 expression from 1.1 to 0.8 (Fig. 5.3A) attenuated the increase in carbon adducts from ~ 12-fold to 8-fold (Fig. 5.3B). A further reduction in the ratio of hSOD1<sup>G93A</sup> to endogenous SOD1 to 0.37 (Fig. 5.3C) failed to impact on the level of carbon adducts compared to levels detected in Tdp1<sup>−/−</sup> cells (Fig. 5.3D). These data validate the use of ESR in detecting SOD1<sup>G93A</sup>-induced DNA free radicals in MEFs.

I then examined the correlation between the carbon adducts with TDP1 expression level. For this, we took advantage of a previously established Tdp1<sup>−/−</sup> chicken DT40 cell line, whereby clones of various levels of hTDP1 were stably expressed (Alagoz et al., 2014). After confirming the levels of hTDP1 protein (Fig. 5.4A) and catalytic activity (Fig. 5.4B), we repeated the ESR experiment on these cells. Again the carbon adduct profile was consistent with nucleic acids (Fig. 5.4C), and Tdp1<sup>−/−</sup> cells showed ~ 8-fold accumulation of these adducts (Fig. 5.4D, \( p < 0.01 \); Student’s t-test). Complementation with low-expressing level of hTDP1 reduced the carbon adducts by ~ 60 %, and surprisingly, to a lesser extent, by ~ 35 % in the high-expressing TDP1 clone (Fig. 5.4D). These data strongly indicate that Tdp1 plays a role in counteracting accumulation of SOD1<sup>G93A</sup>-induced DNA free radicals in vertebrate cells.
Figure 5.2 Tdp1 prevents accumulation of carbon adducts in DNA molecules induced by ROS in MEFs. (A) Electron spin resonance (ESR) spectra obtained during 30 min UVA-irradiation of WT MEFs or Tdp1−/− MEFs complemented with either empty vector, hSOD1 or hSOD1G93A. “C” indicates deflection caused by carbon adducts. (B) Bar charts showing the mean integration of all 6 carbon adducts in above spectra noted as a percentage of integrated manganese reference lines. Data are the means of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-test , whereby ** = p < 0.01, *** = p < 0.001. (C) WCEs (50 μg) for Tdp1−/− MEFs complemented with either hSOD1 or hSOD1G93A were fractionated by SDS-PAGE and immunoblotted using antibodies against human and mouse SOD1. Expression levels of hSOD1 and hSOD1G93A relative to endogenous mouse Sod1 (“mSod1”) were quantified by ImageJ and expressed as fractions in bottom panel. Data collected in collaboration with Dr Nick Kassouf.
Figure 5.3 Levels of carbon adducts detected by ESR correlate with expression levels of hSOD1 or hSOD1^{G93A}. (A, C) Immunoblotting of Tdp1^{-/-} MEF lysates overexpressing hSOD1 or hSOD1^{G93A}. Expression levels of hSOD1 and hSOD1^{G93A} relative to endogenous mouse Sod1 ("mSod1") were quantified by ImageJ and expressed as fractions in bottom panel. (B, D) Bar chart showing the mean integration of all 6 carbon adducts noted as a percentage of integrated manganese reference lines from ESR data obtained from MEFs in (A). Data collected in collaboration with Dr Nick Kassouf.
Figure 5.4 TDP1 prevents accumulation of carbon adducts in DNA molecules induced by ROS in chicken DT40 B-lymphocytes. (A) Immunoblotting of two clones of Tdp1−/− DT40 cells complemented with human TDP1 (clone 8 and clone 14) using antibodies against human TDP1 and β-actin as loading control. (B) Enzymatic activities of DT40 cells from (A) measured in vitro using a 13-mer oligonucleotide substrate containing a 3'-phosphotyrosine residue conjugated to a 5'-FITC molecule. WCEs (2 μg) of cells from (A), wildtype DT40 cells ("WT") and 6.25 pM of recombinant human TDP1 ("rTDP1") were incubated with 10 nM of TDP1 substrate for 15 minutes at room temperature. The reaction was stopped and fluorescence intensities from triplicate samples were measured using a BMG Labtech PHERAsar plate reader and analysed by the PHERAsar software. (C) Electron spin resonance spectra obtained during 30 min high intensity (80 mW/cm²) UVA-irradiation of DT40 cells: wildtype ("WT"), Tdp1 knockout ("Tdp1−/−"); clone 8 with low levels of hTDP1 ("Tdp1−/− + hTDP1(8)"); and clone 14 with high levels of hTDP1 ("Tdp1−/− + hTDP1(14)"). (D) Bar charts showing the mean integration of all 6 carbon adducts shown in (C) noted as a percentage of integrated manganese reference lines. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-test, whereby * = p < 0.05, ** = p < 0.01 and ns = non-significant. Data collected in collaboration with Dr Nick Kassouf.
5.2.3 *Tdp1 prevents accumulation of SOD1<sup>G93A</sup>-induced chromosomal DNA breaks*

To determine the consequence of the SOD1<sup>G93A</sup>-induced DNA free radicals in the chromatin context, I measured chromosomal DNA strand breaks in wildtype and hSOD1<sup>G93A</sup>-overexpressing MEFs (Fig. 5.5A) using the alkaline comet assay after UVA irradiation under the same condition as for the ESR experiment. Immediately after irradiation, there was an increase in DNA strand breaks, with cells overexpressing hSOD1<sup>G93A</sup> accumulating ~ 50 % more breaks than wildtype cells (Fig. 5.5B). This suggests that SOD1<sup>G93A</sup> overexpression is directly responsible for the generation of chromosomal strand breaks after UVA.

To test whether Tdp1 can repair these breaks, I repeated the experiment using low dose H<sub>2</sub>O<sub>2</sub> to induce production of endogenous ROS. H<sub>2</sub>O<sub>2</sub> in this case acts as a substrate for SOD1<sup>G93A</sup>, which converts it to the more reactive hydroxyl and superoxide radicals *in vivo* through the Fenton reaction (Shibata, 2001). After 10 minutes of H<sub>2</sub>O<sub>2</sub> treatment, *Tdp1<sup>−/−</sup>* cells displayed ~ 2-fold more strand breaks than wildtype cells (Fig. 5.5C, *p* < 0.001; Student’s *t*-test), while overexpression of hSOD1<sup>G93A</sup> in *Tdp1<sup>−/−</sup>* cells increased the breaks further by ~ 50 % (Fig. 5.5C, *p* < 0.05; Student’s *t*-test). Conversely, overexpression of hSOD1 in *Tdp1<sup>−/−</sup>* cells suppressed the observed increase in DNA strand breaks to background levels detected in wildtype cells (Fig. 5.5C). However, subsequent incubation in H<sub>2</sub>O<sub>2</sub>-free media led to rapid clearance of SSBs with no detectable difference in repair kinetics (Fig. 5.5D), suggesting Tdp1 is not essential for repair of SOD1<sup>G93A</sup>-induced DNA strand breaks. This result is perhaps unsurprising, as Tdp1 is not essential for repair of ROS-induced SSBs, with factors such as glycosylases and APE1 known to play a more prominent role (Demple and Sung, 2005).

However, as recent data from our lab and the McKinnon lab suggest that endogenous ROS (induced by *Atm* deletion in mice) can trap TOP1 near oxidised DNA lesions
Figure 5.5 Tdp1−/− MEFs overexpressing hSOD1G93A accumulate more SSBs induced by H₂O₂. (A) Immunoblotting of WCEs of Tdp1−/− MEFs complemented with hTDP1, empty vector, hSOD1G93A and wildtype MEFs overexpressing hSOD1G93A using antibodies against human and mouse SOD1. (B) MEFs from (A) were damaged with 1 mW/cm² UVA irradiation for 30 minutes on ice, and immediately harvested for quantification of SSBs by alkaline comet assay. Average tail moments from 50 cells were quantified using the Comet Assay IV software. (C) Tdp1−/− MEFs complemented with hTDP1, hSOD1, hSOD1G93A or empty vector were treated with 10 μM of H₂O₂ or PBS (“Mock”) for 10 minutes on ice, then left to repair in drug-free medium at 37°C for the indicated time periods. SSBs induced were measured using the alkaline comet assay. Average tail moments from 50 cells were quantified using the Comet Assay IV software. (D) Data from (C) expressed as percentage of remaining breaks. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from paired two-tailed Student’s t-test, whereby * = p < 0.05, *** = p < 0.001.
(Alagöz et al., 2013; Katyal et al., 2014), forming TOP1 cleavage complexes (TOP1-cc) that are physiological substrates for TDP1, it was important to assess the levels of ROS-induced TOP1-cc in TDP1-proficient and deficient cells.

5.2.4 TDP1 promotes repair of TOP1-mediated chromosomal DNA breaks induced by ROS

Due to the bulk of TOP1 peptide, TOP1-cc cannot normally be detected by alkaline comet assay. However, pre-digestion with proteinase K prior to gel electrophoresis can unmask all protein-bound DNA strand breaks. To detect TOP1-specific DNA adducts, I used a stable MRC5 cell lines whereby TDP1 was depleted alone or in combination with TOP1 (Fig. 5.6A). I then repeated the alkaline comet assay with proteinase K treatment. As a control experiment, TOP1-cc were induced with CPT treatment. As expected, wildtype and TDP1-depleted cells accumulated comparable levels of TOP1-cc, since TDP1 is known to be involved only in the repair of CPT-induced TOP1-cc. Depletion of TOP1 markedly reduced formation of TOP1-cc both in the presence or absence of TDP1, although the reduction was less in the absence of TDP1 (Fig. 5.6B). This difference was unlikely to be due to increased formation of TOP1-cc in TDP1 deficient cells, but rather a higher residual TOP1 level as confirmed by immunoblotting (Fig. 5.6A). Similarly, after H₂O₂ treatment, TDP1 deficient cells accumulated similar levels of protein DNA adducts as in wildtype cells, of which ~50% were TOP1-dependent, as shown by their reduction in TOP1 depleted cells (Fig. 5.6B). When TDP1 was co-depleted, only ~25% of TOP1-cc were abolished, suggesting more TOP1-cc were formed in the absence of TDP1. However, the TDP1-dependent proportion could be slightly lower, as more TOP1-cc could have been formed because of the higher residual TOP1 levels (Fig. 5.6A).

Although the exact proportion of ROS-induced TOP1-cc accumulated in the absence of TDP1 was unclear, the consequences of accumulation of these lesions on cell replicative potential were significant in the absence of TDP1, as revealed by clonogenic
Figure 5.6 \( \text{H}_2\text{O}_2 \) induces TOP1-linked breaks in MRC5 cells. (A) MRC5 cells were stably depleted for TOP1, TDP1, or both, using shRNA's and maintained in 1 \( \mu \text{g/ml} \) puromycin selection. Cells transduced with scrambled shRNA ("CT shRNA") acted as control for off-target effects of the shRNA's. WCEs were immunoblotted with antibodies against TOP1, TDP1, and \( \beta \)-actin as loading control. (B) Cells from (A) were treated with 50 \( \mu \text{M} \) of CPT for 1 hour at 37\(^\circ\)C or 10 \( \mu \text{M} \) \( \text{H}_2\text{O}_2 \) for 10 minutes on ice, and immediately analysed for DNA breaks using modified alkaline comet assay, which measures both protein-linked breaks and frank breaks. (C) Cells from (A) were treated with the indicated doses of \( \text{H}_2\text{O}_2 \) for 10 minutes on ice, and left to recover in drug-free medium for 7 – 10 days to form macroscopic colonies. Data are the mean of 3 independent experiments and error bars represent \( \pm 1 \) S.E.M. \( p \) values were derived from paired two-tailed Student's t-test, whereby * = \( p < 0.05 \), ** = \( p < 0.01 \) and ns = non-significant.
survival assays (Fig. 5.6C). Depletion of TOP1 rescued survival after H\textsubscript{2}O\textsubscript{2} in TDP1-depleted cells by \(\sim 3\) fold (from \(\sim 20\% - 60\%\) at 400 \(\mu\)M H\textsubscript{2}O\textsubscript{2}), whereas in TDP1-proficient cells there was only a 1.2 fold rescue (from \(\sim 60 - 70\%\) at 400 \(\mu\)M H\textsubscript{2}O\textsubscript{2}).

In summary, these results indicate that in mammalian cells TDP1 prevents initial stage accumulation of chromosomal breaks induced by endogenous ROS. A significant proportion of these breaks is TOP1-mediated and counteracted by TDP1. It is also likely that TDP1 can repair non-TOP1-mediated breaks induced by oxidative stress. The unexpected role in inhibiting formation of oxidative DNA lesions alerted us to the possibility that TDP1 may function at the level of oxidant production, located in the mitochondria.

### 5.2.5 Tdp1 maintains mtDNA copy number

Although TDP1 has been identified in mammalian mitochondria (Das \textit{et al}., 2010; Fam \textit{et al}., 2013a), its molecular role was not clearly characterised. The mitochondrial DNA also relies on topoisomerases for DNA transactions such as replication and transcription, and vertebrate cells have a mitochondrial specific isoform of TOP1, TOP1\textsubscript{mt}. One probable function of mitochondrial TDP1 would be to repair mitochondrial TOP1 (TOP1\textsubscript{mt})-cleavage complexes, which have been shown to be induced by TOP1 poisons (Zhang and Pommier, 2008; Dalla Rosa \textit{et al}., 2014) and ROS (Medikayala \textit{et al}., 2011). If this were true, TDP1-deficient cells should accumulate more mtDNA breaks than wildtype cells.

To assess mitochondrial genome instability, I quantified mtDNA copy numbers with or without H\textsubscript{2}O\textsubscript{2} induction and 24-hour recovery using qPCR (Chan and Chen, 2009). In the unstressed condition, \textit{Tdp1}\textsuperscript{-/-} cells had 50 \% fewer mtDNA copies (250 as opposed to 500) compared to wildtype cells; SOD1\textsuperscript{G93A} overexpression was not associated with mtDNA loss; while the overexpression of SOD1\textsuperscript{G93A} in \textit{Tdp1}\textsuperscript{-/-} cells resulted in a further reduction of mtDNA copy number (\(\sim 100\)) (Fig. 5.7). After oxidative stress, mtDNA copy numbers were increased by \(\sim 2\) fold in all cell lines examined. Increase in
Figure 5.7 Tdp1-/- MEFs show attenuated mitochondrial DNA synthesis after oxidative stress. MEFs were treated with 240 μM of H2O2 or PBS ("Mock") for 1 hour on ice then left to recover in drug-free medium for 24 hours. Total gDNA was extracted using the Qiagen DNAeasy Blood and Tissue Kit. 1 ng of gDNA was used as mitochondrial DNA template and 10 ng of gDNA was used as nuclear DNA template. The template was mixed with 2x SYBR-Green I PCR mastermix and the PCR reaction was carried out in triplicates. Concentrations of starting templates were derived from C_T values of standard curves for the mtDNA and nDNA reactions. Mitochondrial copy number was calculated by 2 x 2^(ΔC_T) whereby ΔC_T = B2M average C_T – ND1 average C_T. Data represent the averages of 2 independent experiments and error bars denotes upper and lower ranges.
mitochondrial DNA synthesis is a known compensatory mechanism during mitochondrial stress (Lee et al., 2000; Hori et al., 2009). The proportional increase in all the cell lines suggests neither Tdp1 nor SOD1\textsuperscript{G93A} are required for mtDNA synthesis after acute oxidative stress. The loss of mtDNA in unstressed \textit{Tdp1}\textsuperscript{-/-} cells that is associated with endogenous (SOD1\textsuperscript{G93A}-mediated), but not exogenous ROS, suggest that there may be a more sustained and global change in mitochondrial function and mass when Tdp1 is inactivated. To test this, I first visualised the gross mitochondrial network morphology with fluorescence microscopy.

\textbf{5.2.6 Tdp1 inactivation is associated with mitochondrial stress}

Using the membrane potential specific probe TMRM, which is specific for depolarised (functional) mitochondria, our collaborator Dr Martin Meagher did not see obvious morphological differences in the mitochondrial network in \textit{Tdp1}\textsuperscript{-/-} MEFs compared to the wildtype. However, treatment with TBH, a stable analogue of H\textsubscript{2}O\textsubscript{2}, showed a discernible increase in mitochondrial lengths (“mitochondrial fusion”) in \textit{Tdp1}\textsuperscript{-/-} cells (Fig. 5.8). This suggests that \textit{Tdp1}\textsuperscript{-/-} cells have a lower threshold for oxidative stress, as mitochondrial hyper-fusion is a known compensatory response to counteract mitochondrial stress (Friedman and Nunnari, 2014). Strikingly, the hyper-fusion phenotype changed to that of hyper-fission in \textit{Tdp1}\textsuperscript{-/-} cells when SOD1\textsuperscript{G93A} was overexpressed, whereby the mitochondria were highly fragmented and circularised, indicating a decompensated state of severe mitochondrial stress (Fig. 5.8).

To assess the degree of mitochondrial stress quantitatively, I used flow cytometry to measure the fluorescence intensities of membrane potential-specific probe, Mitotracker Red CMXRos, and non-membrane potential-specific probe, Mitotracker Green. The total mitochondrial mass is indicated by the fluorescence intensity of Mitotracker Green, while the membrane potential is expressed as the fluorescence intensity of Mitotracker Red CMXRos normalised to Mitotracker Green. Fig. 5.9A shows that in cells overexpressing hSOD1\textsuperscript{G93A}, which are known to have dysfunctional mitochondria
Overexpressing hSOD1<sub>G93A</sub> in Tdp<sup>1−/−</sup> MEFs increases mitochondrial fragmentation. Cells were seeded at $5 \times 10^5$ in WillCo-dish<sup>®</sup> Glass Bottom dishes and treated with 10 μM tert-butyl-hydroperoxide (“TBH”) at 37°C for 24 hours. Cells were then stained with 3 μl PicoGreen (for dsDNA) for 45 minutes at 37°C and 5 nM tetramethylrhodamine, tethyl ester, perchlorate (TMRM) at 37°C for 10 minutes. Blow-up images in white boxes. Experiment performed by Dr Martin Meagher.
Figure 5.9 *Tdp1*^-/- MEFS show increase mitochondrial mass in absence of exogenous stress. (A) Wildtype (“WT”), *Tdp1* knockout (“Tdp1^-/-”), wildtype overexpressing hSOD1<sup>G93A</sup>, (hSOD<sub>1</sub><sup>G93A</sup>) and *Tdp1*^-/- overexpressing hSOD1<sup>G93A</sup> (“Tdp1^-/- + hSOD1<sup>G93A</sup>”) MEFS were incubated in 250 nM Mitotracker Green (“MTG”) to stain mitochondria irrespective of membrane potential, for 30 minutes at 37˚C, washed with PBS, then analysed by fluorescence-activated cell sorting using the EX493/EM525 spectra. (B) Mock treated MEFS from (A) were incubated in 250 nM MTG and 250 nM Mitotracker Red (MTR) (to stain for metabolically active mitochondria with negative membrane potential) for 30 minutes at 37˚C, washed with PBS, then analysed by FACS using the EX493/EM525 and EX565/EM670 spectra. Relative MTR:MTG fluorescence intensity denotes the membrane potential normalised to total mitochondrial mass. Data are the means of 3 independent experiments and error bars indicate ±1 S.E.M. *p* values were derived from two-tailed Student’s *t*-test, whereby ns = non-significant, ** = *p* < 0.01, *** = *p* < 0.001, and ns = non-significant.
(discussed in **Section 5.1.1**), the membrane potential decreased by ~ 50 % compared to wildtype cells, even though there was a ~ 3-fold compensatory increase in total mitochondrial mass. This is consistent with an accumulation of dysfunctional mitochondria. Interestingly, while \textit{Tdp1}\textsuperscript{-/-} MEFs had a normal membrane potential comparable to wildtype cells (**Fig. 5.9A**), the mitochondrial mass was also increased by ~ 3 fold (**Fig. 5.9B**). This data, together with the heightened response in mitochondrial morphology dynamics to oxidative stress (**Fig. 5.8**), suggests that the need for \textit{Tdp1}\textsuperscript{-/-} cells to markedly increase mitochondrial biogenesis may be a compensatory response to some underlying mitochondrial dysfunction (Lee \textit{et al.}, 2000). To further support this notion, intra-mitochondrial ROS production, specifically, of superoxide, was measured using FACS analysis of MitoSOX Red fluorescence. \textit{Tdp1}\textsuperscript{-/-} MEFs showed ~ 2-fold higher superoxide level relative to wildtype cells, while hSOD1\textsuperscript{G93A}-overexpressing cells showed ~ 4 fold more (**Fig. 5.10A**). The fluorescence signal was specific to mitochondrial superoxide, as treatment with the ETC complex I inhibitor rotenone increased the signal in all three cell lines by ~ 4 fold (**Fig. 5.10B**). The extent of increase was comparable in all the cell lines, suggesting that the mitochondrial defect in \textit{Tdp1}\textsuperscript{-/-} and hSOD1\textsuperscript{G93A}-overexpressing MEFs was not specific to complex I dysfunction.

### 5.2.7 \textit{Tdp1}\textsuperscript{-/-} MEFs are more sensitive to endogenous ROS induced by SOD1\textsuperscript{G93A}

To assess whether the mitochondrial dysfunction in \textit{Tdp1}\textsuperscript{-/-} negatively impacts cellular resistance against endogenous ROS, I quantified clonogenic survival after H\textsubscript{2}O\textsubscript{2} induction, using SOD1 and SOD1\textsuperscript{G93A} overexpression to modulate the levels of endogenous ROS. Overexpression of SOD1\textsuperscript{G93A} sensitized \textit{Tdp1}\textsuperscript{-/-} cells to H\textsubscript{2}O\textsubscript{2} while SOD1 overexpression offered some protection (**Fig. 5.11A, p < 0.05; Student's t-test**). In contrast, overexpression of SOD1\textsuperscript{G93A} had no impact on cell survival of wildtype cells (**Fig. 5.11B**), suggesting the protective effect against endogenous ROS was Tdp1-specific.
**Figure 5.10** *Tdp1*<sup>−/−</sup> MEFs show increased mitochondrial superoxide not specific to complex I dysfunction. (A) MEFs were incubated in 250 nM MitoSOX Red, for 15 minutes at 37°C in the dark, washed with PBS, then analysed by FACS using the EX488/EM575 spectra. Data represent the average of 2 independent experiments and error bars indicate the upper and lower ranges. (B) MEFs were treated with 1 μM rotenone or DMSO (“Mock”) for 10 minutes at 37°C, then stained with 250 nM MitoSOX Red in the dark, for 15 minutes at 37°C, washed with PBS, and analysed by FACS using the EX488/EM575 spectra.
Figure 5.11 Overexpression of hSOD1\textsuperscript{G93A} hypersensitizes Tdp1\textsuperscript{-/-} MEFs to H\textsubscript{2}O\textsubscript{2}. (A), (B) MEFs were plated in 10 cm petri dishes overnight, then treated with the indicated doses of H\textsubscript{2}O\textsubscript{2} for 10 minutes on ice. Cells were left to recover in drug-free medium for 7 – 10 days until macroscopic colonies formed. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. \( p \) values were derived from paired two-tailed t-test, whereby * = \( p < 0.05 \), ** = \( p < 0.01 \).
5.3 Discussion

Oxidative stress is a major contributing factor in aging and neurodegeneration, and oxidative DNA damage with defective repair is implicated in an increasing number of diseases such as cancer, metabolic disorders, and neuromuscular diseases.

In this chapter, I have shown that the SOD1/SOD1^{G93A}-overexpression system modulates the levels of endogenous ROS in vertebrate cells, and that Tdp1 is protective against oxidative stress in several ways: Tdp1^{-/-} MEFs accumulate more endogenous ROS, nuclear oxidative DNA breaks, and reduced cellular replicative potential which are all exacerbated in a high endogenous ROS background.

In the nucleus, there was strong evidence of TDP1 being a broad-spectrum end-processing factor involved in the repair of oxidised DNA ends (discussed in Section 1.5.1). However, in the cellular context, my comet data demonstrate that Tdp1 is dispensable for repair of oxidative DNA breaks, but instead is required to prevent formation of these lesions, which include TOP1-cc. This prompted us to think outside the nucleus and look at the source of ROS production itself.

The mitochondria are the major source of ROS production, and they are also intimately involved in cellular proliferation and the apoptotic pathway. Mitochondrial respiratory function is closely regulated by cellular energy demands via its own gene expression regulatory mechanisms. The mitochondrial genome relies on nuclear-encoded repair factors for maintenance, one of which may be TDP1. Although its precise molecular mechanism of action in the mitochondria has not been elucidated, its importance can be inferred from the hallmark ataxic phenotype, a common manifestation of mitochondrial disorders, in TDP1-mutated patients.

I first tested whether Tdp1 plays a role in repair of mtDNA breaks induced by endogenous ROS using long-range qPCR, which would detect polymerase-blocking lesions along the whole length of the mitochondrial genome. Although highly sensitive,
this assay does not distinguish the number of lesions per copy of mtDNA. But rather, it quantifies the number of mtDNA molecules that contain at least one lesion. Although the result from Das et al. suggests that Tdp1−/− MEFs have a higher proportion of mtDNA molecules containing unrepaired lesions after H2O2 damage, the concentration of H2O2 used was 10 – 100 fold higher than what I used to induce endogenous ROS. Indeed, using the published condition of H2O2 treatment resulted in amplification of non-specific products, likely due to excessive fragmentation of the mitochondrial genome. The second concern of the LR-qPCR assay is the difficulty in assessing the Ct values accurately with a low reaction efficiency due to the size of the amplicons. Thirdly, the DNA intercalating dye SYBR Green I is known to inhibit DNA polymerase progression and confound melting curve analysis (Gudnason et al., 2007), making its use unsuitable for qPCR analysis of long amplicons. Due to these reasons, I decided to investigate the question of whether Tdp1 plays a role in overall mitochondrial genome stability by measuring the mtDNA copy numbers.

The observation that Tdp1 promotes mtDNA stability in the unperturbed state could be explained in several ways: 1) that Tdp1 plays a role in mitochondrial biogenesis; 2) that it prevents accumulation of protein-DNA adducts, specifically of TOP1mt-cc that can lead to large-scale loss of mtDNA molecules; or 3) that TDP1 regulates activity of mitochondrial transcription A (TFAM), which has been shown to positively correlate with mtDNA number (Ekstrand et al., 2004; Pohjoismäki et al., 2006; Lu et al., 2013; Mei et al., 2015). The first hypothesis conflicts with our Mitotracker data, which showed that Tdp1−/− cells exhibited increased mitochondrial mass. The second hypothesis is supported by the 3’-phosphotyrosine-specific activity of TDP1 in the mitochondria (Das et al., 2010), as well as the observation that overexpression of a toxic form of TOP1mt that is converted to TOP1mt-cc causes significant loss of mtDNA without loss of mitochondrial mass (Dalla Rosa et al., 2014). To confirm this, the use of biochemical assays to show accumulation of TOP1mt-cc in the absence of Tdp1 would be
important. The third hypothesis is partially related to the second hypothesis, as TOP1mt has been shown to physically associate with TFAM, and TOP1mt itself negatively regulates mitochondrial transcription (Sobek et al., 2013). The latter two hypotheses will be addressed in the next chapter.

In the long-term, persistent high endogenous ROS level coupled with loss of mtDNA and/or inhibition of mtDNA replication and transcription can affect overall mitochondrial function. This is demonstrated in Tdp1−/− cells overexpressing hSOD1G93A, which showed increased proportion of dysmorphic and dysfunctional mitochondria characterised by increased superoxide production (Cassina et al., 2008). This dysfunction may have pathophysiological relevance in determining cell survival in tissues with high endogenous ROS load.

In summary, my findings support the hypothesis that Tdp1 plays a protective role in response to oxidative stress, through its role in the repair of nuclear TOP1-cc, as well as its role in maintaining mitochondrial function in a high endogenous ROS background. The exact mechanism of its action in the mitochondria is unclear, but possibly linked to the removal of TOP1mt-cc. This hypothesis was further investigated and will be presented in the next chapter.
Human TDP1 promotes mitochondrial DNA transcription and Redox homeostasis
6.1 Introduction

In the previous chapter, I described the use of the SOD1\textsuperscript{G93A} overexpression system to investigate the effects of high levels of endogenous ROS on Tdp1\textsuperscript{+/−} MEFs. My findings so far indicate that Tdp1 promotes cellular resistance against oxidative stress, through its role in maintaining mitochondrial DNA biogenesis and the overall health of the mitochondria.

In this chapter, I will describe the use of a human inducible cell line system to investigate the role of human TDP1 on mitochondrial DNA metabolism, primarily on its functional interaction with mitochondrial TOP1 (TOP1mt).

My primary hypothesis was that TDP1 plays a role in the removal of excess TOP1mt-cc in the presence of high oxidative stress, in a similar manner as in the nucleus, thus promoting restoration of mtDNA integrity, replication and transcription in response to oxidative stress.

6.1.1 Mitochondrial DNA structure and metabolism

The mitochondrial genome is organized in structures on the inner membrane known as nucleoids, each consisting of 2 – 10 copies of double-stranded circular mtDNA molecules that closely associate with regulatory proteins, such as mitochondrial transcription factor A (TFAM) (Spelbrink, 2010).

Each human mtDNA molecule contains intron-less coding sequences for 13 proteins of the electron transfer chain (ETC) subunits, interspersed with 22 tRNA’s, and 2 ribosomal RNA (rRNA) subunits, 12S and 16S (Fig. 6.1). Seven of the 14 subunits of ETC complex I (NADH dehydrogenase) are encoded by mitochondrial genes ND1, ND2, ND3, ND4L, ND4, ND5 and ND6. The mitochondrial subunit of complex III (cytochrome bc\textsubscript{1}) is encoded by Cyt b. Complex IV (cytochrome c oxidase) subunits are encoded by COX1, COX2, and COX3 in the mitochondria. Complex V (ATP
Figure 6.1 Organization of human mitochondrial genome and TOP1mt binding site. The mtDNA molecule contains a GC-rich heavy strand (H-strand) (outer circle) and light strand (L-strand) (inner circle) encoding 13 genes for the respiratory complexes I, III, IV, V, 12S and 16S rRNA's, and 22 tRNA's. The non-coding region (NCR) contains the L-strand promoter (“LSP”), the two H-strand promoters (“HSP”), and the H-strand replication origin (“O_H”). The D-loop represents a three-strand structure of 908 bp containing a short transcript from LSP as primer for replication of the H-strand leading strand. Orange bar denotes position of TOP1mt* ChIP-qPCR sequence (position 15872-15972) (related to Figure 7.17). Figure drawn with OrganellarGenomeDRAW: http://ogdraw.mpimp-golm.mpg.de/cgi-bin/ogdraw/pl. Annotation adapted from Taanman, 1999; Dalla Rosa et al., 2014.
synthase) subunits are encoded by $ATP6$ and $ATP8$. With the exception of $ND6$, all the protein-coding genes are located on the guanine-rich heavy chain.

Transcription of mtDNA initiates at three promoter sites: HSP1, for the transcription of the 2 rRNA's (encoded by $MT-RNR1$ and $MT-RNR2$, respectively); HSP2, for transcription of a long polycistronic mRNA of the protein-coding genes and t-RNA's; and LSP, for transcription of a polycistronic mRNA of the $ND6$ gene and 8 tRNA's (Falkenberg et al., 2007). Nuclear-encoded mitochondrial RNA polymerase (POLRMT) and transcription factors TFAM, transcription factor B1 (TFB1M) and transcription factor B2 (TFB2M) form part of the transcription machinery (Falkenberg et al., 2002; McCulloch et al., 2002). Termination of transcription, post-transcriptional processing, and intra-mitochondrial translation all require import of nuclear-encoded factors.

Replication of mtDNA is intrinsically coupled to transcription since replication initiation of the heavy chain depends on transcription from the LSP site and the short transcript serves as a primer for DNA synthesis (Chang and Clayton, 1985; Chang et al., 1985; Clayton, 1991). Replication of the heavy chain then frequently stalls ~650 bp downstream of the origin ($O_h$), forming a displacement loop (D-loop) (Clayton, 1991). It is believed that D-loop plays a role in regulating the transition from transcription to replication by interacting with nuclear-encoded regulating factors such as TFAM and single-stranded-DNA-binding protein (mtSSB) that determine whether replication re-initiates and continues to completion for the heavy chain strand (Takamatsu et al., 2002). Around two-thirds of the way relative to the $O_h$, replication of the light chain initiates in the opposite direction, apparently utilizing the elongating daughter strand of the heavy chain as the priming sequence. Like transcription, mtDNA replication elongation requires the concerted activities of nuclear-encoded DNA polymerase gamma (Poly) (Hance et al., 2005), mitochondrial helicase TWINKLE (Tynismaa et al., 2004), POLRMT (Wanrooij et al., 2008), mitochondrial single-stranded DNA-binding protein (mtSSB) (Korhonen et al., 2004), RNAse H1 (Cerritelli et al., 2011), DNA Lig3
6.1.2 Mitochondrial TOP1 (TOP1mt)

The circular nature of mitochondrial DNA requires topoisomerases for its replication and transcription. In vertebrates, TOP1mt is the only topoisomerase specifically evolved for handling mitochondrial DNA (Rosa et al., 2009). Encoded by a nuclear gene duplicated from that of nuclear TOP1, the TOP1mt transcript has a shorter N-terminus domain, which contains the mitochondrial targeting sequence (MTS) instead of nuclear localization sequence (NLS) (Zhang et al., 2001). TOP1mt also has a highly similar mode of action of cleavage and religation of ssDNA's as nuclear TOP1 (Zhang et al., 2007). However, TOP1mt activity is restricted to mtDNA, and is unable to interact with nuclear DNA (Rosa et al., 2009). It appears that TOP1mt is specialised to be most active in an alkaline environment, in the presence of divalent cations (Ca$^{2+}$, Mg$^{2+}$), consistent with the conditions of the mitochondrial matrix (Burke and Mi, 1994; Zhang et al., 2001).

It has been proposed that TOP1mt plays a role in DNA replication and transcription in the mitochondria, although there is likely functional overlap between TOP1mt and mitochondrially localised TOP2β and TOP3α (Sobek and Boege, 2014). It is therefore intriguing to understand what requirement drove the conservation of the TOP1mt gene in vertebrates. Understanding this may provide novel druggable targets for modulating mitochondrial-mediated apoptosis and DNA repair pathways in cancer therapy.

MEFs derived from Top1mt$^{-/-}$ mice display defective OXPHOS, as reflected by increased ROS production and activation of glycolysis; as well as compensatory responses to oxidative stress such as increased mitochondrial fusion, retrograde nuclear signaling, activation of the DNA damage response, and autophagy (Douarre et al., 2012). A similar pattern of mitochondrial dysfunction was induced in Top1mt$^{-/-}$ mice cardiomyocytes after treatment with doxorubicin, a TOP2 inhibitor used in cancer
therapy (Khiati et al., 2014). TOP1mt has also been shown to be necessary for mtDNA replication in mice hepatocyte regeneration after carbon tetrachloride (CCl₄) damage, a potent hepatotoxin that induces excessive lipid peroxidation (Khiati et al., 2015).

At the molecular level, TOP1mt binds predominantly at the non-coding region (NCR) which contains the two promoters for the light and heavy strands and the replication origin of the heavy strand (Fig. 6.1) (Zhang and Pommier, 2008; Dalla Rosa et al., 2014), which supports its involvement in resolving negative supercoils that arise from bidirectional transcription and replication (Zhang et al., 2014). TOP1mt also physically interacts with mitochondrial RNA polymerase and transcription factor TFAM, suggesting its localization to active transcription sites (Sobek et al., 2013). Surprisingly, in contrast to its nuclear counterpart, TOP1mt appears to inhibit mitochondrial transcription, independent of retrograde nuclear signalling (Sobek et al., 2013). Both depletion and overexpression of TOP1mt induced mitochondrial respiratory dysfunction (Douarre et al., 2012; Sobek et al., 2013).

Taken together, it is plausible that TOP1mt maintains mitochondrial health by adjusting the level of basal topological tension required for optimal transcription and replication. The expression level of TOP1mt is regulated by c-Myc, which also regulates the expression of many nuclear-encoded mitochondrial proteins (Zoppoli et al., 2011).

6.1.3 Mitochondrial bioenergetics

Numerous cellular processes that expend energy require ATP, which is produced by phosphorylation of ADP in the mitochondria. In mammalian cells, more than 80% of ATP production is coupled to oxidative phosphorylation (OXPHOS) (Papa et al., 2012), a process whereby electrons are transported from NADH to oxygen through a series of reduction/oxidation (Redox) reactions along the electron transport chain (ETC). The ETC is made up of protein complexes I – V located on the inner membrane, coupled with release of protons into the intermembrane space (IMS) (Fig. 6.2) (Hatefi, 1985). The potential energy from the proton gradient generated between the IMS and the
Figure 6.2 Mitochondrial bioenergetic pathways. NADH, generated in the tricarboxylic acid ("TCA") cycle, is oxidised by complex I, producing electrons that are transferred to ubiquinone ("UQ"), coupled with translocation of protons ("H⁺") to the inter-membrane space ("IMS"). Similarly, oxidation of succinate to fumarate as part of the TCA cycle generates electrons that are transferred to UQ and translocation of H⁺ to the IMS. In complex III, electrons from reduced UQ are transferred to cytochrome c ("Cyt C"), coupled with H⁺ translocation. Complex IV then accepts the electrons from Cyt C to reduce O₂ to H₂O, coupled with more H⁺ translocation. Finally the proton gradient, or membrane potential ("ψm") then drives the molecular motor ATP synthase, or complex V, to generate ATP from ADP. In the cytoplasm, anaerobic respiration is carried out by metabolising glucose to pyruvate, generating ATP and lactate as by-products. Deamination of amino acids also produces ATP. Anaerobic respiration is less efficient in ATP production and also promotes lactic acidosis, thus increasing extracellular acidification rate (ECAR). Adapted from Lemarie & Grimm, 2011.
matrix (also known as “membrane potential”) is then used to drive ATP production by phosphorylation of ADP (Lemarie and Grimm, 2011). At resting state, where mitochondrial concentration of ADP is low, OXPHOS efficacy is low, as reflected by the oxygen consumption rate (OCR) (Brand and Nicholls, 2011). While under condition of high ATP demand, the influx of ADP into the mitochondria triggers proton flow through Complex V to generate ATP; the decrease in proton gradient facilitates electron flow through the ETC, thus increasing the OCR (Klingenberg, 2008). Thus, OCR is a measure of both ATP demand and efficacy of the ETC.

To assess the two components independently, inhibitors of the ETC and ATP synthase can be used, as summarized in Fig. 6.3. Inhibition of ATP synthase (Complex V) by oligomycin prevents the majority of protons from re-entering the matrix and greatly reduces the efficacy of the ETC (termed “oligomycin-sensitive respiration” or “coupled respiration”). A small proportion of protons re-enter the matrix through uncoupling proteins, a process known as “proton leak” or “uncoupled respiration” (Brand and Nicholls, 2011). Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) acts as an uncoupling agent that temporarily increases the concentration of protons in the matrix independent of Complex V that drives electron flow through the ETC at the maximum rate (Benz and McLaughlin, 1983). The FCCP-induced OCR is a measure of the maximum capacity of the ETC (also termed the “spare respiratory capacity”) utilized in response to a sudden increase in ATP demand. Lastly, inhibition of Complexes I and III by rotenone and antimycin A, respectively, disrupts electron flow through the ETC, greatly reducing the efficiency of OXPHOS and mitochondrial OCR, and increasing leakage of electron to attack oxygen molecules, forming superoxide anions (O$_2^-$) (Turrens and Boveris, 1980; Sugioka et al., 1988).
Figure 6.3 ETC dysfunction, ROS generation and detoxification. Rotenone and antimycin A inhibit reduction of UQ by complexes I and III, respectively, thus disrupt the ETC, reduce H+ translocation and increase superoxide ("O$_2^•$") formation in the matrix, IMS, and into the cytoplasm. Superoxide dismutases ("SOD2" in the matrix and "SOD1" in the IMS and cytoplasm) transform O$_2^•$ into less reactive hydrogen peroxide ("H$_2$O$_2$"), which is further neutralised to H$_2$O and O$_2$ by glutathione peroxidase ("GPX") and catalase. In the absence of these ROS scavengers, or in the presence of ferrous cations ("Fe$_{2+}$"), excess H$_2$O$_2$ can diffuse out of the mitochondria or disintegrate into highly reactive hydroxyl radicals ("•OH"), which can react with another •OH molecule to form more H$_2$O$_2$, or more commonly, attack lipid polymers ("RH") to form lipid peroxyl radicals ("ROOH"), which rely on GPX, catalase and vitamin C ("Vit. C") for neutralisation. FCCP and oligomycin inhibit ATP production by promoting proton leak, disrupting the proton gradient and thus uncoupling ATP production with OXPHOS, eventually shutting down the ETC. Adapted from Lemarie & Grimm, 2011.
6.2 Method

To investigate whether TDP1 plays a role in the mitochondria in removal of excess TOP1mt-cc in the presence of high oxidative stress, the Tdp1+/− MEFS could be used again to overexpress a toxic form of TOP1mt (TOP1mtT546A,N550H), published by the Pommier group (Dalla Rosa et al., 2014), with a propensity to forming stable TOP1mt-cc. The N550H mutation enhances the DNA nicking reaction, while the T546A mutation inhibits the re-ligation reaction. There are several advantages of using the toxic TOP1mt (abbreviated as “TOP1mt*” hereafter) over TOP1 poisons such as CPT or topotecan (TPT). Firstly, it is mitochondria specific, without the associated nuclear DNA damage that make CPT and TPT highly cytotoxic. Secondly, uptake across the mitochondrial outer membrane is limited for hydrophobic small molecules. Thirdly, the alkaline environment of the mitochondrial matrix can readily inactivate these drugs.

However, there were several concerns of using the MEFS to study mitochondrial functions:

- The wildtype and Tdp1−/− MEFS were not isoclonal, so were the wildtype and Tdp1−/− cells overexpressing hSOD1 or hSOD1G93A. Given the high heterogeneity between MEF cell lines, an observed functional phenotype in Tdp1−/− MEFS could be due to Tdp1-independent factors;
- To obtain isoclonal MEFS, Tdp1−/− cells complemented with hTDP1 was generated. However, expression of hTDP1 was gradually suppressed over one month, indicating perhaps cytotoxicity or survival disadvantage;
- Although immortalised by transformation, MEFS seem to retain sensitivity to atmospheric oxygen and require maintenance in low oxygen incubators, to which our lab lacked access at the time of the project.

The alternative of using an existing TDP1 knockdown MRC5 cell line posed several problems as well:
• TDP1 silencing using siRNA was not consistent and efficient enough for clonogenic survival and comet assays;
• Attempts to generate stable knockdown cell lines using shRNA were unsuccessful due to cytotoxicity.

Additionally, from a biological point of view, it would be interesting to see if the role of TDP1 in the mitochondria is comparable between human and mouse, as there was no strong evidence in the literature at that time. For these reasons, I generated an inducible cell line for TDP1 depletion in human HEK293 cells using the commercially available Flp-In T-Rex 293 cell line from Life Technologies (R780-07), which has the major advantage of allowing simultaneous, inducible silencing of TDP1 and overexpression of exogenous proteins of interest, such as TOP1mt or SOD1G93A.

In this chapter I will outline the method I used to establish the cell lines, validate the known functional phenotypes of TDP1 depletion, and characterise the mitochondrial functional phenotype of these cell lines.

6.2.1 The Flp-In T-Rex 293 system

The commercially available Flp-In T-Rex 293 (Flp-In) cell lines are engineered to contain a single Flp recombination target (FRT) site in a transcriptionally active region of the genome. The FRT site allows binding of exogenously expressed Flp recombinase (originally derived from *S. cerevisiae*) and exchange of genetic sequences flanked by the FRT site (O’Gorman *et al*., 1991). The host genomic FRT site has a hygromycin resistance gene downstream which is only activated after successful Flp-mediated recombination event. This allows for selection of clones that have stably integrated the gene of interest between the FRT sites. The rationale behind the use of the exogenous system of genomic recombination is to ensure controlled, specific genome editing, and a homogenous expression from a single copy genomic insert across the whole cell population. In addition, the Flp-In T-Rex system allows for
tetracycline/doxycycline induction of expression of the gene of interest, thus circumventing some of the problems of cytotoxicity associated with constitutive gene expression/deletion. The Flp-In T-Rex cells stably express the tetracycline repressor (TetR), which binds to the two Tet operator 2 (TetO2) sequences within the CMV promoter upstream of the gene of interest in the absence of tetracycline. When tetracycline is present, it interacts with TetR and sequesters it from the TetO2 sites, subsequently inducing transcription of the gene of interest. Fig. 6.4 summarizes the principle of the system.

For the purpose of my project, the Flp-In T-Rex 293 cells have some technical limitations:

- The parental HEK293 cell line is genetically highly transformed, making the homogenous expression of a single copy gene across the whole cell population presumably less reliable, especially in continually cultured cells;
- They are not strongly adherent cells, making assays that rely on high plating efficiency such as clonogenic survival assays, immunofluorescence, and the Seahorse assay technically more difficult.
- They have a large nuclear:cytoplasmic ratio, making fluorescence microscopic imaging of the mitochondrial network more challenging.

The measures that I have taken to address these problems include:

- Work with single clones instead of mixed population after establishment of a cell line; monitor homogeneity of GFP expression before each experiment.
- For monitoring cell killing after genotoxic stress, measure viability in a cell population after 72 hours of continuous drug treatment by fluorescence readout, instead of formation of single colonies after a bolus dose of treatment. This would circumvent the need for high plating efficiency, although cell viability does not always correlate with colony-forming (replicative) capacity.
Figure 6.4 Scheme for generating Flp-In T-Rex 293 cells with concomitant RNAi-mediated knockdown of TDP1 and overexpression of various fusion proteins. (A) Host cell with two FRT sequence sites ("FRT"), tetracycline repressor ("TetR"), and blasticidin resistance gene ("Blasticidin") was co-transfected with (B) pcDNA5-FRT vector encoding EmGFP-tagged fusion protein ("cDNA") and micro RNA sequence ("miRNA") and pGKFLP vector encoding Flp recombinase. The transformants were selected with 100 μg/ml hygromycin for 3 weeks. (C) In the absence of tetracycline/doxycycline, the TetR binds the CMV/TetO2 hybrid promoter ("P_{CMV/TetO2}"") to inhibit downstream transcription. After addition of tetracycline or doxycycline, the repressor is removed and transcription of the cDNA-miRNA sequence is initiated. Upon RNA transcription, excision of the miRNA hairpin by Drosha results in RNAi-mediated knock-down of TDP1, while non-excision results in translation of the recombinant protein.
• For immunofluorescence assays, use of polymer-based coating such as D-poly-
lysine on coverslips would reduce loss of cells during washing steps.

• Instead of measuring mitochondrial membrane potential by fluorescence
microscopy, use FACS analysis of live cells, and the Seahorse Bioanalyser to
measure mitochondrial respiratory functions.

• Use of Cell-Tak, as recommended by Seahorse Bioscience, to adhere cells to the
Seahorse Analyser microplate.

6.3 Results

6.3.1 Generation of stable Flp-In T-Rex 293 cell lines

For the purpose of studying the effect of TDP1 deficiency on mitochondrial functions,
two miRNA sequences targeting nucleotides 28 – 48 (amino acids 10 – 16) and
nucleotides 259 – 279 (amino acids 87 – 93) of the human TDP1 mRNA sequence
(NM_001008744.1), were inserted into mammalian expression vector pcDNA6.2-GW-
EmGFP, which contains specific flanking sequences to allow processing of the miRNA
in vivo, as well as an EmGFP tag for monitoring expression. The miRNA-EmGFP
fragment was then sub-cloned into the Flp-In system expression vector pcDNA5-FRT,
which contains the CMV/TetO₂ promoter, the FRT site for integration into the host
genome, and hygromycin resistance gene, to generate the pcDNA5-FRT-miTDP1
plasmid. Similarly, scrambled miRNA sequence was sub-cloned into pcDNA5-FRT to
generate pcDNA5-FRT-miScr. For each of these plasmids, full-length cDNA sequences
of SOD1₃₉₃ₐ (NM_000454), TOP1mt (NM_001258446.1), TOP1mt₅₅₄₄,₅₅₈₈, or RNAi-
resistant TDP1 (silent mutations at all the amino acids residues) minus the stop codon
were sub-cloned 5’ of and in frame with the EmGFP tag. Flp-In T-Rex 293 cells were
then transfected with the generated constructs, together with the Flp recombinase-
expressing plasmid pPGKFLP, and stable clones were selected with hygromycin for
three weeks to generate the following cell lines expressing:
1. Control microRNA (“miScr”)
2. TDP1 microRNA (“miTDP1”)
3. TDP1 microRNA with targeting-resistant TDP1 cDNA complementation ("TDP1 + miTDP1")
4. Control microRNA with SOD1\textsubscript{G93A} overexpression (“SOD1\textsubscript{G93A} + miScr”)
5. TDP1 microRNA with SOD1\textsubscript{G93A} overexpression (“SOD1\textsubscript{G93A} + miTDP1”)
6. Control microRNA with TOP1mt overexpression (“TOP1mt + miScr”)
7. TDP1 microRNA with TOP1mt overexpression (“TOP1mt + miTDP1”)
8. Control microRNA with TOP1mt\textsuperscript{T554A,N558H} overexpression (“TOP1mt\textsuperscript{}` + miScr”)
9. TDP1 microRNA with TOP1mt\textsuperscript{T554A,N558H} overexpression (“TOP1mt\textsuperscript{}` + miTDP1”)

The inclusion of target-resistant TDP1 complementation of miTDP1 cell line is an important control, as in a miRNA system, the structure of the synthetic miRNA may mimic an endogenous miRNA, and may cause tissue-specific off-target effects different from siRNA or shRNA transfected cells. Therefore, if a phenotype is observed in miTDP1 cells and is rescued by TDP1 complementation, the phenotype is more likely to be TDP1-specific.

To assess the functional interaction between TDP1 and TOP1mt, instead of depleting TOP1mt, I opted to overexpress either wildtype TOP1mt or the toxic mutant TOP1mt\textsuperscript{*}. The rationale was that assessment of the depletion of endogenous TOP1mt from WCE by immunoblotting depended on a highly sensitive and specific antibody (which was not commercially available at the time of the project), and the residual TOP1mt may be sufficient to compensate like in the case of nuclear TOP1. Interestingly, overexpression of TOP1mt has a known phenotypic defect (Sobek et al., 2013), which can be monitored to detect the effect of TDP1. The use of TOP1mt\textsuperscript{*} would give more insight on the molecular mechanism by which TOP1mt negatively regulates mitochondrial transcription, as well as the role of TDP1 on this regulation. Furthermore, the use of an
overexpression system instead of miRNA-mediated knock-down would circumvent the need to establish functional assays to rule out off-target effects of the miRNAs.

To induce miRNA and protein expression, 1 µg/mL doxycycline was added to the growth medium for 24 hours, cells were lysed and protein expression for each sample was analysed by immunoblotting. **Fig. 6.5** shows depletion of endogenous TDP1 specific to doxycycline induction. There was some leaky expression of the targeting-resistant EmGFP-TDP1 in the absence of doxycycline, but more importantly, the control miRNA (“miScr”) did not affect the expression level of endogenous TDP1.

### 6.3.2 Validation of functional phenotype of TDP1 depletion in Flp-In cell lines

Using an *in vitro* TDP1 enzymatic assay, it was confirmed that miTDP1 cell lysates had reduced TDP1 activity, while complementation with the target-resistant EmGFP-TDP1 increased TDP1 activity level (**Fig. 6.6**). miTDP1 cells accumulated ~ 2-fold more CPT-induced chromosomal breaks as measured by alkaline comet assay (**Fig. 6.7, p < 0.01; Student’s t-test**) and 53BP1 foci formation (**Fig. 6.8, p < 0.05; Student’s t-test**), and reduced survival after CPT (**Fig. 6.9A**). miTDP1 cells did not show a difference in viability from TDP1 + miTDP1 cells in response to oxidative damage by TBH (**Fig. 6.9B**). Bearing in mind that the doxycycline used to induce TDP1 expression/knockdown could inhibit TDP1 activity (Pommier, 2006), the viability assays were carried out after withdrawal of doxycycline. In both miTDP1 and TDP1 + miTDP1 cells the difference in TDP1 activity levels were maintained up to 72 hours after doxycycline withdrawal (**Fig. 6.9C,D**), suggesting that the lack of TBH sensitivity in miTDP1 cells was not due to loss of TDP1 knockdown.

Nevertheless, as measurement of survival in terms of viability assays do not necessarily correlate with clonogenic assays, and as the nuclear DNA repair assays indicated a TDP1 deficient phenotype, I decided to investigate the role of TDP1 in the mitochondria using the Flp-In T-rex system as planned.
Figure 6.5 Doxycycline induction of TDP1 depletion and complementation in Flp-In T-Rex 293 cells. $5 \times 10^5$ cells selected in 100 μg/ml hygromycin B and 10 μg/ml blasticidin for 3 weeks were incubated in 1 μg/ml doxycycline for 24 hours, then harvested. 75 μg of WCE was fractionated by SDS-PAGE and immunoblotted using antibodies against human TDP1 and β-tubulin. "miScr" denotes cells expressing scrambled (control) miRNA, "miTDP1" denotes cells expressing TDP1-targeting miRNA, "TDP1 + miScr" denotes cells overexpressing targeting-resistant TDP1 and control miRNA, and "TDP1 + miTDP1" denotes cells overexpressing targeting-resistant TDP1 and TDP1-targeting miRNA. The number at the end of each cell line denotes clone number. "- Dox" indicate no doxycycline treatment, "+ Dox" indicates treatment with doxycycline.
Figure 6.6 *in vitro* TDP1 enzymatic activity of Flp-In T-Rex 293 cell lines. (A) Diagramme of the TDP1-specific substrate consisting of a 13-mer oligonucleotide with tyrosyl residue conjugated to the 3’ end and a fluorophore Cy5.5 molecule conjugated at the 5’ end, annealed to a 14-mer complementary oligonucleotide. Arrow indicates cleavage of the phosphotyrosine bond by TDP1. (B) $5 \times 10^5$ Flp-In T-Rex 293 cells selected in 100 μg/ml hygromycin B and 10 μg/ml blasticidin for 3 weeks were incubated in 1 μg/ml doxycycline for 24 hours, then harvested and total proteins extracted. The indicated amount of WCE was incubated with 25 nM of TDP1 substrate at 37°C for 1 hour, then resolved with a 20% 7.5 M urea SequaGel by electrophoresis. “Buffer” denotes sample with lysis buffer but no WCE. “miScr” denotes cells expressing scrambled (control) miRNA, “miTDP1” denotes cells expressing TDP1-targeting miRNA, and “TDP1 + miTDP1” denotes cells overexpressing targeting-resistant TDP1 and TDP1-targeting miRNA. The number at the end of each cell line denotes clone number.
Figure 6.7 Flp-In T-Rex 293 cells with TDP1 knockdown accumulate more CPT-induced chromosomal DNA breaks. 3 x 10^5 Flp-In T-Rex 293 cells were incubated in 1 μg/ml doxycycline for 24 hours, then treated with 50 μM CPT or DMSO ("Mock") for the indicated time periods at 37°C. DNA strand breaks induced were measured using the alkaline comet assay. Average tail moments from 50 cells were quantified using the Comet Assay IV software. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from one-tailed Student’s t-test, whereby * denotes p < 0.05 and ** denotes p < 0.01.
Figure 6.8 Flp-In T-Rex 293 cells with TDP1 knockdown accumulate more CPT-induced DSBs. 5 x 10^4 cells plated on poly-D-lysine-coated coverslips were induced with 1 μg/ml doxycycline for 24 hours, then treated with 1, 5 or 10 μM CPT or DMSO (“Mock”) for 1 hour at 37°C, the media was then removed. The cells were washed twice with PBS then incubated in normal growth media for the indicated time periods. Cells were then fixed in 4% PFA for 15 minutes at room temperature, permeated with 0.2 % Triton-X100, then washed with PBS. Cells were then immunostained with antibodies against 53BP1 (red) and GFP (green) for 1 hour at room temperature, and DAPI (blue) for 10 minutes. (A) Example of images taken from TDP1+miTDP1-8 cells after CPT. Distinct 53BP1 foci were manually counted. (B) Quantification of average 53BP1 foci number per cell from 100 cells. (C) Doxycycline-induced cells were treated with 1 μM CPT or DMSO (“Mock”) for 1 hour, washed twice with PBS, then recovered in normal growth media for the indicated time periods. Average number of 53BP1 foci per cell from 100 cells were calculated. Data are the mean from 3 independent experiments and error bars denote ±1 S.E.M. p values were derived from one-tailed Student’s t-test, whereby * denotes p < 0.05.
Figure 6.9 TDP1 depletion in Flp-In T-Rex 293 cells reduced viability after CPT but not TBH treatment. (A, B) Cells induced with doxycycline were seeded at densities of 2000-20000 cells/100 µl, and treated with the indicated concentrations of CPT or TBH in the absence of doxycycline for 72 hours. 20 µl of CellTiter-Blue reagent was then added to the cells and incubated at 37°C for 1 hour. The fluorescence intensity was measured using a BMG FLUORstar Omega microplate reader with filters of EX544/EM590-10. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. (C) Scheme of doxycycline induction and CPT or TBH treatment (in hours) Cells were treated with 1 µg/ml doxycycline for 24 hours, followed by treatment with the indicated concentrations of CPT in (A) for 2 hours at 37°C or TBH in (B) for 1 hour at 37°C. Cells were subsequently incubated in media with 1 µg/ml doxycycline for up to 72 hours (+0, +24, +48, +72) or without doxycycline for the indicated hours (-24, -48, -72). (D) Cells from (C) were harvested and lysed. 40 ng of WCE was incubated with 25 nM of TDP1 substrate at 37°C for 1 hour, then resolved with a 20% 7.5 M urea gel by electrophoresis. "Buffer" denotes sample with lysis buffer but no WCE. "TDP1 + miTDP1" denotes cells overexpressing targeting-resistant TDP1 and TDP1-targeting miRNA, "miTDP1" denotes cells expressing TDP1-targeting miRNA. The number at the end of each cell line denotes clone number.
6.3.3 Overexpression of SOD\textsuperscript{G93A} in TDP1-depleted cells increased H\textsubscript{2}O\textsubscript{2}-induced chromosomal breaks

In order to compare the role of TDP1 in the mitochondria between human and mouse, I generated Flp-In cell lines concomitantly depleted of TDP1 and overexpressing SOD\textsuperscript{G93A} (“SOD\textsuperscript{G93A} + miTDP1”). However, after 24-hour doxycycline induction, the SOD\textsuperscript{G93A}-EmGFP signal was only present in < 5% of the cell population in 4 out of 5 clones screened by FACS, compared to ~ 15% of the TDP1-proficient cell population overexpressing SOD\textsuperscript{G93A} (Fig. 6.10A). This was not due to reduced level of overall transcription or translation in TDP1-depleted cells, as wildtype SOD1 was expressed in ~ 30% of TDP1-depleted cells (“SOD1 + miTDP1”) (Fig. 6.10A). Using immunoblotting, I further confirmed that the expression level of SOD\textsuperscript{G93A} in TDP1-depleted cells declined between 8 – 16 hours of induction. In contrast, in SOD1 + miTDP1 cells, the overexpression level of SOD1 was unaffected by TDP1 depletion (Fig. 6.10B). This could be due to downregulation of SOD\textsuperscript{G93A} expression to ensure survival of TDP1 deficient cells. Nevertheless, even with low level expression of SOD\textsuperscript{G93A}, SOD\textsuperscript{G93A} + miTDP1 cells showed ~ 30% higher level of chromosomal breaks after 10 minutes of H\textsubscript{2}O\textsubscript{2} treatment compared to wildtype, although the subsequent repair of these breaks was independent of TDP1 (Fig. 6.11, p < 0.05; Student’s t-test). This is consistent with the finding in MEFs as described in Section 5.2.7.

6.3.4 Validation of functional phenotypes of TOP1mt and TOP1mt\textsuperscript{*} overexpression in Flp-In cell lines

To further investigate the role of human TDP1 in the mitochondria, and possible functional interaction with TOP1mt, I generated Flp-In cell lines that overexpress TOP1mt-EmGFP in TDP1-proficient or -deficient backgrounds (“TOP1mt + miScr” and “TOP1mt + miTDP1”, respectively). In addition, to mimic the increase in TOP1mt-cc due to oxidative stress, I also established cell lines that overexpress the toxic mutant TOP1mt’-EmGFP in the presence or absence of TDP1 knockdown (“TOP1mt + miScr”
Figure 6.10 SOD1<sup>G93A</sup> overexpression is attenuated in Flp-In T-Rex 293 cells with TDP1 depletion. 5 x 10<sup>5</sup> cells were incubated in 1 μg/ml doxycycline for 24 hours ("+Dox"), then fixed with 70 % ethanol for 4 hours. Percentage of cells expressing GFP was analysed by FACS. (B) 5 x 10<sup>5</sup> cells were incubated in 1 μg/ml doxycycline for the indicated time periods, then harvested. 75 μg of WCE was fractionated by SDS-PAGE and immunoblotted using antibodies against human TDP1 and SOD1. "SOD1 + miTDP1" denotes cells expressing TDP1-targeting miRNA and SOD1, "SOD1<sup>G93A</sup> + miScr" denotes cells expressing scrambled miRNA and SOD1<sup>G93A</sup>, while "SOD1<sup>G93A</sup> + miTDP1" denotes cells expressing TDP1-targeting miRNA and SOD1<sup>G93A</sup>. The number at the end of each cell line denotes clone number.
Figure 6.11 Flp-In T-Rex 293 cells expressing SOD1G93A accumulate more SSBs after H2O2 treatment. 3 x 10^5 cells from the Flp-In T-Rex 293 stable cell lines were incubated in 1 μg/ml doxycycline for 8 hours, treated with 10 μM H2O2 or PBS ("Mock") for 10 minutes on ice, then incubated in drug-free medium for the indicated time periods. SSBs induced were measured using the alkaline comet assay. Average tail moments from 50 cells were quantified using the Comet Assay IV software. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-test, whereby * denotes p < 0.05 and ** denotes p < 0.01.
and “TOP1mt + miTDP1”, respectively). I confirmed the levels of protein expression by immunoblotting (Fig. 6.12A), mitochondrial localization of TOP1mt-EmGFP and TOP1mt*-EmGFP (Fig. 6.12B), and enzymatic activity of TDP1 in the mitochondria (Fig. 6.12C). Interestingly, TDP1 catalytic activity appeared to be upregulated by ~ 20 % in both TOP1mt- and TOP1mt*-overexpressing cells (Fig. 6.12D).

As an initial validation of the functional phenotype of TOP1mt overexpression, I designed primers for five peptide-coding transcripts encoded by the mitochondrial genome (Table 2.9) and confirmed the specificity of the primers for PCR amplification of a cDNA library prepared from whole cell RNAs (Fig. 6.13A). Since the mitochondrial encoded genes are intronless, the primers would also amplify any contaminating mtDNA. With the DNAse treatment, I confirmed that mtDNA was not detectable by PCR in the non-reverse transcribed RNA preparations (Fig. 6.13B). I then quantified the levels of the transcripts by RT-qPCR in each cell line. After 24-hour doxycycline induction, TOP1mt overexpression markedly reduced levels of the mitochondrial transcripts by ~ 80 % compared to control cells (Fig. 7.13C, p < 0.001; Student’s t-test), consistent with published data (Sobek et al., 2013).

I then validated the phenotype of TOP1mt* overexpression published by Pommier and coworkers (Dalla Rosa et al., 2014) by quantifying TOP1mt-cc using caesium chloride (CsCl) fractionation (Fig. 6.14A) (Hartsuiker, 2011). Due to the non-specificity of the TOP1mt antibody on immunoblotting of WCE (Fig. 6.15) and CsCl fractions (Fig. 6.14B), I used purified mitochondrial extracts instead of WCE for CsCl fractionation, and immunoblotted the fractions using anti-GFP antibody, which would detect EmGFP-tagged TOP1mt and TOP1mt*. Non-specific signals were now absent from the free DNA fractions (Fig. 6.16A,B). Interestingly, in the absence of exogenous stress or topoisomerase poisons, overexpression of wildtype TOP1mt did not induce more endogenous TOP1mt-cc than in control miScr cells, (Fig. 6.16A). Overexpression of TOP1mt*, however, induced ~ 6.5 fold more TOP1mt-cc compared to
Figure 6.12 Overexpression of TOP1mt or TOP1mt* with concurrent TDP1 depletion in Flp-In T-Rex 293 cells. (A) 10⁶ cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. 75 μg of WCE was fractionated by SDS-PAGE and immunoblotted with antibodies against TDP1, GFP, and β-tubulin. (B) 2 x 10⁷ cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. Mitochondria were extracted, purified with proteinase K, and lysed. 5 μg total proteins were fractionated by SDS-PAGE and immunoblotted with antibodies against GFP. (C) 100 ng of mitochondrial lysate from (B) was mixed with 25 nM of TDP1 substrate at 37°C for 1 hour, then resolved with a 20% 7.5 M urea gel by electrophoresis. The substrate and product were detected with the ChemiDoc MP (Bio-Rad) gel imaging system using the Cy5.5 filter. (D) Quantification of TDP1 catalytic activity from (C) using Image Studio Lite. TDP1 activity was calculated from the ratio of 3'-P product signal intensity to the total intensity of 3'-P and 3'-PY. Relative TDP1 activity is expressed as TDP1 activity normalised to that of the control miScr cells. "Buffer" denotes sample with lysis buffer but no lysate. "3'-PY" denotes oligonucleotide substrate with 3'-phosphotyrosyl end, "3'-P" denotes oligonucleotide product with 3'-phosphate end, "miScr" denotes cells expressing scrambled miRNA, "TOP1mt + miTDP1" denotes cells overexpressing targeting-resistant TDP1-EmGFP and TDP1-targeting miRNA, "miTDP1" denotes cells expressing TDP1-targeting miRNA. "TOP1mt + miScr" denotes cells overexpressing TOP1mt-EmGFP and scrambled miRNA, and "TOP1mt + miTDP1" denotes cells overexpressing TOP1mt and TDP1-targeting miRNA. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-test, whereby * denotes p < 0.05.
Figure 6.13 Overexpression of TOP1mt reduces abundance of mitochondrial transcripts in Flp-In T-Rex 293 cells. (A) 10^6 cells were incubated in 1 μg/ml doxycyline for 24 hours then harvested. The RNA contents were extracted and 5 μg was reverse-transcribed. PCR was carried out on the cDNA and non-reverse transcribed RNA extract to test the specificity of primers to amplify five of the mitochondrial genes. β-actin was used as positive control and H_2O was used as non-template control (NTC). (B) cDNA and non-reverse transcribed RNA extract from (A) was used to test PCR amplification of GAPDH, using ND1 as positive control and H_2O as NTC. (C) RT-qPCR quantification of transcript abundance of five mitochondrial genes normalised against GAPDH from cells overexpressing TOP1mt, relative to the abundance of the mitochondrial transcripts miScr control cells. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from one-tailed Student’s t-test. whereby *** denotes p < 0.001 and **** denotes p < 0.0001.
Figure 6.14 Detection of TOP1mt-cc in Flp-In cells by caesium chloride fractionation (A) 2 x 10^6 Flp-In cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested and lysed. 1 % of the lysate was treated with RNAse A and Proteinase K, then the gDNA concentration was measured by pico-green fluorescence. The remaining lysates were fractionated by caesium chloride (“CsCl”) gradient centrifugation for 24 hours. (B) 10 equal-volume fractions were collected, starting from the bottom of the tube, and slot-blotted onto nitrocellulose membrane. The volumes loaded were normalised to the gDNA concentration and the equivalent of 7 μg gDNA were loaded in each slot across the cell lines. TOP1mt–cc were detected by immunoblotting with GFP antibodies and visualised by chemiluminescence.
Figure 6.15 Titration of TOP1mt antibodies on WCE of Flp-In T-Rex 293 cells overexpressing TOP1mt-EmGFP. (A) $10^6$ cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. 75 μg of total proteins from the WCE was fractionated by SDS-PAGE and immunoblotted with antibodies against TOP1mt or GFP at the indicated dilutions and visualised by chemiluminescence.
Figure 6.16 TDP1 depletion promotes accumulation of TOP1mt-cc. (A, B) 2 x 10⁷ Flp-In cells were incubated in 1 µg/ml doxycycline for 24 hours, then harvested. The mitochondria were extracted then lysed. 1% of the lysate was treated with RNAse A and Proteinase K, then the gDNA concentration was measured by pico-green fluorescence. The remaining lysates were fractionated by caesium chloride ("CsCl") gradient centrifugation for 24 hours. Ten equal volume fractions were collected, starting from the bottom of the tube, and slot-blotted onto nitrocellulose membrane. The volumes loaded were normalised to the gDNA concentration and the equivalent of 7 µg gDNA were loaded in each slot across the cell lines. TOP1mt-cc were detected by immunoblotting with GFP antibodies and visualised by chemiluminescence. Quantification of total signal intensity of TOP1mt-cc (fractions 4-7) was carried out using Image Studio Lite and normalised to the total intensity from TOP1mt + miScr cells. (C) CsCl fractions from B were immunoblotted with antibodies specific to TOP1-DNA complex.
overexpression of wildtype TOP1mt, as detected by antibodies against GFP (Fig. 6.16B) as well as TOP1-DNA covalent complexes (Fig. 6.16C), confirming the propensity of the toxic mutant to form DNA cleavage complexes.

6.3.5 TDP1 removes TOP1mt*-cc in the mitochondria

Having established the expected functional phenotypes of the Flp-In cell lines overexpressing TOP1mt or TOP1mt*, I then explored the effect of TDP1 depletion in these cell lines. Figure 6.16B shows that depletion of TDP1 increased the level of TOP1mt-cc by 6.6 fold, and a further 1.6 fold in the case of TOP1mt* (i.e. ~ 10.7 fold more than TOP1mt overexpression), suggesting that TDP1 plays a role in removing TOP1mt*-cc's. To further confirm this, I quantified mtDNA covalently linked to TOP1mt* in the presence or absence of TDP1 using qPCR following chromatin immunoprecipitation (ChIP-qPCR) using GFP-Trap® beads. Primers targeting the putative TOP1mt*-EmGFP binding site (position 15873 – 15972) of the mtDNA (Fig. 6.1, Table 2.8) (Dalla Rosa et al., 2014) were tested for specificity, along with primers for quantifying mtDNA copy number (Fig. 6.17A, Table 2.8). The input materials were first analysed for the mtDNA copy numbers, which were comparable amongst the cell lines (Fig. 6.17B). I then quantified the amount of TOP1mt*-linked mtDNA by qPCR. The C_T values of the ChIP samples were normalised to that of the corresponding input samples and expressed as percentage input, which was normalised against its relative mtDNA copy numbers. As expected, TOP1mt* overexpressing cells showed > 2-fold more ChIP material specific to the TOP1mt binding site than the negative control cells overexpressing EmGFP alone (“miScr”); and TDP1 depletion further increased the pull-down material by ~ 4 fold (Fig. 6.17C, p < 0.05; Student’s t-test). Thus, TDP1 inhibits accumulation of TOP1mt-cc detectable by qPCR without topotecan treatment.
Figure 6.17 TDP1 depletion promotes stalling of TOP1mt* at H-chain replication origin. (A) 5 x 10^6 cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. The gDNA contents were extracted. Left panel: TOP1mt binding site ("15873", denotes region from position 15873 – 15972 of mitochondrial chromosome) was PCR-amplified to test for primer specificity. "B2M" and "ND1" denotes nuclear- and mitochondrial-encoded genomic regions, respectively, used for quantification of mtDNA copy number. Right panel: repeat PCR of B2M using a range of annealing temperatures. (B) qPCR quantification of mtDNA copy calculated by: \( 2 \times 2^{\Delta CT} \) whereby \( \Delta C_T = B2M \text{ average } C_T - ND1 \text{ average } C_T \). Data from 3 independent experiments are shown. (C) 2 x 10^7 cells were incubated in 1 μg/ml doxycycline for 48 hours then harvested. Cells were lysed in ChIP lysis buffer and sonicated to yield chromatin length of average ~ 300 bp. 10 % volume was set aside as input, while the remaining lysates were immunoprecipitated using GFP-conjugated agarose beads. The pull-down material was washed and eluted. The eluent was treated with RNase A and Proteinase K, then used for qPCR quantification of TOP1mt binding site. The % input was calculated as: \( 10 \times 2^{(\text{adjusted Input } C_T - \text{IP } C_T)} \), whereby adjusted Input \( C_T = \text{Input } C_T - 3.32 \). The % inputs for each cell line were then normalised against the respective mtDNA copy numbers of the cell line. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from one-tailed Student's t-test, whereby * = p < 0.05 and ** = p < 0.01.
6.3.6 TDP1 promotes mitochondrial transcription

Having established the molecular mechanism of TDP1 interaction with TOP1mt, I then investigated whether depletion of TDP1 has an impact on TOP1mt-regulated transcription. Overexpression of TOP1mt led to marked reduction of five of the mitochondrial mRNA transcripts examined by RT-qPCR (Fig. 6.13C, \( p < 0.001 \); Student’s t-test). Depletion of TDP1 led to ~ 50% reduction of all transcripts tested, which was partially rescued by complementation with human TDP1 (Fig. 6.18A, \( p < 0.01 \); Student’s t-test). Interestingly, depletion of TDP1 in cells overexpressing wildtype TOP1mt did not further suppress transcription (Fig. 6.18B). In striking contrast to wildtype TOP1mt, overexpression of TOP1mt* led to ~ 2-fold increase in mitochondrial gene transcription, which was largely dependent on TDP1 (Fig. 6.18C, \( p < 0.05 \); Student’s t-test). Given the observed role of TDP1 in processing TOP1mt-cc, the increase in transcription could be due to a compensatory upregulation of TDP1 catalytic activity. This is consistent with the ~ 25% increase in mitochondrial TDP1 activity in cells overexpressing TOP1mt* observed in Fig. 6.12C&D. Together, these data suggest a role for TDP1 in promoting mitochondrial gene transcription by resolving TOP1mt-cc. In addition, there appears to be a second distinct mechanism by which TOP1mt suppresses transcription independent of TOP1mt-cc formation or TDP1.

6.3.7 TDP1 promotes proper assembly of the ETC complex

Since transcription of mtDNA-encoded genes is essential for synthesis of major subunits of all the ETC complexes of the OXPHOS system except complex II, I next assessed the abundance of these complexes in purified mitochondria, by probing for the subunits that are particularly labile when the complexes are not correctly assembled (Fig. 6.19A). As expected, neither overexpression of TOP1mt or TOP1mt*, nor depletion of TDP1 had a significant effect on the nuclear-encoded complex II subunit, SDHB, at protein (Fig. 6.19C) or mRNA levels (Fig. 6.19G). Nor was there significant alterations in stability of complexes I, IV or V (Fig. 6.19B,E,F). The most
Figure 6.18 TDP1 depletion negatively regulates mitochondrial transcription in a TOP1mt*-dependent manner. 10^6 cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. Total RNA was extracted and 5 μg was reverse transcribed. RT-qPCR quantification of transcript abundance of five mitochondrial genes normalised against GAPDH from cells depleted of TDP1 with or without TDP1 complementation (A), overexpressing TOP1mt with or without TDP1 depletion (B), and overexpressing TOP1mt* with or without TDP1 depletion (C), relative to the abundance of the mitochondrial transcripts in control miScr cells. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-test, whereby * denotes p < 0.05, ** denotes p < 0.01 and *** denotes p < 0.001.
Figure 6.19 TDP1 facilitates assembly of ETC complex III. (A) Left: Immunoblotting of mitochondrial lysates from doxycycline-induced Flp-In T-Rex 293 cells using antibody cocktails against human OXPHOS proteins NDUFB8 (complex I), SDHB (complex II), UQCRC2 (complex III), COX-II (complex IV), and ATP5A (complex V). Right: Immunoblotting using specific UQCRC2 antibody. (B-F) Protein expression levels of the labile subunit from the indicated complexes relative to those of control miScr cells, after normalisation to levels of the mitochondrial loading control, VDAC1. (G) RT-qPCR quantification of SDHB transcript abundance using total RNA extracted from cells in (A) and GAPDH as internal control. Expression levels were then normalised to miScr cells. Data are the means of 3 independent experiments and error bars indicate ±1 S.E.M. p values were derived from two-tailed Student’s t-test. ** = p < 0.01 and ns = non-significant.
noticeable difference was detected with complex III. When normalised to the mitochondrial structural protein VDAC1 (porin), the level of UQCRC2 in complex III was reduced by ~ 40% when TDP1 was depleted \((\text{Fig. 6.19D, } p < 0.01)\). Surprisingly, overexpression of TOP1mt in the presence of TDP1 was not associated with complex III instability, despite a marked reduction in mitochondrial transcription \((\text{Fig. 6.18A})\). Overexpression of TOP1mt* alone had the same effect as TDP1 depletion, and concomitant TDP1 depletion did not further decrease the protein level \((\text{Fig. 6.19C})\). These results suggest that TDP1 plays a role in maintaining the integrity of complex III in TOP1mt-overexpressing cells in the face of lower of mitochondrial encoded ETC subunits. In contrast, TDP1 is unable to compensate for complex III structural instability as a result of excess mitochondrial subunits in TOP1mt*-overexpressing cells.

6.3.8 TDP1 promotes mitochondrial OXPHOS

Next I examined whether dysregulation in mitochondrial transcription and complex III assembly would have an impact on mitochondrial function in terms of OXPHOS and ATP production. Real-time measurement of mitochondrial OCR in response to oligomycin, FCCP, rotenone and antimycin A was performed using the Seahorse bioanalyzer \((\text{Fig. 6.20A})\). Under basal condition, mitochondrial respiration rate was ~ 25% lower in TDP1-depleted cells compared to control cells \((\text{Fig. 6.20B, left panel, } p < 0.01; \text{ Student’s t-test})\). Overexpression of TOP1mt reduced basal mitochondrial respiration by ~ 20%, and depletion of TDP1 in these cells further reduced basal respiration by an additional 8%, but this decrease was not statistically significant \((\text{Fig. 6.20B, middle panel})\). Overexpression of TOP1mt* reduced basal respiration by ~ 30%, and depletion of TDP1 in these cells had no further effect on basal respiration \((\text{Fig. 6.20B, right panel, } p < 0.05; \text{ Student’s t-test})\). I then examined if the mild basal respiratory defect was due to a switch to non-aerobic respiration by glycolysis, which is accompanied by acidosis. The extracellular acidification rate (ECAR) measured was comparable amongst all the tested cell lines under basal and stressed conditions.
Figure 6.20 TDP1 depletion negatively regulates mitochondrial respiration. (A) 10^6 cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. 6.5x10^4 cells/well were plated in Cell-Tak pre-coated XF24 cell plate in triplicates and three basal readings of oxygen consumption rate ("OCR") were taken. Cells were then subjected to sequential treatments with 1 μM oligomycin, 1 μM FCCP, and 1 μM rotenone and antimycin A during which three repeat OCR readings were taken. (B) Mitochondria respiration was calculated by subtracting average rotenone/antimycin A OCR from average basal OCR. Data are the mean of 3 independent experiments and error bars represent ± 1 S.E.M. p values were derived from two-tailed Student's t-test. * = p < 0.05, ** = p < 0.01, and ns = non-significant.
Interestingly, the respiratory (OCR/ECAR) ratio was decreased in TOP1mt+miScr, TOP1mt*+miScr, and TOP1mt*+miTDP1 cells in similar pattern as basal OCR (Fig. 6.21C), suggesting that the defect in basal OCR was specific to the OXPHOS pathway. Inhibition of ATP-coupled OXPHOS by oligomycin revealed no significant changes in uncoupled respiration (“proton leak”) amongst the cell lines that could account for the lower basal OCR (Fig. 6.22A). In contrast, the oligomycin-sensitive OCR (i.e. ATP-coupled respiration) were reduced by ~ 30 % in all cell lines depleted of TDP1 (Fig. 6.22B, p < 0.05), although in TOP1mt*-overexpressing cells no further reduction was seen by loss of TDP1. Finally, upon induction of maximal respiration by FCCP, mimicking the state of high ATP demand, TDP1-depleted cells showed a ~ 25 % reduction in spare respiratory capacity (SRC) compared to wildtype cells (Fig. 6.22C, left panel, p < 0.01; Student’s t-test). In TOP1mt-overexpressing cells, TDP1 depletion reduced SRC by ~ 50 % (Fig. 6.22C, middle panel, p < 0.05; Student’s t-test). Strikingly, TOP1mt*-overexpressing cells had the lowest SRC, at < 10 % compared to wildtype cells (Fig. 6.22C, right panel, p < 0.05; Student’s t-test). Depletion of TDP1 partially rescued this defect to ~ 50 % of wildtype level. Taken together, the mitochondrial respiration profiles showed that TDP1 promotes OXPHOS under both basal and high ATP demand conditions. Transient overexpression of wildtype TOP1mt has the mildest OXPHOS degree of dysfunction; while overexpression of TOP1mt* has the worst, with reduction of both basal and maximal respiration in a TDP1 dependent manner. These findings do not entirely correlate with the protein expression data of the ETC complexes, suggesting there are other dynamic factors mediating OXPHOS efficiency.

6.3.9 TDP1 promotes mitochondrial metabolic activity

To find out if the role of TDP1 in resolving TOP1mt-cc and maintaining mitochondrial transcription is important for non-OXPHOS metabolic activity as well, I incubated doxycycline-induced Flp-In cells with CellTiter-Blue (resazurin) reagent, which relies on
Figure 6.21 TDP1 depletion does not impact on anaerobic mitochondrial respiration. (A) Extracellular acidification rate (ECAR) under basal condition in cells from Figure 7.18. (B) ECAR after treatments with oligomycin and FCCP. (C) Respiratory ratio an indicator of cellular aerobic respiration activity, derived from basal mitochondrial respiration OCR divided by basal ECAR. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. * = p < 0.05, and ns = non-significant.
Figure 6.22 TDP1 depletion reduces efficiency of OXPHOS-coupled ATP production. (A) Proton leak calculated by subtracting average oligomycin OCR from average mitochondrial respiration OCR. (B) Oligomycin sensitive OCR derived by subtracting average proton leak OCR from average mitochondrial respiration OCR. (C) Spare respiratory capacity derived by subtracting average basal OCR from maximum OCR after FCCP. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student's t-test. * = p < 0.05, ** = p < 0.01, and ns = non-significant.
the dehydrogenases in the mitochondria and cytoplasm to be metabolized to a highly fluorescent product, resorufin. The mitochondrial metabolic activity then can be read out as a function of fluorescence intensity normalised to cell numbers. TDP1 depletion reduced the metabolic activity with or without TOP1mt overexpression, while TOP1mt* overexpression alone reduced the metabolic activity, with no further reduction when TDP1 was depleted (Fig. 6.23, \( p < 0.05 \); Student’s t-test). The results closely reflect the OXPHOS profiles obtained by the Seahorse assay, suggesting TDP1 plays a role in the overall functioning of the mitochondria.

6.3.10 Overexpression of TDP1 in the mitochondria negatively impacts mitochondrial function

Interestingly, TDP1-depleted cells overexpressing RNAi-resistant TDP1 showed a similar pattern of mitochondrial bioenergetics profile (Fig. 6.19 – 6.22) and metabolic activity (Fig. 6.23) as miTDP1 cells. As TDP1-EmGFP was detectable in the mitochondria by immunoblotting (Fig. 6.24) and clearly had an opposing effect on mitochondrial transcription compared to miTDP1 cells (Fig. 6.18A), I reasoned the observed defect in mitochondrial respiration could be due to overexpression of exogenous TDP1, possibly explaining the suppression of hTDP1 expression in \( Tdp1^- \) MEFs.

6.4 Discussion

In this chapter I have presented data generated from the inducible human Flp-In T-Rex 293 cell lines. First I have demonstrated that the miRNA-mediated TDP1 depletion (Fig. 6.5) is specific in terms of its catalytic activity (Fig. 6.6) and nuclear DNA repair activity (Fig. 6.7, 6.8). The viability defect after CPT treatment was not statistically significant from the control cells (Fig. 6.9A), which was not due to compensatory increase in enzymatic activity of the residual TDP1 expressed (Fig. 6.6B), nor inhibition of TDP1 activity in control cells by doxycycline (Fig. 6.9D). It was also observed that TDP1 depletion did not cause a viability defect from ROS damage (Fig. 6.9A).
Figure 6.23 TDP1 promotes cellular metabolic activity. 2 x 10^6 Flp-In cells were incubated in 1 μg/ml doxycycline for 48 hours, then re-plated at 10^5 cells/100μl for 72 hours. 20 μl of CellTiter Blue reagent was then added to the cells and incubated at 37°C for 1 hour. The fluorescence intensity emitted by the metabolite resorufin was measured using a fluorescent microplate reader with filters of EX544/EM590-10. Fluorescence intensity was normalised against that of miScr cells. Data are the mean of 3 independent experiments and error bars represent ±1 S.E.M. p values were derived from two-tailed Student’s t-tests. * = p < 0.05.
Figure 6.24 TDP1-EmGFP is localised in the mitochondria. 2 x 10^7 Flp-In TDP1 + miTDP1 cells were incubated in 1 μg/ml doxycycline for 48 hours, then harvested. Mitochondria were isolated and quantified using Bradford assay. The mitochondrial pellets were resuspended in homogenisation buffer and treated with or without 20 ng Proteinase K per 5 μg mitochondria on ice for 30 minutes, then washed in homogenisation buffer containing 1 mM phenylmethanesulfonyl fluoride (PMSF) to stop the digestion. The mitochondrial and nuclear fractions were lysed in Laemmli buffer and serially diluted. The nuclear and mitochondrial proteins were then fractionated by SDS-PAGE. The purity of the nuclear ("Nucl.") and mitochondrial ("Mito.") fractions were assessed using antibodies against the nuclear protein phospho-XRCC1(S475, T488), and mitochondrial protein COX IV, respectively, and detected using chemiluminescence. TDP1-EmGFP is detectable inside the mitochondria ("Mito. + Prot K") after long exposure.
As cell viability does not necessarily reflect the amount of DNA damage sustained and the repair capacity of the cells, I quantified these using the alkaline comet and 53BP1 immunofluorescence assays, and confirmed a transient defect in TDP1 depleted cells (Fig. 6.7, 6.8). Alkaline comet assay using H₂O₂ showed similar pattern of early accumulation of chromosomal DNA breaks in TDP1-deficient cells expressing SOD1<sup>G93A</sup> as observed in MEFs (Fig. 6.11), although the expression level of SOD1<sup>G93A</sup> tolerated in TDP1-deficient Flp-In cells was much lower than in Tdp1<sup>−/−</sup> MEFs. This could point to a higher dependence on TDP1 to reduce SOD1<sup>G93A</sup>-induced toxicity in these cells.

To investigate the functional interaction between TDP1 and TOP1mt, I next induced TOP1mt overexpression in TDP1-proficient and -deficient cells. Interestingly, when TDP1 was depleted, enrichment of a higher molecular weight species (~ 15 kDa) was observed (Fig. 6.12A), particularly in the mitochondria (Fig. 6.12B). TOP1mt has two isoforms: isoform 1 has a 50 amino acids mitochondrial localisation sequence at the start of the N-terminus, which is cleaved off upon binding the mitochondrial outer membrane, giving rise to isoform 2 (Zhang et al., 2001). As the cDNA sequence of isoform 2 was introduced into the host genome, the higher molecular weight species that was also present inside the mitochondria could not be due to isoform 1, but more likely a covalent modification of TOP1mt. Furthermore, the same pattern of enrichment of the higher molecular weight species was also observed when TOP1mt* was overexpressed in TDP1-depleted cells, although at a lower abundance (Fig. 6.12A). This could suggest a TDP1-mediated regulation of TOP1mt by post-translational modifications such as de-ubiquitination and de-SUMOylation. The nature of the higher molecular weight species compared to the lower band TOP1mt can be confirmed by mass spectrometric analysis.

The proximity of the mtDNA to the ETC complexes predisposes it to higher levels of oxidative damage (Yakes and Van Houten, 1997) that can stall TOP1mt and disrupt
transcription and replication (Medikayala et al., 2011). I confirmed that overexpression of the toxic TOP1mt* mutant indeed generates more TOP1mt-cc detectable by immunoblotting and qPCR (Fig. 6.16, 6.17). I also demonstrated that these lesions are dependent on TDP1 for repair. Interestingly, transient (up to 48-hour) overexpression of TOP1mt in TDP1-proficient cells in the absence of topoisomerase poisons does not lead to accumulation of TOP1mt-cc, suggesting there is a fundamental difference in steady-state levels of TOP1mt-cc between cells expressing the two versions of TOP1mt.

As TOP1mt-cc at the NCR region has been implicated in mtDNA replication (Dalla Rosa et al., 2014), and Tdp1−/− MEFs have reduced mtDNA copy number (Fig. 5.7), it would be interesting to examine its role in mitochondrial transcription as well. The measurement of transcript abundance by RT-qPCR usually indicates transcript turnover, which is a product of both transcription rate and transcript stability. In the context of mitochondrial genes, which are translated in organello, defective mRNA transportation that can lead to transcript accumulation can be ruled out. In terms of transcription elongation, Top1mt−/− MEFs do not appear to accumulate mitochondria transcripts of aberrant lengths (Sobek et al., 2013), arguing against an essential role of TOP1mt in transcription elongation. Furthermore, the high concentration of TOP1mt in the NCR containing the two promoter sites strongly suggests its involvement in transcription initiation (Zhang and Pommier, 2008), which is the main rate-limiting factor in determining transcript abundance. Lastly, I analysed multiple sites along the polycistronic heavy chain transcript, from the 5’ end RNR1 gene to the 3’ end CYTB gene, to allow detection of primary transcripts of different lengths. Taking together these considerations, it is highly likely that in this context, transcript abundance measured by RT-qPCR predominantly reflects the transcription rate.

TOP1mt overexpression in TDP1-proficient cells led to marked reduction of mitochondrial mRNA transcripts, which is consistent with earlier reports (Sobek et al.,
2013; Kolesar et al., 2013). In contrast, overexpression of TOP1mt* resulted in higher transcript levels. Therefore, it appears that the steady state level of TOP1mt-cc positively correlates with mitochondrial transcription rate. One possible explanation may be through DNA damage mediated retrograde signalling, which can upregulate mitochondrial transcription and biogenesis (Douarre et al., 2012; Scarpulla, 2006; Gong et al., 1998; Lee et al., 2000; Kluza et al., 2004; Fu et al., 2008). Interestingly, TDP1 activity is also moderately upregulated in our cellular model, tentatively suggesting its involvement in the retrograde signalling response. These data also provide an explanation for the lack of change in mitochondrial mass following TOP1mt* expression in murine cells despite rapid mtDNA depletion (Dalla Rosa et al., 2014), further confirming the importance of the mitochondrial TDP1 pathway in repairing TOP1mt-cc and maintaining mitochondrial transcription.

Although translation of mitochondrial-encoded genes occurs in organello, assembly of the ETC requires importation of nuclear-encoded subunits. Given that nuclear transcription of ETC subunits is unaffected (Fig. 6.19C), changes in levels of the mitochondrial subunits can potentially disrupt the nuclear:mitochondrial stoichiometry resulting in dysfunctional ETC. Intriguingly, although the levels of multiple mitochondrial transcripts are affected by the TOP1mt-TDP1 pathway, only complex III showed particular sensitivity to mis-assembly (Fig. 6.19D). Complex III, also known as cytochrome bc1 complex, is encoded by CYTB in the mitochondria, and the remaining 10 subunits are all encoded in the nuclear genome. The cytochrome B subunit is the main transmembrane subunit that anchors the complex, which could explain the disruption of complex III in TDP1 depleted cells with or without TOP1mt* overexpression. However, overexpression of TOP1mt in TDP1-proficient cells does not destabilise complex III, at least within the 48-hour time-frame of the observation. One possible explanation may be that mitochondrial transcription is constitutively suppressed by TOP1mt, and only activated in response to oxidative stress, when
increase in ETC capacity is required. Therefore, even very low level of transcription may be well-tolerated as other compensatory mechanisms such as mitochondrial fusion can facilitate pooling of essential proteins across a large number of mitochondria (Detmer and Chan, 2007; Westermann, 2008). Alternatively, TDP1 may play a yet undefined compensatory role in maintaining ETC assembly. In any case, since complex III plays a crucial role in handling electron transfer, dysfunction of complex III is expected to increase ROS production. The effect of complex III mis-assembly on efficiency of the OXPHOS-ATP system was then examined.

Transient inhibition of transcription by overexpression of TOP1mt-EmGFP minimal effect on mitochondrial respiration by OXPHOS. This is in contrast to the ~63% reduction in oxygen consumption reported in human HT1080 cells constitutively overexpressing YFP-TOP1mt (Dalla Rosa, 2009), which also showed reduction in nuclear-encoded subunits of the ETC complexes. This suggests that transient inhibition of TOP1mt-mediated transcription without accumulation of TOP1mt-cc is not sufficient to alter the efficiency of the ETC system. However, depletion of TDP1 seems to accelerate this process, most likely through accumulation of unresolved TOP1mt-cc. The observation that TDP1 depletion has no further impact on basal mitochondrial respiration in cells overexpressing TOP1mt*, which already show a ~25% reduction compared to control cells, suggests that the effects of TDP1 depletion and TOP1mt* overexpression are epistatic. However, the reduction in SRC in TOP1mt* -overexpressing cells was striking, particularly when it is partially reversed by depletion of TDP1. This could suggest that excessive expression rather than suppression of mitochondrial-encoded proteins without corresponding change in importation of the nuclear-encoded counterparts is more detrimental to cellular bioenergetics, perhaps due to a vicious cycle that consumes ATPs.

Surprisingly, overexpression of targeting-resistant TDP1 in TDP1 depleted cells showed the same mitochondrial respiratory (Fig. 6.19 – 6.21) and viability defects
(Fig. 6.9D) following the oxidative damage by TBH as TDP1 depleted cells, even though TDP1-EmGFP was detectable in the mitochondria (Fig. 6.24) and mitochondrial transcription was not downregulated (Fig. 6.18B). Another indicator that overexpression of TDP1 may be detrimental to mitochondrial respiratory function is that in Tdp1−/− DT40 cells, the clone that expressed high level of hTDP1 had a higher level of endogenous DNA radicals than the low TDP1-expressing clone (Fig. 5.4). If this were true, it could imply that TDP1 expression and importation into the mitochondria could be regulated by mitochondrial OXPHOS homeostasis, similar to TOP1mt (Fam et al., 2013a).

Lastly, it is worth noting that although transient overexpression of TOP1mt* did not alter the mtDNA copy number even with depletion of TDP1 (Fig. 6.17B), stable overexpression of TOP1mt* in MEFs has been reported to lead to ~50% loss of mtDNA without change in total mitochondrial mass (Dalla Rosa et al., 2014). This suggests that, in contrast to mitochondrial transcription, replication stalling and genomic instability were not induced by an acute increase in TOP1mt*-cc. If true, this may have implications for clinical use of TOP1 poisons such as topotecan and TOP1mt poison derivatives (still to be developed) and how these drugs are administered can affect its adverse effects on mitochondrial function over long-term.
CHAPTER 7

General Discussion
7.1 Overview

TDP1 is an important player in the repair of TOP-mediated DNA breaks, is implicated in maintaining cerebellar genome stability, and is a potential therapeutic target in refractory cancers. At the onset of this doctoral project, development of effective novel TDP1 inhibitors had reached a bottleneck; and it became apparent that a detailed understanding of the cellular response to TDP1 inhibition, in terms of compensatory upregulation of TDP1 expression or activity, DNA damage response, and impact on cellular proliferation, was needed.

The main aim of this thesis is to provide insight into the molecular mechanisms of TDP1 functions at the cellular level, which would contribute to a long-term project of investigating TDP1 function (and dysfunction) at a whole organism level, with potential for therapeutic applications.

7.2 Regulation of TDP1 activity by the N-terminus domain impacts cellular resistance to TOP1 poison

TDP1 is conserved across eukaryotes, and the addition of the N-terminus domain (NTD) in higher organisms prompted me to investigate the regulatory role of the NTD in human.

In chapter 3, I described the identification and characterisation of a novel post-translational modification in the NTD, phosphorylation at S81 by the ATM and/or DNA-PK, that promotes TDP1 protein stability, physical interaction with Lig3α, and DNA repair efficiency. This was the first reported post-translational modification of the NTD of human TDP1, and supports the view that regulation of TDP1 expression level plays a significant role in the cellular response to the TOP1 poisons. In chapter 4, I have presented further evidence that the N-terminus domain regulates TDP1 activity through another post-translational modification, SUMOylation at K111. Modification by
SUMO1 at K111 promotes recruitment of TDP1 to sites of DNA damage at transcriptionally active regions of the genome. Neither post-translational modifications affect the catalytic activity in vitro, but nevertheless promote repair of TOP1-cc at the cellular level.

7.3 Implications for novel drug combination strategies

These results suggest that, firstly, from a drug discovery point of view, focussing solely on the catalytic activity may not be a reliable indicator for cytotoxicity of TDP1 inhibitors, as the DNA repair capacity can be regulated by the N-terminus domain. Secondly, combination therapy using a TOP1 poison and an existing inhibitor of TDP1 regulatory pathway could be a less time-consuming approach than developing novel TDP1 inhibitors. For example, inhibition of PARP1, a physical interacting partner of TDP1, by veliparib (ABT-888), has recently been shown to reduce TDP1 protein stability and recruitment to DNA damage sites (Das et al., 2014; Murai et al., 2014). ABT-888 has been used with topotecan in advanced solid tumours and lymphomas in phases I and II clinical trials (Kummar et al., 2011; Kunos et al., 2015). However, the additive effect of combination therapy was minimal, and haematological toxicity was the main dose-limiting factor. This is likely due to the many TOP1- and TDP1-independent effects of PARP inhibition, such as dysregulation of DNA transcription and replication, DNA repair and apoptosis (Weaver and Yang, 2013).

In contrast to PARP1, inhibition of TDP1 by RNA interference and genetic inactivation in mice resulted in few cytotoxic effects in the absence of exogenous DNA damage (Hirano et al., 2007; Katyal et al., 2007; Guo et al., 2014). As an alternative approach that is more TDP1-specific, our lab has been investigating degradation of TDP1 by the ubiquitin-proteasome pathway. As deubiquitinating enzymes (DUBs) regulate protein stability, signalling pathways, cell proliferation and apoptotic response, and are heavily depended on by tumour cells, DUB inhibitors are attractive candidates for anti-cancer
treatments (D’Arcy et al., 2015). Identifying and inhibiting specific DUBs that promote TDP1 stability or repair of TOP1-cc by, for example, HR (Orthwein et al., 2015), can be potential new avenues to improve efficacy of TOP1 poisons.

The finding that SUMOylated TDP1 promotes repair of transcription-associated SSBs may have implications in cancer therapy as well. Firstly, increasing evidence indicates that the SUMOylation pathway is upregulated in several tumour types (Mo and Moschos, 2005; Mo et al., 2005; Moschos et al., 2007; Moschos et al., 2010; Deng et al., 2011). The obligate E2 conjugating enzyme UBC9/UBE2I has been proposed as a cancer therapeutic target, for instance it has been demonstrated that depletion of UBC9 sensitised melanoma-infiltrated lymph nodes to the cytotoxic effect of cisplatin and paclitaxel (Moschos et al., 2007). UBC9 polymorphisms that promote TOP1 SUMOylation have also been shown to sensitise NSCLC to irinotecan (Han et al., 2010).

7.4 Targeting repair of transcription-mediated DNA damage in quiescent cancer stem cells

Since TOP1 SUMOylation in its catalytic domain at actively transcribed regions promotes recruitment of RNA processing factors and reduces R-loop formation and genome instability (Li et al., 2015), targeting UBC9 in tumour cells can potentially be achieved by understanding the molecular mechanisms underlying the specific interactions with TOP1, TDP1 or BRCA1 (Xu et al., 2009), and screening for small-molecule inhibitors that disrupt the interaction sites. As TDP1 repairs transcription-dependent protein-linked breaks (PDBs) in non-cycling cells, it could be a potential target in quiescent cancer stem cells (qCSCs), which are often resistant to conventional chemotherapy (Lyle and Moore, 2011). Several current strategies targeting qCSCs involve inhibition of the quiescence process (Essers and Trumpp, 2010), but this process likely also occurs in normal adult stem cells (Li and Bhatia, 2011; Schuettpelz and Link, 2013), therefore this approach runs the risk of depleting
the normal stem cell population (Baldo et al., 2010; Sheikh et al., 2011; Skoetz et al., 2015). Inhibition of TDP1 SUMOylation may therefore be useful in targeting qCSCs, although normal postmitotic tissues such as mature neurons (Hudson et al., 2012) and cardiomyocytes may be affected as well. Thus this approach may be most useful as an adjuvant therapy in the paediatric population, who generally have higher tissue regenerative potential.

7.5 Novel anti-oxidant mechanism in vertebrates involving TOP1mt/TDP1 functional interaction

In chapters 5 and 6, I investigated the role of TDP1 in the mitochondria. As organelles implicated in many disease processes including neurodegeneration and tumourigenesis, the observation by several groups that TDP1 is present and active in the mitochondria (Das et al., 2010; Fam et al., 2013a) warranted further investigation. My findings confirm that TDP1 repairs ROS-induced DNA breaks in the nucleus. I also demonstrated that TDP1 has a direct role on the production of ROS from the mitochondria, namely, by promoting transcription of mitochondria-encoded genes mediated by TOP1mt activity, and thereby maintaining homeostasis of mitochondrial oxidative phosphorylation. This, to the best of my knowledge, is the first report that characterises the functional interaction between human TDP1 and TOP1mt.

7.6 Implications for targeting TOP1mt and mitochondrial TDP1 in cancer cells

TOP1mt has been identified as a modulating factor in several neoplastic diseases, and its expression is upregulated by the proto-oncogene Myc (Goto et al., 2006; Zoppoli et al., 2011). TOP1mt upregulation and mitochondrial dysfunction have also be observed in an ovarian cancer cell line with acquired resistance to doxorubicin (Chen et al., 2014). TOP1mt has therefore been proposed as a novel therapeutic target in doxorubicin-refractory ovarian tumours. However, genetic inactivation of Top1mt in
mice treated with doxorubicin has been shown to exacerbate the cardiotoxicity of doxorubicin and increase the mortality rate (Khiati et al., 2014), thus limiting the usefulness of this approach.

On the other hand, lamellarin D, an alkaloid from marine invertebrate with TOP1 poison-like effect (Facompré et al., 2003), has been shown to induce TOP1mt-cc (Khiati et al., 2014) that promote ROS production and cancer cell death (Ballot et al., 2014). Inhibition of TDP1 activity and/or its translocation to the mitochondria would promote accumulation of TOP1mt-cc, and would therefore be a logical combination with TOP1mt poisons like lamellarin D. This approach would likely be particularly deleterious to qCSCs that rely heavily on mitochondrial OXPHOS and have relatively low glycolytic capacity (Lagadinou et al., 2013). It is conceivable that the Flp-In TOP1mt/TDP1 cell line or an in vivo model such as transgenic zebrafish embryos could be utilised as positive controls in cell-based assays for development of TOP1mt inhibitors.

7.7 Regulation of mitochondrial transcription in non-replicating cells

The finding that TDP1 plays a direct role in maintaining mitochondrial function may also have implications in the fields of aging and neurodegeneration research. In differentiated postmitotic cells, regulation of mitochondrial transcription and translation are likely to be more crucial than mitochondrial DNA replication, as they allow more rapid adaptive response to mitochondrial stress. The TOP1mt-overexpressing Flp-In cell line may serve as a cellular model to investigate the effects of dysregulation of mitochondrial transcription independent of replication (Dalla Rosa, 2009). The Flp-In cells exhibit a high mitochondrial respiration rate both under basal and stressed conditions, which is reminiscent of highly aerobic cell types such as neurons. The tetracycline-inducible system also allows the distinction between short-term

7.8 Future directions

Several questions that arose from this project remain to be addressed:

1. **How does TDP1 SUMOylation promote its accumulation at sites of transcription-mediated DNA damage?** Could it be through interaction with SUMOylated TOP1, components of the transcription machinery, or other proteins? Mass spectrometric analysis of TDP1 and TDP1\(^{K111R}\) interacting proteins in the presence of DNA replication inhibitor aphidicolin could address this question.

2. **How does TDP1 translocate to the mitochondria?** Does it rely on a PTM or protein-protein interaction? Is it triggered by endogenous ROS? TDP1 does not appear to have a known mitochondrial targeting sequence in the NTD or mitochondrial isoform like many mitochondria-targeted DNA repair proteins. Although several groups have shown that TDP1 is present and active in the mitochondria without exogenously induced oxidative stress, its expression and translocation is stimulated by H\(_2\)O\(_2\) and menadione in human fibroblasts (Fam et al., 2013). This further supports my findings that TDP1 functions as part of the anti-oxidant response by upregulating OXPHOS efficiency. SOD1\(^{G93A}\)-overexpressing MEFs and Flp-In cells can be utilised to study translocation of TDP1 in response to endogenous ROS. Furthermore, since PTMs can regulate mitochondrial translocation of cytoplasmic proteins (Deng et al., 2011; Zhang et al., 2012; McBride et al., 2014), the TDP1\(^{S81A}\) and TDP1\(^{K111R}\) mutants can be similarly utilised.

3. **Does TDP1 interact with Lig3α in the mitochondria?** If so, what role does Lig3 play in the function of TDP1 in the mitochondria? Our collaborator has previously shown that in Flp-In cells, Flag-TDP1\(^{S81E}\) does not physically interact with endogenous Lig3α in the mitochondria (Meagher and Lightowlers, 2014), however the
interaction could be transient or abolished by the phosphomimetic mutation. Functional interaction could be assessed by depletion of Lig3α with or without co-depletion of TDP1 using the Flp-In cells.

4. **Does the TDP1$^{H493R}$ catalytic mutation generate mtPDB’s that can contribute to loss of postmitotic neurons in SCAN1 patients?** Flp-In cells complemented with TDP1$^{H493R}$ would be useful for initial assessment of the levels of mtTDP1-cc’s and mitochondrial bioenergetics profiles using protocols established in this thesis. Further work can be carried out in neurons reprogrammed from SCAN1 lymphoblastoid cells or TDP1$^{H493R}$ knock-in neuronal cell lines using CRISPR technology.

5. **Does TOP1mt and/or TDP1 regulate mitochondrial transcription via R-loop formation?** R-loop formation, especially at the O$_H$, is intrinsically linked to regulation of mitochondrial transcription and replication (Brown et al., 2008; El Hage et al., 2014). Nuclear TOP1 and TDP1 have both been demonstrated to reduce R-loop formation (El Hage et al., 2010; Yeo et al., 2014). Given the opposing effects of TOP1mt and TOP1mt* on transcription in contrast to nuclear TOP1, it would be interesting to assess the level of mitochondrial R-loops in the Flp-In cell lines overexpressing TOP1mt or TOP1mt* in the presence and absence of TDP1. An increase in R-loops in TOP1mt-overexpressing cells in the absence of TDP1 would support the hypothesis that TOP1mt inhibits transcription through excessive relaxation of the transcription initiation region. It would also be interesting to identify TOP1mt*-binding protein partners at the O$_H$ in the presence or absence of TDP1 using mass spectrometry.

### 7.9 Conclusions

To conclude, the main findings from this thesis comprise firstly of the identification and characterisation of novel factors involved in the regulation of TDP1 function, which can contribute to the rational design of combination therapies for neoplastic diseases; and
secondly of the characterisation of the protective role of TDP1 against oxidative stress, which can be utilised again in design of combination therapies for cancers, as well as design of novel cellular models to study the process of mitochondrial transcription in postmitotic cells.


ALAGOZ, M., WELLS, O. S. & EL-KHAMISY, S. F. 2014. TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy. Nucleic acids research, 42, 3089-103.


of cellular senescence through inhibition of topoisomerase I and intracellular ROS production. Marine Drugs, 12, 779-98.


CHIANG, S.-C. C., CARROLL, J. & EL-KHAMISY, S. F. 2010. TDP1 serine 81 promotes interaction with DNA ligase IIIalpha and facilitates cell survival following DNA damage. Cell cycle (Georgetown, Tex.), 9, 588-95.


improves advanced lupus nephritis in mice potentially by changing DNA relaxation and anti-double-stranded DNA binding. *Arthritis Rheumatol*, 66, 2259-69.


HABRAKEN, Y. & VERLY, W. G. 1988. Further purification and characterization of the DNA 3'-phosphatase from rat-liver chromatin which is also a polynucleotide 5'-hydroxyl kinase. European Journal of Biochemistry, 171, 59-66.


MAALØE, O. 1966. Control of macromolecular synthesis a study of DNA, RNA, and protein synthesis in bacteria, New York, W.A. Benjamin


MCBRIDE, H., ZUNINO, R. & GOYON, V. 2014. Mitochondrial SUMOylation as a critical regulator of proliferation and death (349.3). *FASEB J*, 28, 349.3–49.3-.


PALOMBO, F., IACCARINO, I., NAKAJIMA, E., IKEJIMA, M., SHIMADA, T. & JIRICNY, J. 1996. hMutS?, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. *Current Biology*, 6, 1181-84.


184

PARK, J. W. & AMES, B. N. 1988. 7-Methylguanine adducts in DNA are normally present at high levels and increase on aging: analysis by HPLC with electrochemical detection. Proceedings of the National Academy of Sciences of the United States of America, 85, 7467-70.


SCHUETTPELZ, L. G. & LINK, D. C. 2013. Regulation of hematopoietic stem cell activity by inflammation. Frontiers in Immunology, 4, 204.


WESTERMANN, B. 2008. Molecular machinery of mitochondrial fusion and fission. 10.1074/jbc.R800011200.


XU, B. O., KIM, S.-T. & KASTAN, M. B. 2001. Involvement of Brca1 in S-Phase and G 2 -Phase Checkpoints after Ionizing Irradiation Involvement of Brca1 in S-Phase and G 2 -Phase Checkpoints after Ionizing Irradiation. Molecular and cellular biology, 21, 3445-50.


APPENDIX

List of publications:

Chiang, S.-C., Carroll, J., & El-Khamisy, S. F. 2010. TDP1 serine 81 promotes interaction with DNA ligase IIIα and facilitates cell survival following DNA damage. *Cell Cycle*, 9, 588-595. [http://doi.org/10.4161/cc.9.3.10598](http://doi.org/10.4161/cc.9.3.10598)
